# ATIPROTON - A TOOL FOR NUCLEAR STUDIES

Sławomir Wycech

### SPECIAL FEATURES OF ANTIPROTON

### STRONG ABSORPTION IN NUCLEI

**σ** abs ~ 200 mb

free path in nuclei  $1/\sigma \rho = 0.3$  fm



does not enter nuclei

CHARACTERISTIC TRACE N Nbar  $\rightarrow \pi..\pi..\pi$  2 – 8 mesons 2/3 charged

Z=50, N=88: fancy, unstable nucleus to study by PUMA Expected atomic – nuclear density overlap



### WHY NUCLEAR SURFACE IS INTERESTING

#### \* Symmetry energy

 $\beta = (N - Z)/A,$ 

$$\frac{E}{A}(\rho,\beta) = \frac{E}{A}(\rho,0) + S_N(\rho)\beta^2 + \dots \text{ n,p Fermi Gas } S_N = \frac{1}{3}E_F$$

 $\rho$  = density

**Droplet Model** 

 $E_{\text{(binding)}} / A = a_v - S_N \beta^2 + \dots$ attractive repulsive due to Pauli

THESE CANCEL AT NUCLEAR SURFACE WITH THE INCREASING NEUTRON/ PROTON RATIO ? NUCLEAR MODEL DEPENDENT

\*\* ARE THERE (np.) or (nnpp) CORRELATIONS AT DISTANT SURFACE. \*\*\* WHAT IS THE FERMI MOMENTUM AT SURFACE

from A. Obertelli

n/p ratio expected at capture radius



Pbar nuclear absorption region

#### MOTIVATION

## PUMA at CERN : From Alexandre Obertelli



Fig. 7: Itinerary of PUMA from ELENA to ISOLDE.

### PRODUCES ANTIPROTONS

TRANSPORTS in A "BOTTLE"

### COLLIDES ANTIPROTONS WITH UNSTABLE NUCLEI MAKES ANTIPROTONIC ATOMS

waits for X ray cascade, and nuclear capture

### DETECTS CHARGED $\pi$ MESONS FROM ANNIHILATION

ANALYSIS , FOR THEORISTS (J.C., ; G.H., S.W)

# ESTABLISH ATOMIC ORBITS OF NUCLEAR CAPTURE done

### CALCULATE ABSORPTION RATIO

in progress

- $\sigma$  (Pbar n) /  $\sigma$ (Pbar p)
- → NEUTRON HALO (SKIN)

→ NN , PPNN CORRELATIONS ON SURFACE

EXRRACTION OF CAPTURE ORBITALSFROM TOTALMESONICCHARGEINITIALQ = 0capture on proton5 mesons mittedQ = -1capture on neutron5 mesons emitted



### ANALYSIS OF FINAL STATE MESONIC REACTIONS

- (1) FIT PARAMETERS TO P(Q) DATA
- (2) CALCULATE PARAMETERS
- (3) COMPARE FITTED TO CALCULATED

extract the orbits of captures

### calculate neutron haloes



FIG. 3. Mean widths and shifts of all levels with measurable strong interaction effects. The weight of the different calcium iso-

OLD DATA : N, C, Ti, Ta, Pb analysed

S.W.,K.P. Phys Rev. C (2023) 108

### DOMINANT CAPTURE ORBITS : THE LOWEST STATES REACHED IN ATOMIC CASCADE

Rms RADII OF NEUTRON DENSIES CONSISTENT WITH OTHER EXPERIMENTS

SIZABLE ERRORS uncetrain ratio of captures on protons relative to neutrons

### SECOND ESSENTIAL JOB FOR THEORY

A MODEL FOR NUCLEON-ANTINUCLEON INTERACTIONS



+ π- π CORRELATED BY DISPERSION RELATIONS+ PHENOMENOLOGY MODEL DEPENDENT

EXTEND BEST MODEL TO LOW ENERGY, FIND BOUND STATES

## COMPARISON N-Nbar Interaction OF MODELS

J.Carbonell, G.Hupin. S.W. : EPJA59(2023)259

#### IMPROVING N-Nbar INTERACTION POTENTIAL

DATA CROSS SECTIONS ONLY , MANY PARTIAL WAVES ( NO PAULI ) NO LOW ENERGY DATA



Fig. 1 Integrated strong  $\overline{N}N$  cross sections – elastic  $\sigma_e$  (black), annihilation  $\sigma_a$  (red ), charge-exchange  $\sigma_{ce}$  (green) and their sum  $\sigma_t$  (blue) – as functions of the  $\overline{N}$  laboratory momenta for DR2 (dashed dotted line), KW (dashed line) and Paris 2009 (solid line) optical models. The results of the Nijmegen Partial Wave analysis [7] are indicated by filled circles.

DATA 4000 BUT

- TOO MANY PARTIAL WAVES
- NO EXCLUSION PRINCIPLE AS IN N-INTERACTION

#### POSSIBLE BARYONIA

#### INCONSISTENT MODELS

PARIS : Meson Exchange , Dispersion relations

BONN :Chiral expansionNIMEGHENPhenomenology

KIOTO-MUNICH Meson exchange

### EXAMPLE

### S-WAVE BARYONIUM



**BES III** 

P-Pbar BOUND STATE INDICATED ISOSPIN UNKNOWN

### TESTING S - WAVE AMPLITUDES AT THRESHOLD Antiprotonic – hydrogen : 1S, 2P levels

 P-Pbar scattering lengths : large differences scattering volumes : dramatic differences

| state        |                              | Exp                      | Paris 2009     | Jülich         | KW             | DR2            |
|--------------|------------------------------|--------------------------|----------------|----------------|----------------|----------------|
| $^{1}S_{0}$  | Ν̈́Ν                         |                          | 1.02 - i 0.87  | 0.42 - i 0.91  | 0.52 - i 0.99  | 0.65 - i 0.82  |
|              | $\bar{\mathbf{p}}\mathbf{p}$ | 0.493(92) - i 0.732(146) | 0.92 - i 0.67  | 0.50 - i 0.71  | 0.57 - i 0.77  | 0.68 - i 0.64  |
| $^{3}SD_{1}$ | Ν̈́Ν                         |                          | 0.91 - i 0.62  | 0.93 - i 0.92  | 1.01 - i 0.79  | 1.09 - i 0.75  |
|              | $\bar{\mathbf{p}}\mathbf{p}$ | 0.933(45) - i 0.604(51)  | 0.82 - i 0.50  | 0.90 - i 0.74  | 0.92 - i 0.63  | 0.98 - i 0.59  |
| S-averaged   | Ν̈́Ν                         |                          | 0.94 - i 0.68  | 0.80 - i 0.92  | 0.89 - i 0.84  | 0.98 - i 0.77  |
|              | $\bar{\mathbf{p}}\mathbf{p}$ | 0.823(57) - i 0.636(75)  | 0.85 - i 0.54  | 0.80 - i 0.74  | 0.83 - i 0.67  | 0.90 - i 0.60  |
| $^{3}P_{0}$  | Ν̈́Ν                         |                          | -3.02 - i 2.50 | -0.32 - i 4.01 | -3.20 - i 2.28 | -2.93 - i 1.83 |
|              | $\bar{\mathbf{p}}\mathbf{p}$ | -5.68(123) - i 2.45 (49) | -2.74 - i 2.46 | -0.32 - i 3.85 | -2.81 - i 1.99 | -2.53 - i 1.62 |

Table 5 Isospin averaged  $(a_{\bar{N}N})$  and  $\bar{p}p$  scattering lengths are compared with those obtained from hydrogen atom level shifts and widths, in fm for S and fm<sup>3</sup> for P states. The  $\bar{p}p$  values including Coulomb and  $\Delta m$  corrections are taken from [18] for DR2 and KW, from [19] for Paris and from [12] for Jülich model. The statistical averaged value for S-wave is defined as  $({}^{1}S_{0}+3 {}^{3}S_{1})/4$  and is given with averaged errors.



**Fig. 15** Real parts of  ${}^{1}S_{0}$  potentials for both isospins (T)

### OUR PROGRAM

# CHECKING INCONSISTENCIES IN EXISTING N-Nbar THEORIES

J.C ,G.H. ,SW EUR. Phys. J A

NEW MODEL FOR N-Nbar INTERACTIONS

INCLUDING : SCATTERING DATA = AMPLITUDES IN PHYSICAL REGION

ATOMIC LEVELS = AMPLITUDES FOR NEGATIVE KINETIC ENERGIES

(2) CALCULATE ANTIPROTONIC NUCLEAR STATES

(3) STUDY SHORT RANGE p-n CORRELATION S IN NUCLEI WITH PUMA, a by-product of the experiment

#### THANK YOU

APPENDICES – if needed

|          | $a_1$        | $r_1$     | $a_1$        | $r_1$      | $a_1$        | $r_1$       | $a_1$                 | $r_1$ |
|----------|--------------|-----------|--------------|------------|--------------|-------------|-----------------------|-------|
| T=0      | $^{11}P_{1}$ |           | $^{13}P_{0}$ |            | $^{13}P_{1}$ |             | $^{3}\mathrm{PF}_{2}$ |       |
| Nijm*    | -3.34-1.22i  | 9.3-1.2i  | -3.06-7.23i  | -1.7-1.5i  | 4.36-0.00i   | -3.5-0.0i   | _                     | _     |
| Jülich   | -2.87-0.36i  | _         | -2.83-7.82i  | _          | 4.61-0.05i   | _           | -0.74-1.13i           | _     |
| Paris 09 | -3.62-0.34i  | 3.8-0.8i  | -8.78-4.99i  | 0.23-1.1i  | 5.12-0.02i   | -3.4 - 0.02 | -0.49-0.87i           | _     |
| KW       | -3.36-0.62i  | 3.7-1.6i  | -8.83-4.45i  | 0.25-0.97i | 4.73-0.08i   | -3.5-0.1i   | -0.46-1.09i           | _     |
| DR2      | -3.28-0.78i  | 4.2-2.3i  | -8.53-3.50i  | 0.63-1.0i  | 5.14-0.09i   | -3.4-0.1i   | -0.59-0.85i           | _     |
| T=1      | ${}^{31}P_1$ |           | $^{33}P_0$   |            | ${}^{33}P_1$ |             | $^{3}\mathrm{PF}_{2}$ |       |
| Nijm*    | 0.66-0.18i   | 3.3-20i   | 2.33-0.92i   | -10-0.7i   | -2.02-0.70i  | 4.7-2.8i    | _                     | _     |
| Jülich   | 0.80-0.34i   | _         | 2.18-0.19i   | _          | -2.04-0.55i  | _           | -0.48-0.34i           | _     |
| Paris 09 | 1.00-0.77i   | -3.7-9.8i | 2.74-0.00i   | -5.2-0.01i | 0.28-4.11i   | -3.0-2.0i   | -0.13-0.21i           | _     |
| KW       | 0.71-0.47i   | -8.3-21i  | 2.43-0.11i   | -5.8-0.43i | -2.17-0.95i  | 2.7-3.5i    | -0.30-0.45i           | _     |
| DR2      | 1.02-0.43i   | -11-10i   | 2.67-0.15i   | -5.4-0.53i | -2.02-0.70i  | 4.6-3.9i    | -0.04-0.53i           | _     |

**Table 3** P waves  $\bar{N}N$  low energy parameters (in fm<sup>3</sup>) for the considered optical models: Jülich results are taken from Tab 3 of Ref. [12], KW and DR2 from [18], Paris 2009 have been recomputed and are in agreement with [44]. The values of Nijmegen are obtained by extrapolating the phase shifts from Figures 2 and 3.

CHIOCE OF PARAMETERS TO DESCRIBE FINAL MESON INTERACTIONS and P(Q)

$$p p \rightarrow Q_{ini} = 0$$
;  $np \rightarrow Q_{ini} = -1$  PARAMETER

ω ~ 0.1-0.2; λ~ 0.15 - 0.40 from data



Charge exchange differs from its inverse due to exclusion and Coulomb barrier

Difference depends on nucleon momenta.

#### Nucleon momenta in a nucleus Fermi gass sector and p-n short range correlations sector. M Duer+ Phys Rev Let 112 J. Lab electron scattering

 $10^{-1}$  208 Pb  $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-2}$   $10^{-$ 

Ryckebush + Phys L. B792

<sup>56</sup>Fe 4He  $^{12}C$ <sup>84</sup>Kr <sup>108</sup>Ag 16O 10 $^{27}AJ$ <sup>124</sup>Xe  $n^{[1]}(p) \left[ \mathrm{fm}^3 
ight]$  $^{40}Ar$ 142Nd <sup>40</sup>Ca <sup>184</sup>W <sup>208</sup>Pb  $^{48}Ce$ 10 $10^{-2}$ → FAT TAIL  $p_F$ 0.00.51.01.5 $\mathbf{2.0}$ 2.53.03.54.0Nucleon Momentum  $p \mid \text{fm}^{-1}$ 

Fig. 2. The momentum distribution for 14 nuclei across the nuclear mass table. The  $n^{[1]}(p)$  are computed in LCA with a "hard" central correlation function  $g_c$  adopting the normalization convention  $\int dp \ p^2 n^{[1]}(p) = A$ .

Initiated by Campi and Bouysy , old problem of correlations revived with different physics

J. Ryckebusch et al. / Physics I

SHORT LIFE of ATOMS

Radii = 57 /Z  $n^2$  fm

High I levels  $\Psi / r^{I} \sim const$ inside nuclei

FINAL PRODUCTS

X-rays

Nuclei

Pions





### Radiochemical measurements of final non excited nuclei Munich – Warsaw /CERN



DETERMINATION OF CAPTURE ORBIT via (A-1)/ TOTAL

#### ANALYSIS OF COLD CAPTURES

 $\sigma(N-1) = N P_{emissionN}$   $= ----- R_n/p f_{HALO}$   $\sigma(Z-1) Z P_{emissionZ}$ 

 $\begin{array}{ll} R & n/p & \mbox{relative rate of absorptions} & (p-bar n) \ / \ (p-bar p) \\ P_{emission} & \mbox{chance for mesons not to excite the nucleus $~10\%$} \\ Result & \mbox{fHALO} & \mbox{excess of neutrons in the capture region} \\ & \mbox{estimated from $\sigma$ (A-1) $/ $\sigma$ (total )} \end{array}$ 

Presentation : if capture region is known => Rn - Rp = difference of Rms radii is calculated



FIG. 3. Neutron halo factor (defined in the text) as a function of the target neutron separation energy  $B_n$ .

Nitrogen, Riedlberger + PRev C40 (1989) High statistics, No hydrogen contamination, magnetic spectrometer

: Experimental, [21], and fitted charge multiplicities P[Q] in Nitrogen .

| Q             | $\exp$    | fit        |
|---------------|-----------|------------|
| 3             | 1.2(.2)   | 0.28       |
| +2            | 3.9(.4)   | 2.25       |
| +1            | 14.2(.8)  | 15.6       |
| 0             | 39.5(1.0) | 40.1       |
| -1            | 31.1(.8)  | 32.1       |
| -2            | 8.0(.5)   | 8.5        |
| -3            | 2.1(.3)   | 0.44       |
| $< n^{\pm} >$ | 2.89(8)   | 2.91(0.05) |
| $\chi^2$      |           | 7.5        |

 $R_{n/p} \cdot f^h = 0.77(.04).$ 

 $\omega^+$  = 0.16 ;  $\omega^-$  = .17 ;  $\lambda^+$  = .16 ;  $\lambda^-$  = 0.10

END POINTS INDICATE DOUBLE PION CHARGE EXCHANGE ON RESIDUAL Carbon =  $\alpha\alpha\alpha$ 

#### CALCULATION OF PARAMETERS MESONS ARE FAST average momenta ~ 400 MeV/c $\rightarrow$ eikonal approximation



$$T_{\text{expt}}(\mathbf{r}, \mathbf{k}) = \exp\left[-\lambda_{\text{expt}} \int_0^\infty ds \rho_p(\mathbf{r} - s\widehat{\mathbf{k}})\right].$$

Survival amplitude T = 1 -  $\omega$ 

Average over momenta , directions number of mesons

Charge exchange  $\lambda = \sigma^*$  Pauli Blocking factor NN absorption  $\rho \rightarrow \rho\rho$  mostly surface mostly centre

#### FERMI MOMENTUM AT NUCLEAR SURFACE ?





FIG. 1. Quasi-three-body system: (1) antiproton, (2) nucleon, and (3) residual system. Jacobi coordinates: momentum  $p_3$ ,  $k_{12}$  and space  $\rho$ , r.

In atoms Kinetic N-Nbar ENERGY in CM system is negative

 $E_{CM} = 2 M - Binding - Recoil$ 

 $\overline{N} - N$  quasi- bound states