Properties of nuclei, synthesis and stability of heavy nuclei
last updated: December 2014
RESEARCH TOPICS
- Possibility of existence/stability/structure of super-heavy nuclei (in connection with experiments run in Dubna and in GSI, soon also at GANIL).
- Properties (masses, decay paths) of nuclei far from stability (in connection with experiments run in GSI and in Jyväskylä).
- Nuclei exotic states (third minima, K isomers).
- Evaluation and analysis of nuclei masses currently measured in GSI.
WORKS PERFORMED IN 2014
- Masses and deformations in ground states and saddle points for super-heavy nuclei from the 98<Z<126 and 134<N<192 region (including ground states for odd nuclei) were determined. Alpha decay energies were calculated. Two pairing accounting methods were used: blocking and adding quasi-particle energy. Discrepancies between theoretical calculations and experimental data turned out to be smaller in the super-heavy nuclei region than in the fitting region.
- The microscopic/macroscopic method applied in 8 dimensions (an unprecedented approach) resulted in a low value (360 keV) of the 3rd barrier, which was in line with old experimental results (Blons et al.). Unclear current experimental situations was pointed out.
- Fission barriers and stability of super-heavy nuclei Z ≥ 126 were predicted.
THE MOST ESSENTIAL ACHIEVEMENTS (2014)
- Several possible structural effects that might inhibit alpha decay and explain some discrepancies between experimental data and theoretical predictions were identified.
- Calculated masses were used to estimate cross sections in hot fusion reactions leading to synthesis of Z=119 and Z=120 super-heavy elements.
- An original method to correct the time necessary for 181,183Lu, 185,186Hf, 187,188Ta, 191W and 192,193Re ions to travel around the ESR-GSI ring was worked out. Accuracy in measurements of masses of 189,190W and 195Os nuclei was improved.
- 212Bi nucleus isomeric state was analysed.
APPLICABILITY OF THE OBTAINED RESULTS
- The obtained cross sections for production of several super-heavy elements are necessary to plan reactions of synthesis of the most heavy nuclei on Earth.
- The developed method to correct ESR-GSI ring travelling times will be used to improve accuracy in measurements of masses conducted in GSI.
- Theoretical predictions of nuclei masses and alpha decay energies will soon be verified experimentally. Depth of the 3rd minimum in Th-232 will soon be experimentally verified within the framework of the ELI (Extreme Light Infrastructure) European programme.
RESEARCH TEAM
- Professor Zygmunt Patyk
- Professor Adam Sobiczewski
- Associate Professor Michał Kowal
- Associate Professor Janusz Skalski
- Associate Professor Robert Smolańczuk
This page edited by: Marek Pawłowski