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C. Descriptions of scientific goal of the monographic series of publications and

the results achieved and a description of possible applications of the results

1. Introduction

The presented monographic series of publications is devoted to construction, analysis and
interpretation of quantum dynamics of classically singular cosmological models. According
to the celebrated Hawking-Penrose theorems [1, 2] the appearance of singularities associated
with the existence of incomplete geodesics is a generic feature of general relativity. The
singularities are commonly conceived as the breakdown of general relativity and the latter
is commonly expected to be eventually replaced by some more fundamental and nonsingular
theory. Given that quantum theories provide a universal and fundamental description of
Nature, a natural candidate theory is a quantum theory of gravity. Any proposal for such a
theory must therefore pass the basic test of solving the problem of singularities.

Currently, there are being developed several proposals for a quantum theory of gravity
such as loop quantum gravity [3], causal dynamical triangulations [4] and a few others.
Neither of them is complete nor widely accepted. As an indicator of the success of a given
proposal, one might consider solving with it some serious problems in specific gravitational
systems, which cannot be cured with the standard methods of quantum mechanics. However,
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as I show below, resolving the singularity problem in homogeneous cosmologies cannot be
considered as the success of such proposals as those singularities can be resolved by quite
standard methods. Furthermore, any attempt at formulating a quantum theory of gravity
meets not only with technical problems but also with quite convoluted conceptual problems
such as the problem of interpretation of quantum dynamics of gravitational systems. The
latter is the essential aspect of the so called time problem [5, 6] that arises as a consequence
of the lack of absolute time, i.e. a unique and external to the states of a system parameter.
The evolution of a gravitational system can be expressed in terms of one of internal degrees
of freedom, which we call the internal clock. The classical physics is obviously independent of
the choice of internal clock, which is quite arbitrary. However, quantum mechanics assumes
the absolute time. Hence the question arises whether one can incorporate the free choice of
internal clock in quantum mechanics as a kind of a new symmetry which, on the one hand,
preserves all the well-tested predictions of quantum mechanics and, on the other hand,
extends its range of applicability to gravitational systems without time.

A limited experimental verification of quantum theories of gravity is available in the
cosmological domain where they may be applicable in explaining the origin of the primor-
dial structure in the universe. Currently available observational data, foremost the observed
anisotropies in the temperature of the cosmological microwave background radiation (CMB),
inspire primordial universe theories [7–9]. The most investigated is the theory of inflation
[10, 11]. It explains the origin of the structure with the quantum vacuum amplification
mechanism that operated during a brief period of accelerated expansion that took place in
the early Universe and was driven by a scalar field in a potential. The theory of inflation
obviously comprises elements of quantum gravity as it involves quantisation of the gravita-
tional field perturbations. However, alternative theories based on quantum cosmology with
a quantum bounce playing the role of the amplifier of vacuum fluctuations involve even more
elements of quantum gravity and can be, to some degree, confronted with observations. The
recent results by Planck [12] provide an additional stimulus for alternative theories. In the
light of the Planck data the inflationary paradigm looses much of its original appeal [13]
(see also [14]). The results amplify the well-known problems of the theory: the initial condi-
tions problem, the fine-tuning problem and the multiverse (or, “unpredictability”) problem.
Despite that fact that the results that I present below do not constitute a new alternative
theory of the origin of structure, they provide a basis for making such a theory in future
and indicate the steps to be taken.

The presented below series of works assumes that a study of the quantum nature of
gravity can begin with considering simple, often soluble gravitational systems, and that the
obtained results can be next generalised to more complex systems. The models utilised for
this study are the well-known in general relativity spatially homogeneous cosmologies that
can admit many different homogeneity groups. They are classified according to the algebra of
their Killing vector fields into the so-called Bianchi types. They are very useful for studying
possible quantum effects that remove the classical singularities. The variety of singularities
comprised by these models range from the simplest ones in the isotropic models, through
strong and anisotropic ones in anisotropic models such as the Bianchi I model, to oscillatory
ones in the Bianchi VIII and Bianchi IX models. As I show below, all those singularities can
be resolved with a suitable quantisation procedure and the resultant quantum dynamics can
be effectively studied with certain methods of approximation. Furthermore, the simplicity
of some of those models make them ideal for studying the time problem as it is manageable
to express their quantum dynamics in terms of many internal clocks and seek the relation
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between them. The results of such an investigation are presented below together with
universal implications that enable, on the one hand, to consistently interpret the quantum
cosmological models under consideration and, on the other hand, to understand one of the
most basic properties of quantum gravity theories. Last but not least, the derived quantum
models when furnished with linear perturbations can be used to model the dynamics of early
universe. Below I show how the inclusion of tensor perturbations makes it possible to use
the available data to constrain some free parameters that are induced by quantisation of
cosmological models.

In the following I first define the class of models that is relevant for the present discussion
(sec. 2). Next, I describe the methods of quantisation and of analysis that were developed
by myself and my collaborators. I discuss their application to the isotropic models and to
the anisotropic Bianchi I model (sec. 3). Next, I turn to the discussion of the quantum
dynamics of a particularly important model, the Bianchi IX, or mixmaster model (sec. 4).
Then I discuss the issue of interpretation of the quantum dynamics of those models (sec. 5).
Finally, I give an example of constraining those quantum models by the use of cosmological
data (sec. 6). I finish with some remarks on the possible extensions and applications to the
obtained results (sec. 7).

2. Singularity models

The considered models are spatially homogeneous cosmologies that admit three indepen-
dent spatial Killing vector fields ξ1, ξ2, ξ3 [15]. They are assumed to be generators of the left
group-action that is simple and transitive in spatial leafs. The Killing vector fields satisfy the
Lie algebra [ξi, ξj] = −Ck

ijξk, where the structure constants Ck
ij satisfy the Jacobi identity.

We consider exclusively the class A models for which Ck
ij = εijlh

lk, where hlk is symmetric.

Furthermore, let us assume hlk = δlkhk to be diagonal. The vector fields that generate the
left and the right group-action in a spatial leaf commute with each other. Thus, the latter,
denoted by ei, and their dual forms, denoted by ωi, constitute an invariant basis with respect
to the left action of the homogeneity group and are used to express any homogeneous tensor
field. The introduced dual forms satisfy the Cartan equation, dωk = 1

2
εijkh

kdωi ∧ dωj. We
extend the domain of the basis vector fields ei (together with ωi) onto the whole spacetime
and assume that they commute with the normal to the spatial leafs vector field. Also, the
metric spatial components are assumed diagonal in this basis. In other words, I shall con-
sider diagonal, hypersurface-orthogonal class A Bianchi models. Their line element in the
Misner parametrisation reads

ds2 = −N2dt2 + e2β0+2β+ [e2
√
3β−(ω1)2 + e−2

√
3β−(ω2)2 + e−6β+(ω3)2].

The Arnowitt-Deser-Misner (ADM) formalism implies the following gravitational Hamilto-
nian constraint [16]

Cg =
e−3β0

24

(
−p20 + p2+ + p2− + 24e4β0V (β±)

)
, (β0, β±, p0, p±) ∈ R6,

where the anisotropy potential V (β±) depends on the structure constants hk, that is, on the
specific choice of a homogeneous model. The vector constraints vanish identically. Hence,
the models are formulated in terms of mechanical systems with a single constraint that plays
the role of a Hamiltonian. The singularity is reached for β0 → −∞, p0e

−3β0 → ±∞.
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In the Hamiltonian formalism the dynamics in the Misner time β0 appears nonsingular as
the Hamiltonian flow is complete in β0. Moreover, rescaling β0 will not change it. It suggests
that for that choice of clock the singularity is hidden, or removed from the dynamics. To
have truly singular Hamiltonian dynamics one needs a clock that takes various values at
the singularity depending on the choice of initial conditions. For this reason it is convenient
to fill the models with a cosmological fluid which can play the role of internal clock. The
Hamiltonian description of relativistic fluids was given by B. Schutz [17]. For barotropic
fluids satisfying p = wρ, the fluid Hamiltonian constraint for the considered models reads

Cf = e−3wβ0pT , (T, pT ) ∈ R+ × R,

where T i pT are a canonical pair describing the state of fluid. The Hawking-Penrose theorem
implies that the dynamics is singular for w > −1/3 [2]. In the fluid clock T , the Hamiltonian
flow is incomplete. It is justifiable to represent the singularities of the flow as a boundary
of the phase space taking finite values of canonical coordinates. Hence, I introduce new
canonical coordinates

p = e−
3
2
(1−w)β0p0, q =

2

3(1− w)
e

3
2
(1−w)β0 , (q, p) ∈ R+ × R.

The physical Hamiltonian that generates the dynamics in the clock T in the reduced phase
space is obtainable through solving the constraint Cg + Cf = 0 with respect to pT and
eliminating the canonical pair (T, pT ) from the phase space,

H =
1

24

(
p2 − c1

p2+ + p2−
q2

− c2qc3V (β±)

)
,

where the constant c1, c2, c3 depend on the specific choice of fluid. The commutation
relations on the reduced phase space (q, p, β±, p±) ∈ R+×R5 are determined by the so-called
Dirac bracket which in the present case preserves the original phase space commutation
relations. Notice that the physical Hamiltonian H assumes the standard kinetic term in
p. Moreover, the coordinate transformation makes the isotropic sector of the phase space
into a half-plane, (q, p) ∈ R+ × R. Notice that the usual group of translations in positions
and momenta, which is represented at the quantum level by the unitary and irreducible
representation of the Weyl-Heisenberg group, is no longer a symmetry of the yielded phase
space as the translations in positions encounter a barrier at q = 0. The idea of replacing
the translations in positions with dilations plays a crucial role in the works discussed below.
The translations in momenta and the dilations generate the affine group (of a line). The
affine group admits a unique (up to sign) nontrivial irreducible unitary representation in
Hilbert space. The use of this representation for quantising the cosmological models yields
very interesting and nontrivial results while preserving the canonical commutation rule, the
basic paradigm of quantum physics.

The essential part of the research on the quantum dynamics of the cosmological models I
made in 2014-2016 during my stay at Université Paris Diderot in Paris, where I collaborated
with Jean-Pierre Gazeau, a professor at Diderot, and Hervé Bergeron, a professor at Uni-
versité Paris-Sud in Orsay. They both are renown experts on integral quantisation methods
and coherent states.
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3. Method of quantisation and tools of dynamics analysis

Canonical quantisation is based on a unitary and irreducible representation (UIR) of the
group of position and momentum translations in the full plane, R2, i.e. the Weyl-Heisenberg
group. The considered models involve the isotropic phase space coordinates that form a half-
plane, R+×R. This phase space can be associated with the Hilbert space of square-integrable
functions on a half-line. Notice that in this Hilbert space the momentum operator P , which
is a self-adjoint generator of the UIR of the WH group on a full line, becomes a symmetric
operator without a self-adjoint extension due to the barrier at x = 0. Therefore, for the
purpose of quantisation I will use the affine group that satisfies the multiplication law,

(q, p) ◦ (q′, p′) = (qq′,
p′

q
+ p).

The UIR of the affine group is generated by the self-adjoint position and dilation operators on
the half-line. In the work [S2] we applied that representation for quantisation of the isotropic
coordinates q and p. We defined the quantisation map based on that representation with
the use of coherent states, that is, an over-complete continuous set of nonorthogonal vectors
in Hilbert space, which resolve the identity. They are constructed with the UIR of the affine
group and are called the affine coherent states,

R+ × R 3 (q, p) 7→ 〈x|q, p〉 := 〈x|U(q, p)|ψ0〉 =
eipx
√
q
ψ0

(
x

q

)
∈ H,

where ψ0(x), the so-called fiducial vector, is an almost arbitrary, fixed normalised state in
the Hilbert space that determines the entire family of coherent states built from the UIR of
the affine group U(q, p). The quantisation map based on the affine coherent states satisfies
the natural requirements: (1) it is linear, (2) it promotes 1 to the identity operator and (3) it
assign symmetric operators to real observables. Furthermore, (4) it promotes semi-bounded
observables to semi-bounded operators (which are guaranteed self-adjoint extensions). By
the virtue of construction, (5) the affine coherent state quantisation is covariant with respect
to the affine symmetry in the same sense in which the canonical quantisation is covariant with
respect to the translations in positions and momenta. The affine coherent state quantisation
may satisfy the canonical commutation rule by promoting the coordinates q and p to the
position and momentum operators Q and P .

The proposed approach to quantisation emphasises the fundamental role of the symmetry
of the phase space and allows infinitely many quantisation maps as long as they are covariant
with respect to this symmetry. With the affine coherent state quantisation one has to choose
a specific family of the affine coherent states that specifies the quantisation map. Hence,
one may obtain many quantum models from a given classical one. As we showed, this
arbitrariness does not lead to qualitatively different quantum dynamics. Rather, it allows
to adjust numerical parameters in the quantum Hamiltonian to one’s physical intuition or,
ideally, to available observational data. Such an approach to quantisation of cosmological
models appears appealing.

The affine quantisation promotes the kinetic term p2 to the operator P 2 +K/Q2 on the
half-line x > 0 with K > 0. The purely quantum term K/Q2 plays a very important role
in the quantum dynamics. Firstly, for K > 2/3 the kinetic operator becomes essentially
self-adjoint and it generates a unique unitary evolution. Thereby, the affine quantisation
resolves the boundary condition problem for the evolution the wave-function of the universe,
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FIG. 1. Phase space distributions at different values of the internal clock. The ranges in q and p

are respectively [0.2, 2.8] and [−35, +35], and are given in Planck units. Increasing values of the

distributions are encoded by colours from blue to red.

which arises when one naively applies the canonical quantisation prescription to the case
of a half-plane. Secondly, the term K/Q2 has the form of a repulsive potential that gen-
erates a “quantum force” that removes the singularity. When Q → 0 the potential grows
unboundedly and rises an impenetrable barrier for the collapsing geometry. As a result,
the contracting universe bounces off the potential at some Q > 0 and begins a phase of
expansion. Thirdly, the potential K/Q2 decreases rapidly as the universe expands and Q
increases, and hence, the dynamics away from the bounce becomes again, in some sense,
classical.

In the work [S2] we employed the affine coherent states to study the quantum dynamics
of the isotropic models. We used them for defining the affine counterpart of the so-called
Hussimi function. It yields the phase space probability distribution for any Hilbert space
vector. The figure 1 presents the evolution of a phase space probability distribution for
the quantum closed Friedmann universe. Despite the fact that the presented solution is
unrealistic (q and p are given in Planck units), it is clear that the quantum dynamics is
nonsingular and undergoes a bounce that, when combined with the classical re-collapse,
leads to a periodic evolution.

A simplified, though very useful, description of the dynamics can be obtained by the
Klauder method [18] rewritten in the affine coherent states. His method has two aspects:
practical, as it represents the quantum dynamics in terms of classical observables and inter-
pretational, as it shows how to obtain the classical dynamics corrected by the non-vanishing
of ~ from the more fundamental quantum dynamics. It relies on the variational principle
applied to the quantum action, which in the full Hilbert space leads to the exact equations
of quantum motion. In the Klauder method one restricts the quantum action to a specific
family of coherent states, that is, a quasi-classical subset of the Hilbert space. This yields
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FIG. 2. Classical (on the left) and semiclassical (on the right) phase space trajectories for the flat

Friedmann universe. The classical trajectories are singular, whereas the semiclassical ones undergo

a bounce at small volumes due to the quantum repulsive potential, K/q2. Away from the bounce,

the classical and semiclassical trajectories coincide. The values of q and p are given in Planck units.

the Hamilton equations for an approximate quantum motion in the Hilbert space,

R 3 T 7→ |q(T ), p(T )〉 ∈ H,

and the respective semiclassical motion in the phase space,

R 3 T 7→ (q(T ), p(T )) ∈ R+ × R.

Some classical and semiclassical trajectories of the flat Friedmann model are presented in
the figure 2. Close to the singularity, the quantum effects transform the classical dynamics
into the bouncing dynamics thanks to the term K/Q2 (the equipotential lines are vertical),
whereas away from the bounce the classical behaviour is attained. The Klauder method of
semiclassical portrait seems to be potentially of great use in the further research on quantum
gravitational models and is being currently developed, e.g. in [19]. In general, the method
can be extended by including more parameters that describe the dynamics of nonclassical
degrees of freedom such as dispersions. The result is a Hamiltonian formulation of quantum
mechanics in infinitely-dimensional phase space. However, for applications it is essential that
that framework be consistently reduced to finite-dimensional phase spaces comprising both
classical and nonclassical degrees of freedom. This framework is universal and applicable to
all symmetries, nevertheless, it is being developed with an eye towards future research on the
dynamics of most complex models such as Bianchi IX. It is a research line that emerged from
the above considerations and is currently pursued by Artur Miroszewski, a PhD student,
through the NCN grant Preludium awarded to him in 2018.

In the work [S4] we applied the affine quantisation and the Klauder semiclassical portrait
method to the spatially flat anisotropic Bianchi I model. In addition to the isotropic variables
q and p, this model also includes the shape function pk that describes the evolution of the
shape of the universe. Depending on the initial conditions, the contracting classical universe
terminates at one of the two following singularities: cigar-like with two scale factors vanishing
on the other one blowing up, or pancake-like with two scale factor approaching finite values
and the other one vanishing. The singular behaviour is visible both in q and p, and in pk (see
figure 3). The singularity of this model is very strong as contraction is driven by the shear
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FIG. 3. Classical (on the top) and semiclassical (on the bottom) phase space trajectories of the

Bianchi type I model. On the left, the q-p plane: the classical trajectories are clearly singular,

whereas the semiclassical ones pass through the classically forbidden region and undergo a bounce.

Away from the bounce the classical and semiclassical trajectories coincide. On the right, the q-pk
plane: the clearly singular classical trajectories are replaced by smooth semiclassical ones. All

values are given in Planck units.

that scales as a−6. In the Hamiltonian formalism the strength of the singularity is reflected
in the fact that the contracting universe and the expanding universe branches form two
distinct constraint surfaces that are separated by a region of classically unphysical states of
a non-zero measure. For this reason it is impossible to first reduce the constraint completely
and then quantise the system in such a way as to obtain a bouncing model. The constraint
surfaces and the classically forbidden region between them are properly expressed by the
coordinates q and p forming the half-plane. The affine quantisation of that model yields
a complex quantum Hamiltonian and the semiclassical portrait method turns out to be an
indispensable tool for studying its quantum dynamics. The semiclassical trajectories reveal
that the quantisation smooths out the constraint surfaces in such a way that the classically
unphysical region becomes accessible for the semiclassical motion. The universe evolving
along the contracting branch at some moment of time smoothly transits to the other branch
through the classically forbbiden region. The singularity of the classical dynamics is replaced
by a bounce. It is depicted in the figure 3.
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4. The mixmaster universe

The most important model, and unfortunately the most difficult one, is the Bianchi type
IX, commonly known as the mixmaster universe. It is important because it is a most generic
homogeneous model in the sense that all its structure constants hk are non-vanishing. For
example, the Bianchi type I is very special as all its structure constants are exactly zero.
Moreover, as the widely acknowledged analysis by Belinskii, Khalatnikov and Lifshitz (BKL)
shows, the dynamics of a generic inhomogeneous universe on approach to a cosmological
singularity becomes dominated by time-derivatives [20]. The asymptotic dynamics becomes
ultralocal at each point and identical with a generic spatially homogeneous model. Therefore,
the mixmaster dynamics appears crucial for understanding generic singularities in GR. The
classical dynamics of the mixmaster is very hard and commonly viewed as chaotic [21,
22]. The mixmaster universe is a three-sphere that on contraction undergoes chaotic and
oscillatory aspherical distortions [21, 22]. It can be viewed as a model of isotropic space in
which two coupled modes of nonlinear gravitational wave propagate [23]. Before it collapses
into the singularity in a finite proper time, an infinitely many oscillations of the gravitational
wave take place. The asymptotic dynamics is often represented by an infinite series of
Kasner universes that follow one after another with a transition rule given by solutions to
the Bianchi II model [24]. Asymptotically, all known form of mater become negligible and
the contraction is solely driven by the energy of the gravitational wave.

Studies on the quantum dynamics of mixmaster were initiated by the work of Misner
[25]. Unfortunately, Misner failed to resolve the singularity, and his analysis was based
on a primitive approximation to the anisotropy potential and implicitly assumed adiabatic
approximation to the dynamics. It seems that there has been no real breakthrough in
the field since then. Minor exceptions might be a few papers on the effective dynamics
of this model in loop quantum cosmology, whose authors claim to obtain the singularity
avoidance, though, the nonsingular dynamics in their approach remains essentially unknown
[26]. Together with my collaborators I developed a new approach to quantisation and to
analysis of the quantum model in a series of works [S5-S9]. The obtained results include the
replacement of the classical singularity with a quantum bounce and approximate descriptions
of the quantum dynamics giving new and important insights into the rich physics of the
bounce. In particular, the latter result is quite surprising and completely novel.

To quantise mixmaster we applied the affine coherent state quantisation to the isotropic
coordinates q and p, and the Weyl-Wigner quantisation to the anisotropic ones, β± i p±,
as they form full planes, R2. The yielded quantum Hamiltonian includes a new term, the
quantum repulsive potential. By comparing the behaviour of the anisotropy energy and
the repulsive potential at small volumes we were able to show that the quantum dynamics
avoids the singularity. Furthermore, to see more features of the quantum dynamics we
employed molecular physics methods by exploiting the formal analogy between the isotropic
geometry coupled to the gravitational wave and the nuclei coupled to an electronic cloud
in a molecule. The employed methods are the adiabatic Born-Oppenheimer approximation,
its refined but still adiabatic version known as the Born-Huang approximation, and a non-
adiabatic approximation, the so-called vibronic approach.

In the works [S5,S6] we studied the bouncing dynamics of quantum mixmaster within the
adiabatic approximation. We assumed that the anisotropy occupies a fixed, though evolving
in volume, eigenstate during the entire evolution. We found that the anisotropy effectively
acts upon the isotropic geometry as a barotropic fluid and the dynamics of the entire system
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FIG. 4. Dynamics of the scale factor and the Hubble rate during a slightly non-adiabatic mixmaster
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FIG. 5. Dynamics of the populations of the anisotropy eigenstates during the mixmaster bounce.

The initial population of the state |2〉 decreases as the populations of other states increase. The

overall excitation level increases from 〈n〉 = 2 to 〈n〉 ≈ 5

effectively approximates to the Friedmann model. Hence, we have identified the quantum
dynamics of the Friedmann model with the adiabatic sector of the quantum dynamics of
mixmaster with the only difference being the latter including a quantum correction due to
the non-vanishing energy of the ground or low excited anisotropy state.

In the work [S7] we showed the quantum bounce may lead to the breakdown of the adia-
batic dynamics by producing excitations in the anisotropy. The produced anisotropy energy
has to be balanced by the energy of isotropic expansion by the virtue of the Hamiltonian
constraint. Hence, the bounce is followed by an extended phase of accelerated expansion.
We determined the precise condition for the breakdown of adiabatic approximations to oc-
cur and introduced the so called stiffness parameter that is inversely proportional to the
strength of the repulsive potential and proportional to the amount of matter and anisotropy
in the pre-bounce universe. We derived a relation between that parameter and the duration
of the aforementioned quantum gravity-induced inflationary phase.

In the work [S8] we developed the vibronic approach for the purpose of studying the
non-adiabatic sector of the quantum mixmaster dynamics. As perviously, we employed the
Klauder method to describe the isotropic geometry, whereas the anisotropic states were given
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the full quantum treatment with a special care given to their coupling to the isotropic evo-
lution. This approach yielded a self-consistent set of the coupled Hamilton and Schrödinger
equations. They were solved for a few initial conditions. The figures 4 and 5 present a
slightly non-adiabatic solution. They visualise a bounce-induced slight excitation of the
initial anisotropy eigenstate to a superposition of higher-lying states. The average occupa-
tion number clearly increases at the bounce. The asymmetric with respect to the bounce
behaviour of the scale factor and the Hubble rate exhibits the post-bounce acceleration
of expansion and demonstrates how the production of anisotropy influences the isotropic
evolution.

All the above results were obtained within the harmonic approximation to the anisotropy
potential. As we showed in [S9], the harmonic approximation is correct for large volumes and
low excited anisotropy states, whereas the the so-called “steep-wall” approximation is valid
for small volumes and high excited anisotropy states. However, to obtain a quantitatively
accurate picture of the bouncing dynamics and the anisotropy excitation, the employed
anisotropy potential approximation needs to be valid for intermediate volumes and interme-
diate excited anisotropy states. The presented study on the quantum mixmaster is continued
and, for example, in the forthcoming paper [27] we propose to approximate the anisotropy
potential with the integrable Toda potential.

The main motivation for continuing the described research is the finding of the extended
inflationary period in the post-bounce dynamics. It is very promising for cosmological
applications as the inflationary phase is a well-known and thoroughly studied in the theory
of inflation gravitational amplifier of density and gravity-wave fluctuations. In other words,
the quantum mixmaster universe can be employed in future for making an alternative theory
explaining the origin of the primordial structure in the universe. Therefore, the more detailed
examination of the non-adiabatic sector of dynamics should be followed by development of
perturbation theory for this model.

5. Problem of time

In the canonical formalism the dynamics of gravitational systems is generated by a Hamil-
tonian constraint. There are two main approaches to quantisation of Hamiltonian constraint
systems: (1) first to quantise the constraint and then to determine the kernel of the respec-
tive quantum operator, or (2) first to solve the constraint and reduce the phase space to the
physical phase space and then to quantise. The approach (1) is the Dirac method. It must
be supplemented with an extra step in order to extract the quantum dynamics. Basically,
a chosen internal degree of freedom has to be reinterpreted as a classical parameter (the
internal clock) and the scalar product in the space of physical states needs to be subse-
quently redefined. A healthy description of quantum physical dynamics is established if the
physical states evolve unitarily with respect to a chosen parameter. The approach (2) is
the reduced phase space approach. The choice of internal clock, physical variables and a
suitable, non-vanishing Hamiltonian in the classical constraint surface is made and they are
used to express the unconstrained dynamics. In the both approaches the yielded quantum
dynamics of a gravitational system formally resembles the quantum dynamics of a uncon-
strained system. However, there exist two basic interpretational differences between those
dynamics: (A) the evolution of a Hamiltonian constraint system is expressed in terms of
an internal variable whose numerical value is necessary for the complete reconstruction of
a state of the system, for instance, the volume of the universe may be used as the internal
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clock; (B) there exist many good clock candidates and hence, there exist many reduced phase
space descriptions of Hamiltonian systems based on those clocks. The latter point brings
the question of the relation between dynamics expressed in different clocks. Obviously, the
classical formalism should describe the same physics irrespectively of the choice of clock.
However, the quantised dynamics depends on the clock employed for quantisation.

I investigated the above issue mostly within the scope of an NCN project titled “Time
issue in quantum cosmology” of which I was principal investigator in 2014-2016. I am author
of the idea and the main results of the investigation. I published four single-author articles
and one two-author article. The latter was co-authored by Artur Miroszewski, a PhD
student in National Centre for Nuclear Research, to whom I am an auxiliary supervisor.
I became interested in the above problem during my scientific stay at the Pennsylvania
State University, State College, in the group of Prof. Abhay Ashtekar in 2011-2012. The
result of my work in this research centre is my first article [S1] devoted to that subject. I
investigated the quantum Kasner universe and I found the volume operator to depend on
the choice of clock and its spectrum to change from discrete to continuous under some clock
transformations. For the main part of my investigation I used the quantum models of the
Friedmann universe [S2] and of the Bianchi type I [S4], both described above.

The main results of the investigation is the development of a methodology for comparing
quantum dynamics based on different internal clocks [S3] and its application to the quantum
cosmological models [S11,S12]. The introduced methodology is based on the extension of
the Hamilton-Jacobi theory of canonical transformations to the theory of so-called pseudo-
canonical (or, clock) transformations which include transformations of internal clock and
comprise canonical transformations as a normal subgroup. The group of pseudo-canonical
transformations thus naturally possesses the structure of a fibre bundle over the space of
all possible clocks with a fibre made of canonical transformations. This fibre bundle can be
associated with sets of coordinates in the constraint surface made of canonical coordinates
and a clock. I showed that there exists a special family of cross-sections of the bundle
that are particularly useful for comparing integrable systems dynamics in different clocks.
The restriction to a cross-section reduces the number of examined coordinate systems in the
constraint surface to those that differ in the choice of clock. Given a coordinate system with a
clock, the introduced cross-section fixes the canonical coordinates for all other clocks in such
a way that the respective Hamiltonian formalism remains formally identical. Thereby, one
avoids solving the Hamilton equations for each clock separately and is able to properly define
quantisation for all Hamiltonian formalisms (see below). The cross-section is determined by
means of 2n+ 1 algebraic relations between a new and an old coordinate system for a model
with 2n-dimensional reduced phase space.

Any methodology must ensure the important property of the found differences in quantum
dynamics to be solely due to the choice of clock rather than usual quantisation ambiguities
such as operator orderings. For this purpose, I imposed on quantisation the condition saying
that Dirac observables (or, constants of motion) must be promoted the same operators in
a fixed Hilbert space irrespectively of the choice of clock. It turns out that this condition
is sufficient to fix the quantisation of all observables, dynamical and non-dynamical, and in
all clocks, provided that a quantisation of the Dirac observables for a single choice of clock
is given.

In the work [S10] the above methodology was used for investigating the quantum dynamics
of a free particle in a line. The dependence of quantum dynamical operators and their
spectral properties on the choice of clock was demonstrated. The postulates of extended
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FIG. 6. Phase space portrait of the quantum dynamics of the flat Friedmann model expressed in

various internal clocks and in the fixed variables q and p. It is evident that clock transformation

can change the quantum correction (the dotted lines) in such a way as to decrease the volume of the

bounce, increase the volume of the bounce, produce more than one bounce, produce asymmetric

behaviour with respect to the bounce. Compare these dynamics with one given in the original

internal clock in the figure 2. The values of q and p are given in Planck units.

quantum mechanics that admits transformations of clocks were derived, and it was shown
that there exists a certain limit in which the ordinary quantum mechanics based on a fixed
clock can be obtained. The latter property was demonstrated in a simple case, though
because of the importance of this property, it should be demonstrated in future for the
general case.

In the work [S11] the above methodology was applied to study the quantum dynamics
of the Friedmann model that was derived in [S2]. The method of semiclassical portrait
was employed for comparing dynamics in different clocks, that is, the quantum dynamics
were reduced to the dynamics of the expectation values in basic operators. The physical
interpretation of the dynamics was shown to depend on the choice of clock and to exhibit
large differences in the regime of strong quantum effects, that is, in the vicinity of the bounce.
The dynamics away from the bounce converge to the classical dynamics and no longer vary
with clock transformations (see the figure 6).

In the work [S12], the above methodology was employed in a study of the quantum dy-
namics of the Bianchi type I universe filled with a cosmological fluid [S4]. As in the previous
work [S11], the semiclassical portrait was used and many differences in the physical inter-
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FIG. 7. On the left: (a) plot of the so-called delay function that defines the clock transformation

as a function of the isotropic variables; (b) dynamics of q and p in the new internal clock; (c)

dynamics of the shape function pk and the volume q in the new internal clock. It is evident that

the clock transformations lead to modifications of the respective quantum dynamics approximated

by the fixed variables q, p and pk. Compare these dynamics with the one in the original internal

clock in the figure 3. The values of q, p and pk are given in Planck units. The most important

property of the semiclassical trajectories is that away from the bounce they converge to the same

classical trajectories irrespectively of the choice of internal clock.

pretations of the dynamics were detected. It was found that the past and future asymptotic
states evolve classically and independently of the choice of clock. Moreover, the past and
future asymptotic states were found to be causally related in a way that does not depend
on the choice of clock, despite the fact that the semiclassical dynamics connecting them
strongly vary with the choice of clock (see the figure 7).

With the above works I have significantly increased the knowledge of the quantum dy-
namics of Hamiltonian constraint systems, and in particular quantum cosmological systems
with a bounce resolving the initial singularity problem. I demonstrated the dependence of
the dynamics on the choice of clock. In particular, I showed that the scale of the bounce,
the number of bounces, or the spectrum of dynamical operators, all depend on the specific
choice of clock. Nevertheless, I also showed that there exist dynamical predictions that do
not depend on the choice of clock and thus, they should be considered physical. Namely,
they are causal relations between past and future asymptotic states of the universe away
from the bounce, where the dynamics of the universe is approximated by general relativity.
This finding implies that the idea of resolving the initial singularity through quantisation of
a cosmological model entail physical predictions that do not involve any specific choice of
clock. This conclusion crucially complements the described above results on the singularity
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avoidance in the affine quantisation.

6. Observable effects

All quantum models that resolve the classical singularities are merely proposals, postu-
lates modifying general relativity for some space of solutions. Therefore, it is necessary to
confront them with available observational data. For cosmological models one needs first to
extend them by adding density and tensor perturbations, which seems sufficient for mod-
elling the early universe on large cosmological scales. The available data relevant for those
models include the measurements of the anisotropies in the temperature of the CMB by
such experiments as the Planck mission [12] or experimental bounds on the amplitude of
cosmological gravitational waves determined in a completely different part of spectrum in
such experiments as LIGO [28].

In the work [S13] together with my collaborators I investigated the quantum dynamics
of the homogeneous and isotropic universe furnished with linear tensor perturbations, i.e.
gravitational waves. The classical model was derived from the ADM formalism by expand-
ing the vector constraints in first order and the scalar constraint to second order. In zero
order the model was de-parameterised by promoting a fluid variable for the internal clock.
Since the tensor perturbations are invariant with respect to infinitesimal coordinate trans-
formations, the first-order constraints identically vanish. The yielded formalism does not
posses any constraints and its dynamics is generated by a non-vanishing Hamiltonian in the
physical phase space.

The cosmological perturbation theory on the quantum cosmological model is sometimes
called quantum field theory on quantum spacetime [29]. This theory is developed mainly
with an eye towards extending the inflationary paradigm up to the Planck scale and above,
or constructing an alternative to inflation theory of the origin of the primordial structure in
the universe. In the work [S13] we proposed a new way to derive such a theory based on
the variational principle. The quantum states of the homogeneous background filled with a
cosmological fluid were approximated with coherent states, whereas the states of the modes
of the quantised tensor perturbation were given in the Heisenberg picture. This approach
yielded a system of Hamilton’s equations for the background variables and a coupled to
them second-order linear equation for the mode functions of the tensor perturbation.

The quantum dynamics of the cosmological background was derived in [S2] where it was
shown to be dominated by a quantum repulsive potential at small volumes and include
a bounce followed by a phase of expansion. As the quantum dynamics at the bounce is
vey abrupt, it may lead to excitation of quantum fields filling the universe. In the work
we computed the final amplitude of the gravitational waves based on the assumption that
initially (i.e. in the contraction phase far from the bounce) they occupied the vacuum state.
Since it is the strength of the repulsive potential that determines the abruptness of the
bounce and the extent to which the waves are excited, the obtained amplitude depends on
the strength of the potential and the wavelength (see the figure 8). This result was compared
to the known upper bounds yielded by LIGO and Planck. We were able to put an upper
limit on the strength of the quantum repulsion and hence, on the abruptness and scale of
the bounce. Combined with a lower bound determined from cosmography [30], we restricted
the numerical coefficient in front of the quantum repulsive term to a limited range of values.

The work [S13] is a demonstration of the principle that proposals of quantum resolutions
to the singularity problem can be tested, or at least restricted, with observational data and
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FIG. 8. Dependence of the primordial gravity-wave amplitude δŵ, amplified by the bounce, on

the wavelength k and the scale of the bounce k∗. The amplitude spectrum at long enough waves

(k . k∗) is roughly scale-invariant. The dashed line gives the amplitude of the vacuum fluctuations.

lead to bounds on quantum parameters. An essential property of the proposed quantum
model is that it allows for adjustment of quantisation-induced parameters since the affine
quantisation admits a free choice of the family of affine coherent states. As far as I know,
no other approach to quantisation of cosmological models possesses this property to such
a degree. In future we plan to extend this model by considering density perturbations and
confining it further by comparing to the available data on the spectrum of the primordial
density perturbation.

7. Prospects

Above I have described the main elements of the scientific achievement in support of my
habilitation application. The obtained results can be further developed or applied to explain
the currently available, or expected to arrive soon, cosmological data. Some open problems
were indicated in the main part of this presentation and many of them will be certainly solved
in future. Nevertheless, I wish to emphasise that the most important objective stemming
from the presented results is to construct a consistent cosmological scenario based on the
quantum mixmaster universe and its non-adiabatic dynamics that comprises an extended
post-bounce inflationary phase induced by quantum gravity effects. The first step is going
to be a detailed investigation of the mixmaster dynamics in both isotropic and anisotropic
variables, probably through the extended Klauder method. The first results on the extended
method have been obtained [19]. The next step is going to be to furnish the model with
metric and matter perturbations in order to apply it to explain the origin of the primordial
structure in the universe, which nowadays is known with a surprisingly high precision. The
expected to arrive soon data on the polarisation (in particular, the B-modes) of CMB [31]
may significantly increase our knowledge on the primordial universe and deliver a new test
for theories of the origin of structure. It is worth to repeat that the recent results by Planck
amplify the known problems of the inflationary paradigm [13]. In this light, an alternative
theory based on the quantum mixmaster dynamics and likely to be free from the problems
of standard inflation is a new and promising proposal for future research.
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V. DESCRIPTION OF OTHER SCIENTIFIC ACHIEVEMENTS

A. Other publications (after completing PhD studies)

P1: P Dzierzak, J Jezierski, P Ma lkiewicz, W Piechocki, The minimum length problem of
loop quantum cosmology, Acta Phys. Polon. B41 (2010) 717-726

P2: P Dzierzak, P Ma lkiewicz, W Piechocki, Turning Big Bang into Big Bounce: I. Classical
Dynamics, Phys. Rev. D80 (2009) 104001

P3: P Ma lkiewicz, W Piechocki, Turning big bang into big bounce: II. Quantum dynamics,
Class. Quantum Grav. 29 (2011) 075008

P4: P Ma lkiewicz, W Piechocki, P Dzierzak, Bianchi I model in terms of nonstandard loop
quantum cosmology: Quantum dynamics, Class. Quantum Grav. 28 (2011) 085020

P5: H Bergeron, O Hrycyna, P Ma lkiewicz, W Piechocki, Quantum theory of the Bianchi
II model, Phys. Rev. D 90 (2014) 044041

In my doctoral thesis I studied the classical and quantum dynamics of extended object
(i.e. p-branes) in a fixed classical singular background [32]. Afterwards I switched to the
research on the quantisation of cosmological models. In my first works devoted to this new
subject I investigated a recent at that time proposal for solving the cosmological singularity
problem called loop quantum cosmology. The proposed quantisation scheme for minisu-
perspace models was devised by imitating the scheme used in loop quantum gravity. The
Ashtekar variables, the connection and the (weighted) triad, were replaced by holonomies
and fluxes, whose algebra was represented in the non-separable Hilbert space of almost pe-
riodic functions. The choice of minimal area was shown to select a separable Hilbert space
on which quantum dynamics is given by a quantum Hamiltonian constraint operator. Im-
portantly, the minimal area assumption implies that the spectrum of the area operator is
purely discrete. I presented a critical review of this approach in [P1]. The idea underlying
my next works was to impose the existence of the minimal area on the classical formalism,
to solve the yielded Hamiltonian constraint classically and then to quantise canonically the
obtained formalism. This approach can be called the reduced phase space approach. It eas-
ily reproduces the two main results of loop quantum cosmology, namely the purely discrete
spectrum of the area operator and the replacement of the classical singularity with a bounce.
Moreover, all computations in this approach are substantially simpler. In the work [P2] I
prepared the classical formalism of the Friedmann model for canonical quantisation within
the reduced phase space approach. I quantised it and determined its quantum dynamics and
the spectrum of the area operator in [P3]. The work [P4] applies the same approach to the
Bianchi type I model. Those works are very interesting as they were the first proposal for
extending the original loop quantum cosmology approach. The next proposal was developed
by A. Ashtekar and his collaborators and was based on the Feynman path integral. My
approach was later used by Piotr Dzierzak.

In the work [P5] I investigated the quantum dynamics of the Bianchi type II model ob-
tained with canonical quantisation. The significance of this model is connected to the role
it plays in the asymptotic dynamics of classical Bianchi IX model. The latter is key to our
understanding of a generic, oscillatory cosmological singularity. The oscillatory dynamics
of Bianchi IX is approximated by an infinite series of Kasner universes and the transition
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rule between two consecutive universes-elements of this series is given by the dynamics of
the vacuum Bianchi II model. The goal of this work was not to solve the initial singularity
but rather to propose a new Kasner map derived from quantum corrections to the dynam-
ics of the Bianchi II model. For this purpose we computed the scattering matrix for the
quantum Bianchi II dynamics with the quantum Kasner universes as asymptotic states, and
we obtained a slightly modified Kasner map. Thanks to the use of the scattering matrix
formalism we have eliminated time from the quantum theory. This work was projected as
a first step in quantisation of the Bianchi IX dynamics. The use of a similar approach to
Bianchi IX can be now observed in loop quantum cosmology [33]. Eventually, I dropped
this program and went to research on the affine quantisation of cosmological models.
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