Odkrycie fal grawitacyjnych 100 lat po tym, jak przewidział je Einstein
2016.02.12 8:01 - admin
Fale czasoprzestrzeni po kosmicznym kataklizmie, zderzeniu dwóch czarnych dziur
Informacja od polskich współautorów sukcesu.
Zaobserwowanie przez LIGO fal grawitacyjnych wywołanych przez zderzenia czarnych dziur otwiera nowe okno na Wszechświat.
Po raz pierwszy w historii naukowcy zaobserwowali zmarszczki na tkaninie czasoprzestrzeni zwane falami grawitacyjnymi, które dotarły do ziemi z kataklizmu mającego miejsce w dalekim kosmosie. Potwierdza to jedną z najważniejszych konsekwencji ogólnej teorii względności Einsteina stworzonej w roku 1915 i otwiera całkowicie nowe perspektywy badania wszechświata.
Fale grawitacyjne niosą informacje o swoim pochodzeniu i o naturze grawitacji, których nie da się uzyskać w inny sposób. Fizycy doszli do wniosku, że zarejestrowane fale grawitacyjne powstały w ostatnim ułamku sekundy połączenia się dwóch czarnych dziur w jedną potężną, wirującą czarną dziurę. Zderzenie dwóch czarnych dziur zostało wcześniej przewidziane, ale nigdy dotąd go nie zaobserwowano.
Fale grawitacyjne zostały zarejestrowane 14 września 2015 o godzinie 5.51 letniego czasu wschodniego, co odpowiada godzinie 9.51 czasu uniwersalnego koordynowanego przez oba detektory Laserowego Obserwatorium Interferometrycznego Fal Grawitacyjnych – LIGO (Interferometer Gravitational-wave Observatory), znajdujące się w miejscowościach Livingston w stanie Luizjana i Hanford w stanie Waszyngton. Finansowane przez National Science Foundation (NSF) obserwatoria LIGO zostały powołane do życia przez Caltech (Kalifornijski Instytut Technologiczny) i MIT (Instytut Technologiczny w Massachusetts), które obecnie prowadzą w nich badania. Fal grawitacyjne zostały odkryte na podstawie danych pochodzących z obu detektorów przez zespół LIGO Scientific Collaboration, w skład którego wchodzi GEO Collaboration, Australijskie Konsorcjum Interferometrycznej Astronomii Grawitacyjnej (Australian Consortium for Interferometric Gravitational Astronomy) i Virgo Collaboration. Artykuł na temat odkrycia ukaże się wkrótce w czasopiśmie Physical Review Letters.
Badania prowadzone są w LIGO przez zespół zwany LIGO Scientific Collaboration (LSC), który składa się z ponad tysiąca naukowców pracujących w uniwersytetach w Stanach Zjednoczonych i 14 innych krajach. Ponad 90 uniwersytetów i placówek naukowych reprezentowanych w LSC zajmuje się udoskonalaniem detektorów i analizowaniem danych. Wśród osób mających wkład w badania jest też około 250 studentów. Używana przez LSC sieć aparatury obejmuje interferometry LIGO i detektor GEO600. W zespole GEO pracują naukowcy z Instytutu Fizyki Grawitacyjnej Maxa Plancka (znanego też jako Instytut Alberta Einsteina – AEI), Uniwersytetu Leibniza w Hanowerze, z Uniwersytetu w Glasgow, Uniwersytetu w Cardiff, Uniwersytetu w Birmingham oraz innych brytyjskich uniwersytetów, a także z Uniwersytetu Wysp Balearskich w Hiszpanii.
Program badawczy Virgo jest realizowany przez zespół Virgo Collaboration, składający się z ponad 250 fizyków i inżynierów należących do 19 różnych grup badawczych z Europy, w tym sześciu związanych z Centre National de la Recherche Scientifique (CNRS) we Francji; ośmiu z Istituto Nazionale di Fisica Nucleare (INFN) we Włoszech, dwóch z Nikhef w Holandii, ponadto z grupą Wigner RCP z Węgier, POLGRAW z Polski oraz Europejskim Obserwatorium Grawitacyjnym EGO (European Gravitational Observatory), które jest gospodarzem siedziby detektora Virgo niedaleko Pizy we Włoszech.
Detektor Virgo powstał dzięki wizjonerskiemu pomysłowi Alaina Brilleta i Adalberta Giazotta. Został on zaprojektowany przy zastosowaniu innowacyjnych technologii umożliwiających rozszerzenie czułości detektora na niskie częstotliwości. Budowa rozpoczęła się w 1994 roku dzięki środkom pochodzącym z CNRS i INFN a od roku 2007 Virgo i LIGO wspólnie zajmują się analizą danych zebranych przez interferometry należące do międzynarodowej sieci badawczej. W trakcie prac nad unowocześnieniem LIDO, dane były rejestrowane przez Virgo aż do roku 2011.
Wówczas uruchomiono projekt o nazwie Advanced Virgo, finansowany przez CNRS, INFN i Nikhef, dzięki któremu nowy detektor zacznie działać już przez końcem tego roku. Wiele instytucji naukowych i uniwersytetów z pięciu krajów europejskich reprezentowanych w projekcie Virgo Collaboration ma swój wkład zarówno w projekt Advanced Virgo, jak i w badania prowadzące do odkrycia fal grawitacyjnych.
Istotny wkład w doprowadzeniu do pierwszej bezpośredniej obserwacji fali grawitacyjnej z układu podwójnego czarnych dziur wniosło 15 polskich naukowców pracujących w grupie POLGRAW, która jest członkiem projektu Virgo.
Dziesięcioro członków grupy Virgo-POLGRAW: Paweł Ciecieląg, Magdalena Sieniawska, Orest Dorosh, Izabela Kowalska-Leszczyńska, Dorota Rosińska, Adam Zadrożny, Michał Bejger, Andrzej Królak, Piotr Jaranowski, Tomasz Bulik — fot. Jakub Ostałowski
Stworzyli oni podstawy wielu algorytmów i metod służących do wykrycia i estymacji parametrów fal grawitacyjnych z układów podwójnych (prof. dr hab. Andrzej Królak, prof. dr hab. Piotr Jaranowski), przyczynili się do precyzyjnego modelowania sygnału fali grawitacyjnej z układu podwójnego (prof. dr hab. Piotr Jaranowski, prof. dr hab. Andrzej Królak), przeprowadzili symulacje pokazujące, że układy podwójne czarnych dziur są najlepiej wykrywalnymi przez detektory LIGO-Virgo źródłami promieniowania grawitacyjnego (prof. dr hab. Krzysztof Belczynski, prof. dr hab. Tomasz Bulik), badali astrofizyczne własności układów podwójnych (dr hab. Michał Bejger, dr Izabela Kowalska-Leszczyńska, dr hab. Dorota Rosińska), oraz poszukiwali mogących towarzyszyć zdarzeniu błysków optycznych (dr Adam Zadrożny).
Do urzeczywistnienia odkrycia przyczyniła się również praca prof. dr hab. Andrzeja Królaka jako członka Zarządu projektu Virgo i członka Komisji Analizy Danych konsorcjum LIGO-Virgo oraz praca prof. dr hab. Tomasza Bulika jako członka jednego z Komitetów Przeglądu Prac konsorcjum. Dr hab. Michał Bejger brał udział w weryfikacji kodów numerycznych, który były użyte do analizy danych, a prof. dr hab. Andrzej Królak był jednym z wewnętrznych recenzentów jednej z prac przedstawiających odkrycie.
Dziewięciu naukowców z grupy POLGRAW znalazło się wśród autorów publikacji ogłaszającej odkrycie fal grawitacyjnych.
Powołanie LIGO w celu wyśledzenia fal grawitacyjnych zostało zaproponowane w latach 80-tych XX wieku przez emerytowanego profesora fizyki z MIT Rainera Weissa, emerytowanego profesora fizyki teoretycznej z Caltech Kipa Thorne’a (piastującego stanowisko im. Richarda P. Feynmana) oraz emerytowanego profesora fizyki również z Caltech, Ronalda Drevera.
Odkrycie fal grawitacyjnych stało się możliwe dzięki unowocześnionej wersji detektora zwanej Advanced LIGO, która dysponuje instrumentami o znacznie większej czułości niż detektory pierwszej generacji, umożliwiając obserwacje znacznie większych obszarów kosmosu i przynosząc tak doniosłe odkrycie już w pierwszej serii obserwacji. Głównym sponsorem Advanced LIGO jest amerykański fundusz nauki National Science Foundation, znaczne środki pochodzą też od Max Planck Society z Niemiec, Science and Technology Facilities Council (STFC) z Wielkiej Brytanii i Australian Research Council z Australii. Wiele z technologii, które w sposób kluczowy przyczyniły się do zwiększenia czułości Advanced LIGO zostało opracowanych przez niemiecko-brytyjski zespół GEO collaboration. Niezbędne do badań zaplecze komputerowe zostało w dużej części zapewnione przez AEI Hannover Atlas Cluster, Laboratorium LIGO, Uniwersytet w Syracuse oraz Uniwersytet w Wisconsin-Milwaukee. Wiele ośrodków uniwersyteckich uczestniczyło w projektowaniu, tworzeniu i testowaniu kluczowych elementów Advanced LIGO. Są to Australijski Uniwersytet Narodowy, Uniwersytet w Adelajdzie, Uniwersytet Florydy, Uniwersytet Stanforda, Uniwersytet Columbia w Nowym Jorku i Uniwersytet Stanowy w Luizjanie.