New Insight on Neutrino Dark Matter Interactions from Small-Scale CMB Observations

Sebastian Trojanowski BP-2

Annual Reporting Seminar 2023 Fundamental Research Department

December 13, 2023

TALK BASED ON ARTICLES

Monthly Notices

MNRAS 527, L122–L126 (2024) Advance Access publication 2023 October 17

https://doi.org/10.1093/mnrasl/slad157

New insights on v-DM interactions

Philippe Brax[®],^{1,2}* Carsten van de Bruck,³* Eleonora Di Valentino[®],³* William Giaré³ and Sebastian Trojanowski^{4,5}

Extended analysis of neutrino-dark matter interactions with small-scale CMB experiments

CMB & DARK MATTER

Cosmic Microwave Background (CMB) radiation plays an essential role in establishing DM role in the evolution of the Universe

CAN WE LEARN MORE FROM THE DAMPING TAIL?

ACOUSTIC OSCILLATIONS & NEUTRINOS

Standard cosmology: neutrinos free stream & can "drag" baryon photon fluid

• In the presence of DM-neutrino interactions:

R.J. Wilkinson, etal, 1401.7597 – DM can take part in oscillations \rightarrow gravitational boost & enhanced CMB peaks

G. Magano, etal 0606190

- DM-v interactions can affect v free streaming \rightarrow stronger clustering & enhanced CMB peaks >1

- DM-neutrino fluid has a lower sound speed \rightarrow drag effect, CMB peaks shifted and more... P. Serra, etal, 0911.4411

• This talk: low (but non-negligible) DM- ν interaction strength $\Gamma_{\text{DM}-\nu} > H > (\Gamma_{\nu} \equiv \Gamma_{\nu-e} + \Gamma_{\nu-DM}), \text{ mixed damping regime } C. Boehm, R. Schaeffer, 0410591}$

4

SMALL-SCALE CMB & v-DM INTERACTIONS

"Conventional wisdom"

WRONG !

A. Paul, etal, 2104.04760

• The features of the tail of CMB PS is highly suppressed due to diffusion damping, so no visible difference due to non-standard scatterings is present at those modes. On

Our findings

- DM-v interactions:
- suppression of high-multipole peaks at few % level or so
- negligible effect at low multipoles for $u_{vDM} < 10^{-5}$
- Similar effect in the temperature (TT) & polarization (EE) distributions
- Current data: Atacama Cosmology Telescope (ACT), South Pole Telescope (SPT)
- Future surveys can further improve: CMB-S4, ...

High-multipole CMB data = new window to study DM-v interactions

B. Bertoni, etal, 1412.3113B. Batell, etal, 1709.07001P. Brax, etal, 2305.01383

STERILE NEUTRINO PORTAL TO DARK MATTER

CONCLUSIONS

- CMB observations are crucial for our understanding of dark matter
- small-scale CMB measurements with few % accuracy open a new window to study DM interactions with neutrinos
- preference for non-zero DM-v coupling in the high-multipole ACT data & agreement with low-multipole Planck data + BAO & RSD
- Similar earlier hints from Lyman- α
- Toy model: sterile neutrino portal to DM
- Can accommodate the data but careful checking of other effects needed (cutoff scale, DM self-interactions...)
- Future data: ACT, CMB-S4, DESI, ... + accelerator-based bounds on sterile neutrinos

THANKYOU !

CURRENT DATA & ANALYSIS

DATA

• Planck 2018 temperature & polarization 1907.12875, 1807.06209, 1807.06205

lensing

1807.06210

- Atacama Cosmology Telescope (ACT) temp. & polar. DR4 ^{2007.07289} new confirmation: + ACT-DR6 & SPT W. Giare, etal, 2311.09116
- Baryon Acoustic Oscillations (BAO)
 & Redshift Space Distortions
 BOSS DR12
 1208.0022

ANALYSIS

- (modified) CLASS + DM-ν 1104.2933, 1903.00540, 2011.04206
- Sampling: COBAYA (with CosmoMC)

-		
2005.05290,	0205436,	1304.4473

 $\sigma_{\nu \rm DM} \sim T^0$ Parameter $\Omega_{\rm b}h^2$ [0.005, 0.1] $\Omega_{a}^{\nu \mathrm{DM}} h^{2}$ [0.005, 0.1][0.5, 10] $100 \theta_{\rm MC}$ [0.01, 0.8]τ $\log(10^{10}A_{\rm S})$ [1.61, 3.91][0.8, 1.2] n_s Neff [0, 10] $\log_{10} u_{\nu \rm DM}$ [-8, -1]DM-v

• Adding ACT:

- weaker bounds on u_{vDM}
- non-zero coupling preferred

B. Bertoni, etal, 1412.3113B. Batell, etal, 1709.07001P. Brax, etal, 2305.01383

SAMPLE MODEL – STERILE NEUTRINO PORTAL

 Fermionic χ DM coupled to a new scalar φ and (heavy) sterile neutrino N

 $\mathcal{L} \supset -\phi \,\bar{\chi} \left(y_L \, N_L + y_R \, N_R \right) + \text{h.c.}$

- Mixing with the active neutrino (dominant with v_{τ}) $\mathcal{L} \supset -\lambda (\bar{L}\bar{H}) N_R$,
- For small mass splittings DM-ν cross section ~ T⁰

$$\delta = (m_{\phi} - m_{\chi})/m_{\chi} << 1$$

for a range of temperatures

- For lower temperatures, σ grows, resonance ϕ production
- At even lower temperatures, $\sigma \sim T^2 / m_{\chi}^4$

$$\sigma_{\chi\nu} \simeq (10^{-52}\,\mathrm{cm}^2)\,\left(\frac{g}{0.1}\right)^4\,\left(\frac{100~\mathrm{MeV}}{m_\phi}\right)^4\,\left(\frac{T}{T_0}\right)^2$$

- At high temperatures, $\sigma \sim 1/T^2$
- helps avoiding astrophysical bounds from blazars, etc.

FITTING THE DATA

