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Abstract

In this thesis examples of the weak interactions in hydrogen-, helium-

and lithium-like ions has been investigated theoretically. After a short

historical introduction, the ratio of the probabilities of the orbital elec-

tron capture decay (EC) between H- and He-like ions as well as H-

and Li-like ions are calculated. Corrections to the ratio of EC rates

in hydrogen- and helium-like ions are also calculated. EC in helium-

like ions with the emission of the un-captured electron in a new decay

channel has been discussed. Using the sudden approximation, the ion-

isation probability of the 6Li2+ daughter ions resulting from the β−

decay of 6He+ ions has been calculated. In last chapter there is a

short discussion of the weak neutral current (parity non-conservation

effect). The thesis includes a brief discussion of experiments verify-

ing and the possibilities of experimental verification of the analyzed

predictions.



Streszczenie

Wpracy została przeprowadzona teoretyczna analiza przykadłów odd-

ziaływań słabych w jonach wodoro-, helo- i lito-podobnych. Po krótkim

wstȩpie teoretycznym, zostały znalezione i zanalizowane zależności

pomiȩdzy prawdopodobieństwami dla rozpadu poprzez wychwyt elek-

tronowy (EC) dla jonów H- i He-podobnych oraz H- i Li-podobnych.

Zostały policzone poprawki do tychże zależności w jonach wodoro-

oraz helo-podobnych. Przedyskutowano EC w jonach helo-podobnych

z emisja̧ niewychwyconego elektronu jako nowy kanał rozpadu. Przy

pomocy ”sudden approximation”, zostało znalezione prawdopodobień-

stwo jonizacji dla jonów 6Li2+ powstałych w wyniku rozpadu β− jonów
6He+. W ostatniej czȩści została przeprowadzona krótka dyskusja

oddziaływań słabych pra̧dów neutralnych. Rozprawa zawiera również

krótka̧ dyskusjȩ eksperymento̧w przeprowadzonych oraz możliwych

do przeprowadzenia weryfikuja̧cych analizowane w niniejszej pracy

rozważania.
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Introduction

The nuclear electron capture process in neutral atoms has been studied both the-

oretically and experimentally for many years. However, due to the large progress

in the production, accumulation and diagnostics of radioactive beams, investiga-

tions of electron capture and beta-decay in highly charged ions have quite recently

become possible.

For example, such experiments are performed at GSI Darmstadt, where single

ions practically for any nucleus and in any charge state can be produced, sepa-

rated and injected into the storage ring ESR. In a highly charged ion some new

decay channels open that are not present in neutral atoms e.g. beta decay of

the bare nucleus with electron emission to a bound state. Contrarily some decay

modes known in neutral atoms can be forbidden in highly charged ions e.g. elec-

tron capture is disabled in the bare nucleus.

A few years ago GSI-Darmstadt started pioneering measurements of half-lives for

single, highly charged H-like and He-like ions decaying by electron capture. The

ratio of electron capture probabilities for H- and He-like 140Pr ions was measured

for the first time, yielding a result approximately equal to 3/2 that was com-

pletely unexpected [28, 44].

In the standard theory of the electron capture process, for a not completely filled

1s electron shell-as in the case of H-like and He-like ions-the electron capture

probability is approximately proportional to the number of electrons. Therefore,

the above mentioned ratio should be around 1/2 instead of the measured value

of 3/2.

The first rough explanation of this puzzle was given in [52], assuming conser-

vation of the total orbital momentum for H- and He-like ions and the electron

density at the nucleus proportional to the number of electrons in the 1s shell.
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However, the assumption that the interaction between electrons in a He-like ion

can be neglected is not valid, especially for light nuclei e.g. for a parent nucleus
7Be decaying by electron capture and discussed in the thesis.

In two papers, published in the Physical Review C [61, 62] a full and original ex-

planation of this puzzle has been presented. The method applied is more general

than that used in the previous paper [52]. In these papers the relation between

electron capture probabilities for H-like, He-like and Li-like ions has been derived

and is discussed in detail. Original results obtained in the papers are included in

the thesis.

In the thesis a new decay channel for a He-like ion has been proposed; electron

capture with simultaneous emission of the second electron into the continuum.

The ionization probability has been calculated in the sudden approximation limit.

However, this approximation has never been verified experimentally in atomic or

nuclear physics.

Together with researchers from GANIL the sudden approximation has been tested

in the beta decay of 6He+. The measured 6He+ ionization probability and that

calculated in the sudden approximation limit are in perfect agreement. The orig-

inal experimental and theoretical textbook results of the ionization probability

have been published in Physical Review Letters [9] and are also discussed in detail

in the thesis. Paper has been featured:

http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.108.243201
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Chapter 1

The scope of the weak interaction

The weak interaction is responsible for radioactive decays. In this chapter a short

history of the weak interaction is presented, from Fermi’s theory to parity non-

conservation effects.

1.1 Short history of beta decay

The history of radioactivity began in 1896 with the discoveries of Henri Bec-

querel [5]. A few years later he identified beta radiation as one component of

radioactivity, and demonstrated that beta rays are composed of electrons. But

the real history of the controversies around beta decay starts about 1911, from

the experiment of Lise Meitner and Otto Hahn, which showed that the energies of

electrons emitted in beta decay had a continuous rather than discrete spectrum.

This suggested energy non-conservation, but apparently not only was energy not

conserved, but neither were momentum and angular momentum. This caused a

great deal of anxiety among physicists around the world. In well known alpha and

gamma decay, the emitted spectra were discrete simply because of energy conser-

vation (the energy of the emitted particle and the recoil energy of the daughter

nucleus are the same as the energy difference between the initial and final state

of the nucleus). The observation that the energy of the emitted electrons in beta

decay could take any value between zero and some certain maximum value was so

bizarre that many more experiments followed. In fact Meitner and Hahn argued

3



1. The scope of weak interactions

that what they saw a was discrete spectrum, and it may only look like continuous

because of energy loss in the material. Lack of consent and controversy lasted over

a decade until 1927, when Ellis and Woosley dispelled all doubts in a very simple

experiment. They measured the total energy released in the disintegration of a
210Bi source inside a calorimeter thick enough to stop all the emitted electrons.

The endpoint was known to be E0 = 1.05 MeV, and the mean energy (E) of

the electrons was known to be 390 keV. The calorimeter should have measured a

total energy of 1.05 MeV if the above picture was correct. In fact they observed

E = 344 ± 34 keV, which corresponded very well with the mean energy of the
emitted electrons. The spectrum was indeed continuous. This fact inspired even

Niels Bohr, who said:

At the present stage of atomic theory, however, we may say that we have no

argument, either empirical or theoretical, for upholding the energy principle in

the case of beta-ray disintegration.

The first solution of the problem was given at last by Pauli in 1930. He sug-

gested that in addition to electrons and protons in atoms, the existence of an

extremely light neutral particle which he called the neutron. He also inspired the

idea that this new particle was also emitted during beta decay and had simply not

yet been observed. After the discovery of the real neutron by Chadwick in 1931,

Enrico Fermi renamed Pauli’s neutron the electron neutrino, and in 1934 pub-

lished a very successful model of beta decay in which neutrinos were produced.

He described the weak interaction by considering the Hamiltonian as the scalar

product of two four-vectors. The Hamiltonian then becomes the scalar prod-

uct of a hadronic vector current and a leptonic vector current [16]. Later, when

Gamow-Teller transitions and parity non conservation were discovered, there were

introduced corrections to Fermi’s universal theory.

1.2 Review of beta decay

In the β decay process [4] an unstable nucleus, with atomic number Z and N,

decays to a nucleus with Z±1 and N∓1 and emits an electron (positron) and an
anti-neutrino (neutrino). In β decay the atomic number A = Z+N is unchanged.

There are three types of beta decay:

4



1. The scope of weak interactions

1. β− decay occurs when in a nucleus a neutron changes into a proton with

the emission of an electron and an anti-neutrino;

n→ p + e− + ν̄e,
A
ZX →AZ+1 Y + e− + ν̄e.

2. β+ decay occurs when in a nucleus one proton changes into a neutron with

the emission of a positron and a neutrino;

p→ n + e+ + νe,
A
ZX →AZ−1 Y + e+ + νe.

3. Electron capture (EC) competes with β+ decay and occurs when one of the

atomic orbital electrons is captured by the nucleus and an electron neutrino

is emitted;

p+ e− → n+ νe,
A
ZX + e

+ →AZ−1 Y + νe.

For nuclear β or EC decay the Q value, or energy released in the decay process,

can be expressed in terms of the atomic mass differences:

Qβ− = [m(
A
ZX)−m(AZ+1Y )]c2, (1.1)

Qβ+ = [m(
A
ZX)−m(AZ−1Y )]c2 − 2mc2, (1.2)

QEC = [m(
A
ZX)−m(AZ−1Y )]c2. (1.3)

Decay of an unstable parent via β+ and EC decay yields the same daughter

nucleus. Nuclei in which β+ decay is energetically possible may also undergo EC

decay, however the reverse situation is sometimes forbidden. The phenomenon of

beta decay indicates the existence of specific interactions between nucleons and

electrons. As mentioned before, Pauli was the first to suggest that beta decay

with electron emission must be accompanied by emission of another particle. In

support of this hypothesis we can cite the following arguments:

1. The beta particle can be emitted with an energy less than the energy dif-

ference between the initial and final nuclei. It is assumed that the neutrino

carries the excess energy .
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1. The scope of weak interactions

2. All the spins of nuclei found experimentally with an odd number of nucleons

are half. From the fact that the beta decay does not change the mass number

A, it appears that the change in angular momentum corresponds to an

integer multiple of ~. In this case, emission of a single electron would be

impossible, and the simultaneous emission of electrons and neutrinos is

consistent with this condition.

1.2.1 Fermi’s theory of beta decay

The theory of beta decay was formed in 1935 by Enrico Fermi. It was derived

by analogy with the quantum mechanical treatment of electromagnetism, the

formation of photons associated with the coupling of charged particles with the

electromagnetic field [4]. He imagined a four point interaction that happens in

a single point in space-time. The starting point is Fermi’s golden rule, which

describes the rate of quantum transition. The decay probability per unit time is

given by perturbation theory:

Pi→f =
2π

~
|〈i|H|f〉|2ρ(Ef ), (1.4)

where i, f , ρ(Ef ) are the initial state, final state and density of final states,

respectively. Ef is the available energy of the transition, which equals in beta

decay Ee + Eν with the condition that recoil energy is neglected. The matrix

element 〈i|H|f〉 contains information about the structure of the nucleus and
the wave functions of the hadrons and leptons. The neutrino final states can be

rewritten as the product of two elementary volumes in phase space:

ρ(Ef ) = V
2 (4πp

2
edpe)(4πp

2
νdpν)

(2π~)6
δ(Ef −Ee −Eν). (1.5)

The weak interaction, in contrast with the to electromagnetic or gravitational

interactions, can be considered local to a good approximation, it occurs in the

place of the nucleon decay with no dependance on distance. Fermi proposed to

couple two current vectors at the same point of space-time through a contact

6



1. The scope of weak interactions

interaction. The hadronic current vector was defined as:

Jµh = (pγ
µn).

The lepton current vector contains the lepton field leading to the lepton current

density:

Jµl = (νγ
µe),

where γµ denotes the Dirac matrices. Then one can write the Hamiltonian for β+

and β− decay (summed over all protons and neutrons), respectively:

Hβ+ =
GF√
2
(pγµn)(eγµνe), (1.6)

Hβ− =
GF√
2
(nγµp)(ν̄eγµe),

where GF denotes Fermi’s coupling constant.

1.2.2 Parity violation

The parity transformation consists of reflecting all of the coordinates of a system
−→r → −−→r . If the parity transformation does not change some equations, it may be
concluded that the equations are invariant with respect to parity transformation.

The Hamiltonians given by Eq. 1.6 are invariant under parity transformation.

There are only five independent bilinear covariant expressions for a relativistic

spinor with spin 1/2:

Scalar ψ̄ψ,

Vector ψ̄γµψ,

Tensor ψ̄σµνψ,

Axial Vector ψ̄γµγ5ψ,

Pseudo-Scalar ψ̄γ5ψ,

7



1. The scope of weak interactions

where ψ̄ = ψ†γ0, σµν = i/2(γµγν−γνγµ) and γ5 = iγ0γ1γ2γ3. Establishing which
of these bilinear forms are responsible for the weak interaction took for the ex-

perimentalists and theoreticians quite some time. The correct linear combination

of bilinear forms replacing the vector in Eq. 1.6 turned out to be Vector - Axial

Vector, combination ψ̄γµ(1− γ5)ψ. Parity violation comes from the fact that the
behavior of the vector and axial vector currents under a parity transformation are

different. The vector current changes sign under parity transformation whereas

the axial vector does not. Adjusting Eq. 1.6:

Hβ+ = GF (pγ
µ(1− λγ5)n)(eγµ(1− γ5)νe), (1.7)

Hβ− = GF (nγ
µ(1− λγ5)p)(ν̄eγµ(1− γ5)e),

where λ ≈ 1.26.

1.2.3 Selection rules

The electron and neutrino wave functions in beta decay contain the exponent

functions:

ψe ∝ exp(
i~pe~r

~
), (1.8)

ψν ∝ exp(
i~pν~r

~
).

Since the exponent argument is very small (e.g. an electron with kinetic energy

of 1MeV has momentum p/~ = 0.004fm−1) the wave function can be developed

into a series:

exp(
i~p~r

~
) ≈ 1 + i~p~r

~
+ ...

If the matrix element does not vanish when substituted for the wave function is a

1, such a transition is called an allowed transition. When the next successive ele-

ment should be considered in developing, so the matrix element does not vanish,

those decays are called a ”once forbidden”. The hadronic part of the Hamiltonian

has to contain a term accounting for the annihilation of the neutron (proton)

and the creation of a proton (neutron). This is realized by introducing an isospin

8



1. The scope of weak interactions

operator τ+ such that the nuclear matrix element

|MF |2 = |〈f |
∑

j

τ j+|i〉|2, (1.9)

where j enumerates the nucleons in the nucleus. This type of transition is called

a Fermi transition. The second type are Gamow-Teller transitions, with nuclear

matrix elements given by:

|MGT |2 = |〈f |
∑

j

~σjτ j+|i〉|2. (1.10)

Selection rules for allowed transitions are connected with the conservation of

angular momentum, isospin and parity. The first rule is strict because it arises

from the assumption of space isotropy. The second one is related to the load

independency of forces, which is only approximate. All selection rules are the

direct results of the matrix elements Eq. 1.9 and Eq. 1.10. In the Fermi transition

there are no operators dependent on space or spin, consequently there is no change

of total angular momentum and parity. These selection rules are known as Fermi’s

selection rules, who introduced the law of interaction corresponding to element

Eq. 1.9. The selection rules in this case are:

∆J = 0,∆T = 0 and πiπf = +1. (1.11)

The selection rules corresponding to matrix element Eq. 1.10 are slightly differ-

ent, they have been called Gamow-Teller selection rules. In this case the matrix

element can lead to a change in the total spin of 1 unit with conservation of

orbital angular momentum and parity. Gamow-Teller transition rules have the

form:

∆J = 0,±1∆T = 0,±1 and πiπf = +1, (1.12)

with an additional condition forbidding transitions with:

J = 0→ J = 0. (1.13)

9



Chapter 2

Electron capture in H-like,

He-like and Li-like ions

In this chapter the electron capture process in lithium-, helium- and hydrogen-like

ions is discussed. The wave functions of ions, with the proper orbital momentum

are built from nuclear and electronic parts. The electronic part is approximated

by Dirac hydrogen-like spinors with some effective charge. An explicit form of ion

wave functions for allowed transitions in the electron capture process is presented

below .

2.1 Wave functions for H-like ion

The wave function of the initial (final) state for a H-like ion is built from the

part describing the mother (daughter) nucleus and the electron (neutrino) part

denoted below by the index (l). In the initial (final) state the nucleus has spin I

(I, I ± 1) and is coupled with the electron (neutrino) to spin I±1/2

|I ± 1
2
〉H =

1/2∑

i=−1/2
(
1

2
, i, I ′,M − i|I ± 1

2
,M)

×|I ′,M − i〉N |
1

2
, i〉l, (2.1)

10



2. Electron capture in ions

where the index N denotes the mother or daughter nucleus with spin I ′ (for

daughter nucleus spin I ′ = I or I ′ = I±1). The expression (1
2
, i, I ′,M−i|I± 1

2
,M)

denotes the Clebsh-Gordan coefficient.

2.2 Wave functions for He-like ion

Initial wave function

The wave function of a He-like ion is constructed as a product of the nuclear

part having spin I (with its projection M) and the singlet wave function of two

electrons (e1 and e2) coupled together to spin 0

|I,M〉He = |I,M〉N
|+〉1se1 |−〉1se2 − |−〉1se1 |+〉1se2√

2
, (2.2)

where |i〉1sek denote Dirac relativistic spinors for the 1s state in H-like ions with
spin 1/2 [14] (Appendix A, Eq. 6). Spinor indexes i and k denote the sign of the

spin projection and the electron ordering number, respectively.

Final wave function

When allowed decays are considered, the nuclear spin changes by ∆I = 0,±1.
The final state wave function is a product of the daughter nucleus (with spin I or

I±1), remaining electron and emitted neutrino. However, the remaining electron
and emitted neutrino are coupled to spin 0 or 1. It is assumed that the emitted

neutrino has spin 1/2 and carries no orbital momentum. The electron and neu-

trino are described by relativistic spinors with spin 1/2 (Appendix A, Eq. 6). If

the captured electron and neutrino are coupled to spin 1 the leptonic part of the

final state can be written as

|1, 1〉ν,1e = |+〉1sν |+〉1se1 ,

|1, 0〉ν,1e =
1√
2
(|+〉1sν |−〉1se1) + |−〉

1s
ν |+〉e1,

|1,−1〉ν,1e = |−〉1sν |−〉1se1 . (2.3)

11



2. Electron capture in ions

The weak interaction operator must conserve the total angular momentum and

its projection. Therefore, the wave function for the final state needs to have total

spin I with projection M :

|I,M〉He =
1∑

i=−1
(1, i, I ′,M − i|I,M)

× |1, i〉ν,1e|I ′,M − i〉N , (2.4)

where I ′ = I or I ′ = I ± 1. In the case where remaining electron and neutrino
are coupled to spin 0, the wave function has the form:

|I,M〉He = |0, 0〉ν,1e|I,M〉N . (2.5)

2.3 Functions for Li-like ions

Initial wave function

The electronic ground state wave function of a lithium-like ion with spin 1/2

again can be expressed as the anti-symmetrized product of 1s and 2s normalized

relativistic Dirac spinors |−〉ns [6, 14, 53],

|1/2, 1/2〉3e =
A[|+〉|−〉|+〉]√

6
. (2.6)

The antisymmetrization operator is denoted by A. However, equation 2.6 can be

rewritten in the following form:

|1/2, 1/2〉3e =
1√
3
|11S0, 0〉1,2|+〉2se3

− 1√
6
|21S0, 0〉1,2|+〉1se3

+
1√
6
|23S1, 0〉1,2|+〉1se3

− 1√
3
|23S1, 1〉1,2|−〉1se3, (2.7)

12



2. Electron capture in ions

where the wave functions of the helium-like ion and the electron labelled by the

index 3 are separated. The helium-like wave functions are defined as following:

|11S0, 0〉1,2 =
A[|+〉1se1|−〉1se2]√

2
,

|21S0, 0〉1,2 =
A[|+〉1se1|−〉2se2 − |−〉1se1|+〉2se2]

2
,

|23S1, 0〉1,2 =
A[|+〉1se1|−〉2se2 + |−〉1se1|+〉2se2]

2
,

|23S1,±1〉1,2 =
A[|±〉1se1|±〉2se2]√

2
. (2.8)

The total wave function of a lithium-like ion is constructed from the electronic

part, given by Eq. 2.6, and the nuclear part with orbital momentum I. Both parts

are coupled to the total orbital momentum I ± 1/2

|I ± 1/2,M〉Li =
1/2∑

i=−1/2
(1/2, i, I,M − i|I ± 1/2,M)

× |1/2, i〉3e|I,M − i〉N . (2.9)

Final wave function

The Li-like ion (with Z protons) decays by nuclear electron capture into a He-like

ion (with Z-1 protons) emitting a neutrino with spin 1/2. However, the He-like

ion could be created in three final states: the ground state- 11S0 or two excited

states- 21S0 and 2
3S1. For the ground state of the He-like ion the total wave

function has a simple form:

|I ± 1/2,M, 21S0〉He =
1/2∑

i=−1/2
(1/2, i, I ± 1,M − i|I ± 1/2,M)

×|11S0, 0〉1e,2e|1/2, i〉ν|I ± 1,M − i〉N . (2.10)

13



2. Electron capture in ions

For an excited, spherically symmetric 21S0 He-like ion the final wave function can

be constructed in a similar way:

|I ± 1/2,M, 21S0〉He =
1/2∑

i=−1/2
(1/2, i, I ± 1,M − i|I ± 1/2,M)

×|21S0, 0〉1e,2e|1/2, i〉ν|I ± 1,M − i〉N . (2.11)

The expression describing the excited electronic wave function with spin 1 has

the form:

|I ± 1/2,M, 23S1, S〉He =
1/2∑

n=−1/2

S∑

i=−S
(S, i, I ± 1,M − i|I ± 1/2,M)(1, i− n, 1/2, n|S, i)

×|23S1, i− n〉1e,2e|1/2, n〉ν|I ± 1,M − i〉N . (2.12)

One can observe that in this case the electron wave function can be coupled

together with the neutrino to spin 1/2 or 3/2 (denoted in Eq. 2.12 as S).

2.4 Electron capture probability in H-like ions

The weak interaction operator Ô, responsible for electron capture [16], acts on

nuclear and leptonic variables involved in the process and has non-zero matrix

elements only between states with identical total orbital momentum and its pro-

jection. The probability (per unit time) of the process is given by the formula:

P =
2π

~
|〈f |Ô|i〉|2ρf . (2.13)

A H-like ion consists of an atomic nucleus with spin I and a single bound electron

with spin 1/2. The total initial spin Fi of the ground state depends on the sign

of the magnetic moment. If it is positive (negative) the ground state total spin

equals Fi = I − 1/2 (Fi = I +1/2). In electron capture, the parent nucleus with
spin I decays to the daughter nucleus with spin I±∆I. The most probable orbital
angular momentum of the outgoing neutrino is ∆I−1, in that case together with
the daughter nucleus they can be coupled to total spins ranging from I ± 1/2 to
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|I ± 2∆I ∓ 1| ± 1/2. Only transitions Fi = I ± 1/2 → Ff = I ± 1/2 conserve
total angular momentum. Thus there exist 2(I ± 1/2) + 1 initial states with
different angular momentum projections and equal occupation probabilities [39].

The probability of EC decay in a hydrogen-like ion equals:

P±H =
2πρf

~[2(I ± 1/2) + 1]
×
∑

M

|N,ν〈I ± 1/2,M |Ô|I ± 1/2,M〉H |2, (2.14)

where P±H is the EC probability of a H-like ion with spin I±1/2, ρf is the density
of neutrino final states, |I±1/2,M〉H and |I±1/2,M〉N,ν describe the initial and
final states, respectively.

2.5 Electron capture probability in He-like ions

The initial state of a He-like ion is taken to have the form of Eq. 2.2, where

instead of Z an effective (screened) charge Z ′ = Z − q is used. In the final state
(f), the nuclear spin changes by ∆I units, meaning If = I ±∆I. The remaining
electron is described by a relativistic spinor with spin 1/2. The most probable

case is when the neutrino carries away orbital momentum ∆I−1 and the neutrino
angular momentum equals ∆I − 1/2 or ∆I − 3/2. However, only a neutrino with
total angular momentum ∆I−1/2, the remaining electron with spin 1/2 and the
nucleus with spin I ± ∆I can be coupled to angular momentum I, so the basis

of final states has the form

|M ′, k, l〉nsN,ν,1e = |I ±∆I,M ′〉N ⊗ |∆I − 1/2, k〉ν ⊗ |1/2, l〉ns1e ,

where M ′, k, l denote the projection of the angular momentum for the daughter

nucleus, neutrino and the remaining electron in the bound state ns respectively.

The expression describing the EC decay probability in a helium-like ion is:

PHe = 2
2πρ′f

~(2I + 1)

×
∑

M,M ′,k,l,n

|nsN,ν,1e〈M ′, k, l|Ô|I,M〉He|2, (2.15)

15
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where ρ′f denotes the density of neutrino final states in He-like ions and the

factor 2 in front of the equation accounts for the two possibilities that the electron

labelled as e1 or e2 can be captured by the nucleus. In the next step corrections for

different neutrino densities (in final states) in He- and H-like ions are introduced

(Eq. 2.24 in subsection 2.5.2 and Eq. 2.26 in subsection 2.5.3) into Eq. 2.15:

PHe = 2
2πρf

~(2I + 1)
(1− δ1 +

δ2
QEC
)

×
∑

M,M ′,k,l,

|ν〈∆I − 1/2, k|N〈I ±∆I,M ′|Ô|I,M〉N |1/2, l〉2e|2. (2.16)

Nuclear states and captured electron states (denoted as 2e) from Eq. 2.16 form the

basis |I,M〉N |1/2, l〉2e with 2(2I+1) independent vectors which can be expanded
in the basis of H-like ion states with fixed angular momenta: |I + 1/2, m〉H and
|I − 1/2, m〉H . Both of these two bases have an identical number of 2(2I + 1)
vectors. Similarly in the case of final states, |I ±∆I,M ′〉N |∆I − 1/2, k〉ν can be
expanded into 2∆I−1 separate bases with fixed angular momenta: |I±1/2, m〉Nν,
|I ± 3/2, m〉Nν , .... However, the weak interaction operator Ô has nonzero matrix
elements only between states with identical total angular momentum and its

projection, therefore in this case an equality can be written as:

∑

M,M ′,k,l,

|ν〈∆I − 1/2, k|N〈I ±∆I,M ′|Ô|I,M〉N |1/2, l〉2e|2

=
∑

m

|N,ν〈I ± 1/2, m|Ô|I ± 1/2, m〉H|2. (2.17)

The electron spinors in Eq. 2.17 employ an effective charge Z ′. Taking Eqs. 2.14,

2.16, 2.17 and expressing the electron density at the nucleus in terms of rela-

tivistic spinors with charge Z ′, the final relation takes the form:

PHe =
[2(I ± 1/2) + 1]
2I + 1

PH (2.18)

×(1− δ1 +
δ2
QEC
)(1− 5

16Z
)3(1 + δ3),

where the corrections δ1, δ2, δ3 denote the probability that the remaining electron

is unbound, decay energy correction and relativistic screening correction respec-
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tively. In Table 2.1 the corrections are listed. The screening correction has the

biggest influence on the value of the probability ratio. It can reach for He atoms

approximately 60%.

Z q (1− 5
16Z
)3 log10(δ1) δ2(keV ) δ3 · 10−2

2 0.312 0.601 -0.87 0.0 -0.06
12 0.312 0.924 -2.86 -0.2 -0.25
22 0.309 0.958 -3.41 -0.4 -0.41
32 0.306 0.971 -3.73 -0.6 -0.54
42 0.301 0.978 -3.94 -0.8 -0.66
52 0.294 0.982 -4.09 -1.1 -0.78
62 0.286 0.985 -4.19 -1.3 -0.88
72 0.275 0.987 -4.26 -1.5 -0.98
82 0.263 0.989 -4.29 -1.8 -1.07
92 0.247 0.990 -4.29 -2.1 -1.15

Table 2.1: The screening factor q = Z ′−Z and the corrections δ1, δ2 and δ3 listed
for selected nuclei. Z denotes an atomic number.

2.5.1 Screening correction

In the present subsection the influence of the Coulomb interaction between two

electrons or the so-called screening correction on the probability ratio is calcu-

lated. The wave function of two electrons is approximated by two Dirac spinors 1s

coupled to spin 0 with an effective charge Z ′ = Z−q, where q is a free parameter.
The value of the effective charge is derived from the minimized expectation value

of E(Z,Z ′) = 〈0|H|0〉, where H is the Hamiltonian taken for two interacting
electrons in the potential of a point-like nucleus with charge Z. An analytical ex-

pression for E(Z,Z ′) has been obtained in the form (derivation given in Appendix
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B):

E(Z,Z ′) = 2
√
1− α2Z ′2 + 2α

2Z ′(Z ′ − Z)√
1− α2Z ′2

(2.19)

+

α2Z ′
(√
1− α2Z ′2 − 4

−2
√
1−α2Z′2Γ(4

√
1−α2Z′2)

Γ(2
√
1−α2Z′2)

2

)

1− α2Z ′2 ,

where α is the fine-structure constant. The screening parameter q is plotted in

Fig. 2.1. The parameter q in the non-relativistic limit is independent of Z and

equals 5/16 [39].

0 10 20 30 40 50 60 70 80 90 100

0.24

0.26

0.28

0.30

0.32

non-relativistic limit

q

Nuclear charge Z

relativistic

Figure 2.1: The relativistic screening parameter q plotted as a function of the
nuclear charge Z. The non-relativistic limit, independent of Z, is q = 5/16 [39].

The ratio of non-relativistic electron densities at r=0 (in the nucleus) between

He- and H-like ions is given by the simple equation [39]:

ρHe
ρH
= 2(1− 5

16Z
)3. (2.20)
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In Figure 2.2 the evaluation of the electron densities ratio is shown. However, for
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(1
-5
/1
6Z

)3

Z

Figure 2.2: The screening correction (1− 5
16Z
)3 plotted as a function of the nuclear

charge Z. [39].

a relativistic density the relation can not be applied because the Dirac spinor 1s

is divergent for r=0 and the ratio does not exist. Therefore, the electron density

has been averaged over the nuclear volume with radius Ra = 1.24A
1/3 fm,

ρ̃e(Z) ≡
3

R3a

∫ Ra
0
[f1s(r, Z)

2 + g1s(r, Z)
2]r2dr. (2.21)

Note, that the relativistic density multiplied by r2 is not divergent at r = 0. Takin

Eq. 2.21 in advantage the relativistic density ratio can be written as:

ρHe
ρH
= 2(1− 5

16Z
)3(1 + δ3), (2.22)

where the correction δ3 is given by the expression:

δ3 =
ρ̃e(Z − q)

(1− 5
16Z
)3ρ̃e(Z)

− 1. (2.23)
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The correction δ3 shows how big an influence relativistic effects can have on the

electron density in the nucleus. One can observe that the calculated absolute

value of δ3 is smaller than 0.012 (see Fig. 2.3).

0 10 20 30 40 50 60 70 80 90 100

-1.2
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-0.8
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-0.4

-0.2

0.0

3

Nuclear charge Z

x 10-2

Figure 2.3: The relativistic correction δ3 as a function of the nuclear charge Z.

2.5.2 Probability that the remaining electron is unbound

We discuss a new electron capture decay channel in a helium-like ion accompanied

by the emission of the remaining electron into the continuum. This is a very exotic

type of Auger electron emission. The ionization probability for the new decay

channel is calculated. The sum of the ionization probability and the probability

that the remaining electron is bound in a H-like ion equals unity. Therefore, the

ionization probability can be estimated from the expression:

δ1 = 1−
∑

n

|〈ns, Z − 1|1s, Z − q〉|2, (2.24)

where the summation is over all ns bound states in the H-like ion. The ioniza-
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Figure 2.4: The ionization probability δ1 (an a logarithmic scale) in the electron
capture process of a He-like ion plotted as a function of atomic number Z.

tion probability reaches a value of about 0.1 for light nuclei and monotonically

decreases down to 5.6× 10−5 for Pb isotopes, see Fig. 2.4.
The ionization probability in electron capture of helium-like ions has not been

tested experimentally. However, a similar process in the beta decay of He ions is

discussed in the next chapter.

2.5.3 Different densities of final states

The densities of the neutrino final states in electron capture of He-like and H-like

ions differ due to the different decay energies for both types of ions. The ratio of

the two neutrino densities takes the form:

̺Hef
2

̺Hf
2 =
(QEC + δQn)

2

Q2EC
,
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̺Hef
̺Hf
≈ 1 + 2 δQn

QEC
,

where the quantity QEC denotes the mass difference between mother H-like ion

and the daughter bare nucleus. The quantity δQn is the difference in electron

capture energy between the He-like ion and an excited ns state of the H-like ion

[12, 35]

δQn = Q
He
EC −QHEC = B1s1 (Z) +Bns1 (Z − 1)−B2(Z), (2.25)

where Bns1 (Z) denotes the binding energy of an electron in the bound state ns of

the H-like ion with the nuclear charge Z. The total ionization energy B2(Z) of

the He-like ion was taken from the paper [12]. The quantity δQn is a decreasing

function of atomic number Z and is equal to -0.1 keV for Z=10 and reaches

-0.8 keV for Z=73. The value of δQn is typically smaller than the experimental

uncertainties of QEC . The correction δ2 equals the quantities 2δQn averaged over

the probabilities |〈ns, Z − 1|1s, Z − q〉|2 to reach the ns bound state in the H-like
ion

δ2 = 2
∑

n

|〈ns, Z − 1|1s, Z − q〉|2δQn. (2.26)

The correction δ2 varies from −0.2 keV for Z = 12 up to −2.1 keV for Z = 92
and is listed in Table 2.1.

2.5.4 Arbitrary neutrino orbital momentum

In the preceding subsections we have discussed electron capture assuming that the

neutrino is emitted without orbital angular momentum. In the present section the

discussion is extended to the case when the neutrino takes an orbital momentum

less then or equal to ∆I. Thus, both hyperfine states I ± 1/2 of the H-like ion
can decay with the probabilities denoted by P±H , respectively. In a similar way as

in the previous section it can be demonstrated that the following relation holds

combining the electron capture probabilities for He-like and H-like ions and there
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exists a relationship:

PHe = [
2(I + 1

2
) + 1

2I + 1
PH+ +

2(I − 1
2
) + 1

2I + 1
PH−] (2.27)

×(1− δ1 +
δ2
QEC
)(1− 5

16Z
)3(1 + δ3)

For the transition I → I − 1 the probabilities P±H satisfy the relation

P+H
P−H
≈ (kR)2, (2.28)

where k denotes the neutrino momentum (divided by ~) and R is the average

nuclear radius. For the transition I → I+1 the latter equation should be inverted.

Assuming QEC = 5 MeV and R = 5 fm, we get (kR)
2 =0.016.

2.5.5 Astrophysical applications

The creation of the light elements D, 3He and Li was the major event in the

Universe after the Big Bang and the inflation stage. It has an influence on our

everyday life on earth. Creation of deuterium from a neutron and a proton is the

first step in the nuclear reaction chain. When the temperature of the Universe

was about 0.1 MeV Big Bang nucleosynthesis (BBN) started.

We give a short discussion of 7Be and its decay to 7Li in BBN. A bare nucleus

of beryllium recombined with an electron decays by electron capture through the

following reactions:
7Be+ e− →7 Li+ νe (2.29)

or

7Be+ e− →7 Li∗ + νe (2.30)

7Li∗ →7 Li+ γ

where 7Li∗ is the excited state of the lithium nucleus with an energy of 477.6 keV.

The Q-value of the reaction is 861.8 keV [67]. The half life value for a neutral

atom of 7Be equals 53.2 days and the second reaction occurs with a probability of
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10.44 %. The experimental spin values for 7Be, 7Li, 7Li∗ are assigned to be 3/2,

3/2 and 1/2, respectively (see Fig. 2.5).

Figure 2.5: Effect of hyperfine splitting of 7Be3+ on nuclear reactions.

In the first reaction 2.29 the initial and final spins are equal to 3/2 and we have

the relation between decay probabilities for PBe2+ and PBe3+

PBe2+ = [
2(I − 1

2
) + 1

2I + 1
P−Be3+ +

2(I + 1
2
) + 1

2I + 1
P+Be3+ ] (2.31)

×(1− δ1 +
δ2
QEC
)(1− 5

16Z
)3(1 + δ3)

However, at high temperatures the hyperfine states with spins I±1/2 are popu-
lated with statistical weights

2(I± 1
2
)+1

2(2I+1)
and the total probability of electron capture

for Be3+ equals

PBe3+ = [
2(I − 1

2
) + 1

2I + 1
P−Be3+ +

2(I + 1
2
) + 1

2I + 1
P+Be3+ ]. (2.32)

Combining the two equations 2.31 and 2.32:

PBe2+ = PBe3+(1− δ1 +
δ2
QEC
)(1− 5

16Z
)3(1 + δ3). (2.33)
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It can be demonstrated that a similar relation holds for the second reaction with

spin transition 3/2 → 1/2 between 7Be and 7Li∗. In the paper by Khatri and
Sunyaev [37] it is estimated that in the hot environment of the early Universe the

ratio PBe+2/PBe+3 = 2. However, the corrections, especially important for light

nuclei, worked out in this thesis improve the Khatri and Sunyaev finding. Finally,

the ratio is smaller than 2 and equal PBe+2/PBe+3 = 1.57.

2.6 Electron capture in Li-like ions

In the present section we study electron capture in Li-like ions transiting to

He-like ions in the ground state or one of two excited states. The formation of

excited states in He-like ions is the subject of many experimental and theoretical

studies [38, 58, 68]. He-like ions are the simplest multi-electron systems in nature.

Investigation of these species has attracted the attention of theoreticians and

experimentalists for some time.

2.6.1 Population of excited states in He-like ions

The probability that a Li-like ion with spin I in the allowed electron capture

transition I → I ± 1 populates the 21S0 excited state in a He-like ion is denoted
by P0:

P0 ∝ 3He〈I ± 1/2,M, 21S0|Ô|I ± 1/2,M〉2Li
=
1

2
(1− q

Z
)3B〈I ±

1

2
,M |Ô|I ± 1

2
,M〉2H , (2.34)

where the initial and final wave functions are defined by Eq. 2.9 and 2.11. However,

due the electron-electron interaction in a Li-like ion the effective charge in the 1s

and 2s wave functions equals Z − q, with q = 0.464.
In a similar way the probability P1 to reach the 2

3S1 state in a He-like ion can
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be estimated:

P1 ∝ 3He〈I ± 1/2,M, 23S1, 1/2|Ô|I ± 1/2,M〉2Li
+ 3He〈I ± 1/2,M, 23S1, 3/2|Ô|I ± 1/2,M〉2Li (2.35)

=
2(I ± 1) + 1
2(2I + 1)

(1− q

Z
)3B〈I ±

1

2
,M |Ô|I ± 1

2
,M〉2H ,

where the expression has been summed over two possible couplings 1/2 and 3/2

of the 23S1 excited state with the neutrino having spin 1/2.

The factor 3 in the front of Eqs. 2.34 and 2.35 reflects the 3 possibilities of electron

capture in a Li-like ion. Finally, the ratio of probabilities P0 and P1 is given by

the simple expression:

P0
P1
=

2I + 1

2(I ± 1) + 1 . (2.36)

A few examples of the P0
P1
ratio are calculated in Table 2.2. As can be seen,

the most effective way to reach the 21S0 state in a helium-like ion is electron

capture with the nuclear transition 1 → 0. The probability to reach the ground

I P0
P1

P0
P1

I → I − 1 I → I + 1

0 1
3

1
2

1
2

1 3 3
5

3
2

2 2
3

... ... ...
∞ 1 1

Table 2.2: The ratio of probabilities P0/P1 that a Li-like ion decays into the 2
1S0

and 23S1 excited states of a He-like ion. The ratio is calculated for two types of
EC decays I → I ± 1.

state can be calculated just like the probability P0. However, in this case the
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electron is captured from the 2s orbital instead of the 1s. Therefore, the ratio of

probabilities to reach the 11S0 and 2
1S0 states equals the ratio of the electron

densities ρ2se (Z)/ρ
1s
e (Z) at the nucleus. The electron density averaged over the

nuclear volume was calculated from formula 2.21 taken for 1s and 2s states.

The calculated ratio ρ2se (Z)/ρ
1s
e (Z) is plotted in Fig. 2.6. The 1

1S0 ground state
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Figure 2.6: The ratio of the two densities ρ2s(Z) and ρ1s(Z) for 2s and 1s hydrogen-
like relativistic states in the Coulomb field with charge Z is plotted. The av-
erage electron density at the nucleus is calculated according Eq. 2.21. In the
non-relativistic limit, the ratio has the constant value 0.125. The plotted ratio is
multiplied by a factor of 100.

population probability for light elements is almost 16 times smaller than the

corresponding probability for the 21S0 excited state. For the heaviest elements,

the ratio approaches value of 0.18. In the non-relativistic limit the ratio is constant

and equals 0.125.

The electron initial wave function in a Li-like ion can be expanded in the basis

of the ground state and two excited states in a He-like ion. However, the He-like

wave functions are constructed from H-like 1s and 2s states. It is assumed that
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two states 1s and 2s in the Coulomb fields of Z and Z-1 protons are orthogonal.

This assumption has been tested calculating numerically the matrix elements:

Z−1 < 2s|1s >Z≡ (2.37)∫ ∞

0
(f2s,Z−1(r)f1s,Z(r) + g2s,Z−1(r)g1s,Z(r))r

2dr,

and the obtained values of the matrix elements for Z equal to: 5, 60 and 90 are

0.105, 0.011 and 0.009, respectively.

The matrix elements Z−1〈2s|1s〉Z are plotted in Figure 2.7 as a function of Z.
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Figure 2.7: The matrix elements Z−1〈2s|1s〉Z calculated for two relativistic
spinors 1s and 2s as a function of atomic number Z (multiplied by 1000).

The matrix elements decrease with increasing atomic number Z and reach nearly

0.009 for nuclei close to Uranium.
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2.6.2 Ratio of electron capture probabilities for Li- and

H-like ions

By PLi is denoted the electron capture probability in Li-like ions. For allowed

transitions I → I + 1 (I → I − 1) in a Li-like ion, it is assumed that Li-like
ions are initially in states with spin I → I + 1/2 (I → I − 1/2), respectively.
Then the probability PLi equals the sum of probabilities that the lithium-like ion

decays into the 11S0 ground state and 2
1S0, 2

3S1 excited states. The probability

of EC decay into the ground state is proportional to P0
ρ2s(Z)
ρ1s(Z)
. Summing up the

three probabilities P0, P1, given by equations 2.34 and 2.35, and the probability

to reach the ground state simple the following relation is obtained:

PLi = (
2(I ± 1/2) + 1
(2I + 1)

+
ρ2s(Z)

2ρ1s(Z)
)(1− q

Z
)3PH , (2.38)

where PH ∝ B〈I ± 12 ,M |Ô|I ± 12 ,M〉2H . The ratio of densities ρ2s(Z)/ρ1s(Z) is
plotted in Fig. 2.6 and varies from 0.06 for the light nuclei up to 0.20 for the

heaviest ones.

In the allowed EC transition I → I + 1 (I → I − 1), due to the conservation of
the total orbital momentum a hydrogen-like ion decays only from a state with

spin equal to I+1/2 (I−1/2), respectively. However, a lithium-like ion, contrary
to the case of a hydrogen-like ion, can also decay from the state I−1/2 (I+1/2).
This is allowed, because the 23S1 helium excited state couples with a neutrino to

spin 3/2. Both states can then be coupled with the spin of the daughter nucleus

I +1 (I − 1) to total spin I − 1/2 (I +1/2), respectively. The probability that in
the allowed EC transition I → I + 1 (I → I − 1), a lithium-like ion decays from
the state I − 1/2 (I + 1/2) is denoted as P ′Li. It can be expressed by the decay
probability of a hydrogen-like ion PH :

P
′

Li =
2(I ± 1/2) + 1
(2I + 1)

(1− q

Z
)3PH . (2.39)

The relation obtained is similar to Eq. 2.38. However, it does not depend on the

ratio of electron densities.
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2.6.3 Experimental applications

The results obtained in the current chapter can be widely applied in designing

experiments for determining the relative probability of electron capture for H-

like, He-like and Li-like ions.

As an interesting possibility is a measurement of the spin of the mother nucleus of

a decaying Li-like ion. Spin measurement is especially important for short-lived,

neutron-deficient nuclei, which mostly have unmeasured ground state spin values.

Assuming an electron capture transition of the I → I ± 1 type and measuring
in the experiment the ratio P0/P1, the spin of the mother nucleus can be experi-

mentally determined using Eq. 2.36.

Another interesting possibility is a measurement of the ratio of 1s and 2s densities

at the nucleus. As an example using Eq. 2.38 one can assume the electron capture

transition 1→ 0 occurring for some nuclei in the vicinity of Z=60. For a specified
transition the ratio equals PLi/PH = 0.98(2/3 + δ), where δ = ρ2s(Z)/ρ2s(Z) ≈
0.075 for Z=60.
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Chapter 3

Electron capture in H-like and

He-like ions- experiment

The formulas obtained in the previous chapter can be successfully used in various

experiments related to electron capture. Modern electron capture probabilities are

measured with uncertainties near 1%. The transition probabilities for hydrogen-

and helium-like ions for 142Pm, 140Pr and hydrogen-like only for 122I were mea-

sured at the GSI Darmstadt facility. In this chapter the experimental status will

be outlined and a short comparison made with the theoretical results.

3.1 Experimental setup

Progress in experimental techniques in recent years, based on projectile fragmen-

tation, in-flight separation and heavy-ion storage rings has enabled investigations

of beta-decay of highly-charged ions [7, 26, 33, 36, 41, 51]. Currently only two

facilities in the world are capable of producing beams of radioactive nuclei in high

atomic charge states and to store them for extended periods of time [46]. One of

them is FRS-ESR at GSI-Darmstadt and the second is HIRFL-CSR at IMP in

Lanzhou, China. However, the experiments at IMP are still in the planning phase

while the experimental program at GSI has been running for about two decades.

Recently, using the so-called time-resolved Schottky Mass Spectrometry (SMS)

[42, 43, 54, 55] at GSI Darmstadt the first experiments on orbital electron capture
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3. EC- experiment

decay of few-electron ions have been performed. Here the corresponding in-flight

fragment separators FRS [27] and RIBLL2 [73] are coupled to the cooler-storage

rings ESR [20] and CSRe [74], respectively (see Fig. 3.1).

Figure 3.1: Schematic diagram showing a part of the high energy setup at the
GSI Darmstadt facility, where SIS- denotes the heavy ion synchrotron, FRS- the
fragment separator, ERS- the experimental storage ring.

ESR

The experimental storage ring ESR [21] presented in Fig. 3.1 has a circumference

of about 108.36 m. It is equipped with an electron and stochastic cooling system,

a gas jet target, various detectors and mechanical slits. The average ultra-high

vacuum pressure is typically about 10-11 mbar. Beam lifetimes of up to several

hours are attained, depending on the charge state of the stored ions and the elec-

tron cooler beam current.

SMS-Schottky Mass Spectrometry

Two techniques have been developed at the ESR for mass measurement of exotic

nuclei: Schottky Mass Spectrometry (SMS) [22] and Isochronous Mass Spectrom-

etry (IMS) [31]. Both are used as a highly sensitive and non-destructive beam

diagnosis. The revolution frequency difference between two different ion species

∆f/f having a mass-to-charge ratio difference ∆(m/q)/(m/q) and a velocity
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3. EC- experiment

spread difference ∆v/v is given by equation [63]:

∆f

f
=
1

γ2t

∆(m/q)

m/q
+
∆v

v
(1− γ2

γ2t
), (3.1)

where γ is the Lorentz factor and γ2t express the optical parameter of the ring. In

order to have a direct relation between revolution frequency and mass-to-charge

ratio the SMS and IMS exploit relation 3.1, by elimination of the second term.

In the first case by reduction of the velocity spread and in the second case setting

the Lorentz factor to γ2/γ2t → 1.
A property of the time-resolved SMS is sensitivity to single-stored ions [43], which

formed the basis for measuring individual electron capture decays of single H-

like ions stored into the ESR. After injection in the ESR, the hot fragments

Figure 3.2: Schematic diagram showing a part of the ERS and SMS principle.
The orbits of four differents ion species using four different colors are sketched. If
all stored ions have the same velocity, then a specific revolution frequency is the
signature of a specific mass-to-charge ratio.
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coming from the FRS are first compressed in momentum by a stochastic pre-

cooling system during the first seconds after injection [50]. Furthermore ions

are cooled continuously by an electron cooler system [64] placed in one of the

straight sections of the ESR lattice. The electron cooler provides a monochromatic

electron beam over a path length of about 2.5 m. In the electron cooling section,

the fragment beam overlaps with the electron beam. In the rest frame of the

cooling electrons, the fragments are similar to the particles of a hot gas. Since the

electrons are continuously renewed, the ion gas evolves up to thermal equilibrium

with the electron gas. As a consequence, all stored ions have an energy defined

by the electrons of the cooler. This results in a reduction of their mean velocity

spread.

Data aquisition

The revolution frequency of stored ion depends on their mass-to-charge ratio. By

passing through two electrostatic pickup electrodes, ions induce mirror charges

at each revolution. The Schottky noise signal coming from the pickup is first

amplified and then digitized. Next, the amplified time signal can be recorded

simultaneously on hard disks. If a Fast Fourier Transform (FFT) is applied to

the time domain data, the frequency spectra obtained exhibit peak structures

corresponding to specific ions. The 30th and 31st harmonics of the signal were

used in the experiments. The area of any frequency peak corresponds to the

integrated noise power and is proportional to the number of stored ions [32]

corresponding to this peak, as well as to the square of their ionic charge. Sample

data corresponding to an injection of H-like 140Pr ions are shown in Fig. 3.3 and

an example of a fit for 142Pm is shown in Fig. 3.4

3.2 Comparison of theoretical results with ex-

perimental data

β+ decay and electron capture probabilities of bare, hydrogen-like and helium-like
140Pr, 142Pm and 122I ions have been measured in a few experiments and results

were published in the papers [3, 28, 44, 71]. E.g. for the 142Pm nucleus in total

120 injections were analyzed for H-like, He-like and fully stripped ions. Half-lives
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3. EC- experiment

Figure 3.3: Left panel: Schottky frequency spectra at the 31st harmonic of the
revolution frequency taken subsequently as a function of time (time is going from
bottom to top) for hydrogen-like 140Pr58+ ions. The intensity of the frequency
lines is proportional to the number of stored ions. Right panel: Schottky frequency
spectra at the beginning, middle and end of the measurement [70].

measured in these experiments are presented in Table 3.1. Theoretical calculations

have shown that the experimental results can be explained by taking into account

the conservation of the total angular momentum (and its projection) of an ion

(nucleus plus leptons) [34, 52]. Using formula 2.18 and the formula derived by Z.

Patyk [52], the theoretical ratio of the electron capture probabilities for He- and

H-like ions can be compared with those measured in experiments.

In Table 3.2 the predicted and measured probability ratios are presented. It is

clearly seen that they are consistent within experimental uncertainties. In the

case of heavy ions the corrections contribute negligibly to the final ratio.
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3. EC- experiment

Figure 3.4: Decay and growth curves of mother 142Pm60+ (in red) and daughter
142Nd60+ (in blue) ions as a function of time [70].

Ion hydrogen-like [s−1] helium-like [s−1]

140Pr 0.00219(5) 0.00147(7)

122I 0.000735(33) -

142Pm 0.00514(14) 0.00357(10)

Table 3.1: Measured decay constants (in 1/s) for 140Pr [45] and 142Pm [72] ions
and 122I [2].

36
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Ion Theoretical Theoretical
Experimental ratio probabilities ratio probabilities ratio

without corrections with corrections

140Pr 0.671(50)
0.667 0.661

142Pm 0.681(33)

Table 3.2: Ratios of electron capture probabilities for He- and H-like ions for
nuclear transitions 1−→0. Experimental data are taken from [45] and [72] for 140Pr
and 142Pm ions, respectively. The theoretical ratios with and without screening
corrections are listed for comparison.
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Chapter 4

Ionization of hydrogen-like ion in

beta decay

Electron shake-off is a process in which the orbital electron is excited into the

continuum as a result of a sudden change of the central potential in β decay.

The ionization probability of a H-like ion in β decay is calculated in the sudden

approximation limit [39, 49]. The first measurement of a pure electron shake-off

following nuclear β decay, not affected by multi-electron processes such as Auger

cascades, is also discussed. In this ideal textbook case for the application of the

sudden approximation, the experimental ionization probability was found to be

in perfect agreement with the presented quantum mechanical calculations [9].

4.1 Probability of ionization

It is assumed that the β electron is emitted with the speed of light and is dis-

tributed on a thin spherical shell of radius R = ct (see Fig. 4.1). Therefore, the

perturbation potential has been proposed to have the form of a constant value

inside the shell:

δV (r, t) =
e2

R
, r ¬ ct, (4.1)

and a Coulomb shape outside the shell

δV (r, t) =
e2

r
, r > ct. (4.2)
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4. Ionization of hydrogen-like ion in beta decay.

Figure 4.1: Schematic of the situation, after t = 0 the electron is distributed on
the thin spherical shell.

The Hamiltonian for the orbital electron in a H-like ion during the beta decay

process may be approximated in the following form:

Ĥ = − ~

2m
∇2 − Z + 1

r
e2 + δV (r, t). (4.3)

The potential at t=0 equals −Z
r
e2 and after beta decay, for t→∞, the potential

converges to −Z+1
r
e2.

The perturbation term multiplied by an interaction time 〈δV (r, t)δt/~〉 is esti-
mated in the following way. The perturbation term is of the order of Ze2/a0 and

the interaction time between the beta and the orbital electrons is of the order of

a0/Zc, where a0 denotes the Bohr radius. Combining together both findings:

〈δV (r, t)δt/~〉 ≈ 1/137.
The wave function Ψ(r, t) of the orbital electron is expanded in the basis of eigen

states of the non-perturbed Hamiltonian

Ψ(r, t) =
∑

n

an(t)ψn(r)e
−iEnt

~ . (4.4)
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4. Ionization of hydrogen-like ion in beta decay.

Then from the Schrödinger equation

i~Ψ̇(r, t) = ĤΨ(r, t), (4.5)

is obtained the set of equations:

i~
∑

n

ȧn(t)ψn(r)e
−iEnt

~ =
∑

n

an(t)δV (r, t)ψn(r)e
−iEnt

~ . (4.6)

Energies En are quantities of the order of Z
2e2/a0. However, the characteristic

time for beta decay is of the order of δt = a0/Zc and the product Enδt ≈ Z/137.
This is the reason that the energies En in the exponent function can be neglected

for light nuclei. Assuming that the wave functions are orthogonal the relation:

˙am(t) ≈
∑

n

an(0)
1

i~
〈m|δV (r, t)|n〉 (4.7)

≈
∑

n

1

i~
〈m|δV (r, t)|n〉〈n|1s〉 = 1

i~
〈m|δV (r, t)|1s〉

is obtained. Solving the differential equation:

am(δt) = am(0) +
∫ δt

0

1

i~
〈1s|δV (r, t)|m〉dt, (4.8)

where the first term is real and the second is pure imaginary, the transition

probability can be expressed in the form:

Pbound =
∑

m

|am(δt)|2 (4.9)

=
∑

m

am(0)
2 +
1

~2

∑

m

(
∫ δt

0
〈1s|δV (r, t)|m〉dt)2.

Finally, an expression for the ionization probability:

Pionization = 1−
∑

m

am(0)
2 − 1

~2

∑

m

(
∫ δt

0
〈1s|δV (r, t)|m〉dt)2. (4.10)
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4. Ionization of hydrogen-like ion in beta decay.

The last term can be rewritten in the form:

1

~2

∑

m

(
∫ δt

0
〈1s|δV (r, t)|m〉dt)2 (4.11)

=
1

~2

∑

m

∫ δt

0

∫ δt

0
〈1s|δV (r, t1)|m〉〈m|δV (r, t2)|1s〉dt1dt2

∼= 1

c2~2

∫ R0
0

∫ R0
0
〈1s|δV (r, R1)δV (r, R2)|1s〉dR1dR2,

where the variables have been changed dt1 =
dR1
c
, dt2 =

dR2
c
. Assuming R1 < R2,

integration can be done in three steps where the perturbation potential takes the

form:

1. δV (r, R1)δV (r, R2) =
e4

R1R2
when 0 < r < R1,

2. δV (r, R1)δV (r, R2) =
e4

rR2
when R1 < r < R2,

3. δV (r, R1)δV (r, R2) =
e4

r2
when R2 < r.

Finally, the correction to the shake off probability [9] in a compact form:

δPionization = −
1

(~c)2

∫ R0
0

dR1

∫ R0
0

dR2〈1s, Z|δV (r, R1)δV (r, R2)|1s, Z〉. (4.12)

Note that the integral in the case of non limited R0 is divergent. Therefore, the

integration has to be cut for R0 = 2〈1s, Z|r|1s, Z〉. Only 7% of the electron
charge is distributed outside a sphere of radius R0. The integral for Z = 2 has

been performed numerically and the correction obtained to be equal −20 · 10−5.
To calculate the ionization probability non-relativistic electron wave functions are

used. In the initial state, (in atomic units) the wave function has the form:

|1s, Z〉 = 2Z 23 e−Zr, (4.13)

where Z denotes the atomic number of the mother nucleus. However, the final

state of the electron should be transformed into the laboratory frame

|m′, Z + 1〉 = e−ı~k~r|m,Z + 1〉, (4.14)
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4. Ionization of hydrogen-like ion in beta decay.

where ~k is the electron momentum.

The ionization probability that the orbital electron will be emitted to the contin-

uum equals (see Eq. 4.10):

Pionization = 1−
∑

m

am(0)
2 = 1−

∑

m

|〈1s, Z|1− ı~k~r − (
~k~r)2

2
|m,Z + 1〉|2. (4.15)

where the exponent function was expanded up to terms in k2. In that approxi-

mation the matrix elements have non-zero values only between states s and s or

p. Higher multipolarities are excluded because they contribute with terms pro-

portional to k4 or higher.

There are two terms contributing to equation 4.15. The first one comes from the

matrix elements between two spherical ns bound states,

〈1s, Z|1− (
~k~r)2

2
|ns, Z + 1〉2 ≈ 〈1s, Z|1|ns, Z + 1〉2

−(a0k)
2

3
〈1s, Z|r2|ns, Z + 1〉〈1s, Z|1|ns, Z + 1〉, (4.16)

where all were averaged over angles < Cos(Θ)2 >= 1/3. In the second term, the

matrix elements between ns and np are calculated:

|〈1s, Z| − ı~k~r|np, Z + 1〉|2 = (a0k)
2

3
|〈1s, Z|r|ñp, Z + 1〉|2, (4.17)

where ñp denotes the normalized np state dependent only on the distance r. The

matrix elements were calculated analytically. Finally, the ionization probability

that the orbital electron escapes to the continuum after beta decay has the form:

Pionization = 1−
∑

n

〈1s, Z|1|ns, Z + 1〉2

+
(a0k)

2

3

∑

n

{〈1s, Z|r2|ns, Z + 1〉〈1s, Z|1|ns, Z + 1〉

−〈1s, Z|r|ñp, Z + 1〉2}, (4.18)
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4. Ionization of hydrogen-like ion in beta decay.

where the sum is over all bound states (ns and np). For a nucleus with six nucleons

the term (a0k)
2, containing the electron momentum k

(a0k)
2 = 6.704308 ∗ 10−3[Erecoil/keV ], (4.19)

is transformed into an expression with the total recoil energy of the daughter

nucleus.

The numerical value of the ionization probability calculated for beta decay of

Figure 4.2: Decimal logarithm of the shake-off probability in H-like ions calculated
according to Eq. 4.18 with Erecoil = 0 in comparison to the Migdal and Feinberg
formula 4.21 [39] as a function of atomic number Z.

6He equals:

Pionization ≈ 0.0233810 + 0.411874 · 10−4Erecoil[keV ], (4.20)
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4. Ionization of hydrogen-like ion in beta decay.

where Erecoil is the recoil energy of the daughter nucleus
6Li. In calculations

10 000 non-relativistic H-like functions have been applied. The numerical accuracy

obtained is less then 10−8.

The first theoretical calculations of nuclear β decay were performed in the early

1940’s by Feinberg and Migdal [48] using hydrogen like wave functions. They

found for a nucleus of 6He [15] the value Pionization = 0.01983. Additionally they

found the approximate formula:

Pionization =
0.325

Z2
. (4.21)

In Fig. 4.2 calculated values obtained in this thesis and by Feinberg and Migdal

are plotted. It is clearly seen that in the range of light nuclei (Z < 10) there is

a discrepancy between the present calculations and the formula given by Eq. 4.21.

Quite recently Wauters and Vaeck have found the ionization probability Pionization ≈
0.023 [69].

4.2 Comparison with experiment

The electron shake-off probability of H-like 6He+ ions in β− decay was measured

for the first time using a specially designed recoil ion spectrometer. Since there is

only one orbital electron, the electron-electron correlation and secondary relax-

ation process disappear. Only two contributions to the ionization process are left.

First, and dominant, is electron shake-off, caused by the rapid change of nuclear

charge and the sudden recoil of the nucleus induced by the decay process. In the

case of this particular ion the recoil energy can reach 1.4 keV [8]. Secondly, one

possible source of ionization is a direct collision, when the β electron knocks out

a bound electron. An experiment was conducted at GANIL, using the Paul trap

[9, 17, 18, 57]. The radioactive 6He nuclei are produced at the GANIL-SPIRAL

target-ECR ion source. After mass separation by a dipole magnet, 6He+ ions are

guided at 10 keV through the LIRAT low energy beam line up to the entrance of

the LPCTrap apparatus. At this point of the setup, a typical intensity of 1× 108
ions of interest has been measured. The first stage of the apparatus is a Radio Fre-

quency Cooler and Buncher (RFQCB) dedicated to beam preparation [10]. The
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6He+ ions from LIRAT were injected into the RFQCB and accumulated close to

the exit. The cooled ion bunches were then extracted at a repetition rate of 5

Hz and re-accelerated towards the Paul trap. The ions are transported between

the two traps with a kinetic energy of about 1 keV and are decelerated down to

100 eV by a second pulsed cavity located at the entrance of the measurement

trap. The Paul trap, made of six stainless steel rings is shown in Fig.4.4. The ions

were confined by an RF voltage of 120 Vpp at 1.15 MHz continuously applied to

the two inner rings whereas the intermediate rings were set to the ground poten-

tial. During the experiment, up to 2 × 104 6He+ ions were successfully trapped
in the Paul trap for each 200 ms injection cycle, which corresponds to an over-

all transport and trapping efficiency of 1 × 10−3. After 150 ms trapping time,
the ions were extracted towards a micro-channel plate position sensitive detector

(MCPPSD) dedicated to ion cloud monitoring [57] Fig. 4.3. A 4× 10−6 mbar low

Figure 4.3: Top view of the detection chamber with the Paul trap, beta-electron
telescope, the recoil ion detector and ion cloud monitor [9].

pressure H2 buffer gas is also maintained in the trapping chamber to further cool

down the trapped ions. After about 25 ms the trapped ion cloud has reached

thermal equilibrium with a final thermal energy kT ∼ 0.1 eV [19]. As shown in
Fig. 4.4, β electrons and recoiling ions were detected in coincidence using two

different detectors. The β telescope, made of a thin double-sided silicon strip de-

tector (DSSSD) followed by a plastic scintillator, provides the position and the

energy of the incoming beta particles. The signal from the plastic scintillator also
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4. Ionization of hydrogen-like ion in beta decay.

Figure 4.4: The detection chamber with the Paul trap, with an enlarged view of
the Paul trap in the zoom.

triggers the acquisition system and gives the reference time of a decay event. For

the detection of the daughter nuclei, a new recoil ion spectrometer was designed

to measure the charge state of the recoiling ions. Those ions emitted in the ade-

quate solid angle enter a first collimator through a 90% transmission grid set to

the ground potential. They were then accelerated by a -2 kV potential applied

to a second 90% transmission grid mounted on the entrance aperture of the free

flight tube. Inside, an electrostatic lens at -250 V allows 100% of the ions to be

collected on the recoil ion MCPPSD [40]. The acceleration voltage of -2 kV pro-

vided to the recoil ions combined with the 50 cm long free flight region allows a

good separation of the time of flight (TOF) distributions obtained for 6Li2+ and
6Li3+ ions. For each detected event, the energy and position of the β particle, the

TOF and position of the recoil ion, the time within the trapping cycle, and the

RF phase of the Paul trap are recorded.

The data analysis is based on the comparison between the experimental TOF

spectrum and those obtained for two sets of realistic Monte Carlo (MC) simu-
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lations with, on one hand, 6Li2+ recoil ions, and on the other hand, 6Li3+ recoil

ions resulting from electron shake-off of the daughter nuclei. For both sets, the

β decay dynamics was accurately simulated using the β − ν angular correla-

tion coefficient aβν predicted by the Standard Model, and including radiative

correction terms [29]. The best fit to the electron shake-off probability is [9]:

Pionization = 0.02348(35)stat(06)syst. As can be seen the theoretical probability of

0.02343−0.00020 is in perfect agreement with the experimentally measured value.
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Chapter 5

Neutral weak interactions

Neutral weak forces are mediated by the Z boson interacting between nucleons

and electrons in an atom without change of charge. The interaction does not

conserve parity and can mix electron states with different parity. However, the

mixing parameter is very small and depends on two factors: the amount of overlap

of the electron wave function with the nucleus and the energy difference between

two adjacent states of opposite parity. In this chapter an experiment is proposed

in which the parity non-conservation effect could be studied in the 21S0 excited

state of a helium-like ion. The relative probability of nuclear electron capture in a

lithium-like ion leading to the 21S0 excited state in a helium-like ion was derived

in Chapter 2.

5.1 PNC effect

The parity non-conservation effect in atoms and ions appears because of mixing of

electronic wave functions with opposite parity. This mixing leads to an admixture

of a negative-parity state ψ− to a positive-parity state ψ+, creating the state

ψ+ + ηψ−. The Hamiltonian HW determines the mixing parameter η in the first-

order perturbation:

η =
〈ψ−|HW |ψ+〉
E+ − E−

, (5.1)

where E+ and E− are the energies of states with even and odd parity, respectively.

The spin-independent part of the effective nuclear weak-interaction Hamiltonian

48



5. Weak neutral current interactions

is given by [60]:

HW = −
GF

2
√
2
QWρN(r)γ5, (5.2)

where GF denotes the Fermi constant, QW ≈ −N + Z(1− 4 sin2 θW ) is the weak
charge of the nucleus with N neutrons and Z protons related to the Weinberg

angle θW , γ5 is a Dirac matrix and ρN is the effective nuclear density normalized

to unity.

The parity non-conservation effect in atoms is a very important probe of weak

neutral interactions between electrons and nucleons. There is a possibility of

using high Z He-like ions, for which precise calculations of the mixing parameter

are possible. Two states 21S0 and 2
3P0 with different parity and mixed by the

Figure 5.1: Dependance of energy splitting 23P1−21S0 and 21S0−23P0 in He-like
ions [2] as a function of atomic number Z.

weak interaction are proposed to study the parity non-conservation effect. From

Fig. 5.1 the region of atomic number Z where opposite-parity levels are in the

close contact or are even degenerate can be roughly estimated. Energy levels for

21S0 and 2
3P0 states cross near atomic numbers Z ∼ 62 and Z ∼ 90.
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In Chapter 2, the relative population probability for the 21S0 state in a helium-

like ion during nuclear electron capture of a lithium-like ion is derived. As can be

seen in Table 2.2 the most effective way to populate the 21S0 state in a helium-like

ion is the nuclear transition 1→ 0. Based on this fact, an experiment to measure
the parity non-conservation effect and a value of the mixing parameter η may be

proposed.

5.2 PNC in He-like ions

The separation energy E21S0 −E23P0 between two states has a minimum value in
the vicinity of nuclei with Z ≈ 62 or Z ≈ 90 [2, 11, 47]. The nuclear electron
capture process responsible for the formation of the 21S ′0 excited state occurs

around Z ≈ 62 in the light isotopes of Pr, Nd, Pm, Sm, Eu or Gd. For heavy
nuclei good candidates could be a nucleus decaying by electron capture in the

vicinity of Uranium. As an example we will use a U90+ ion (e.g. 229U or 231U),

illustrated in Fig 5.2.

There is a meta-stable 23P0 state (with lifetime 56 ps) distant about 1 eV from

the 21S0 state. This splitting energy is remarkably small, even compared to the

2s1/2 → 2p1/2 Lamb shift in H-like Uranium, which is about 75 eV . As can
be seen in Fig 5.2, the 21S0 state decays exclusively by two-photon decay to the

11S0 ground state. An experiment can be designed in a way to measure separately

the decay rate for circular polarization of emitted photons, so that the mixing

parameter η can be estimated. The polarization and the wave vector of one of the

two photons can be determined and averaged over all directions and polarizations

of the second one.

To account for the weak interaction the wave function of the 21S0 state should first

be modified due to the admixture of the 23P0 state. The neutral weak interaction

mixes these two states, both with zero angular momentum and different parity,

so the resulting ”true” eigenstate 21S ′0 has the form [1]:

|21S ′0〉 → |21S0〉+
〈23P0|HW (1) +HW (2)|21S0〉

E21S0 − E23P0
|23P0〉, (5.3)
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Figure 5.2: Low-lying energy levels of He-like U90+, including lifetimes [s]. The
numbers in brackets indicate powers of 10 [58].

where the indexes i attached to the Hamiltonian HW (i) denote an electron in a

helium-like ion. The mixture parameter has the form [1, 23]:

η =
〈23P0|HW (1) +HW (2)|21S0〉

E21S0 −E23P0
(5.4)

=

GF
2
√
2
QW

∫∞
0 drr2ρN (r)[g2p1/2f2s − f2p1/2g2s]

E21S0 −E23P0
.

To analyze two-photon decay, one should start with the differential decay proba-

bility

dw2
1S0
2γ

dω1
=

ω1ω2
(2π)3c2

|M21S02γ |2dΩ1dΩ2, (5.5)

where the ωj are the frequencies and dΩj the solid angle for the j-th photon. If

the summation is performed over magnetic quantum numbers the matrix element
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in Eq. 5.5 has the form [13, 30]:

M2
1S0
2γ = −iαε̂1ε̂2 + β1ε̂1(k̂2 × ε̂2) + β2ε̂2(k̂1 × ε̂1). (5.6)

The first term comes from the weak interaction induced 2E1 amplitude, and the

last two give the amplitude from E1M1 decay. The quantities ε̂j and k̂j denote the

polarization vector and the propagation direction of the j-th photon, respectively.

The coefficients have the form [13, 30, 59]:

α =
∑

n

[
〈11S0|RE1(ω2)|n〉〈n|RE1(ω1)|21S0〉

En − E21S0 + ω1

+
〈11S0|RE1(ω1)|n〉〈n|RE1(ω2)|21S0〉

En − E21S0 + ω2
],

β1 = −η
∑

n

[
〈11S0|RM1(ω2)|n〉〈n|RE1(ω1)|23P0〉

En − E23P0 + ω1

+
〈11S0|RE1(ω1)|n〉〈n|RM1(ω2)|23P0〉

En − E23P0 + ω2
],

β2 = β1(ω1 ↔ ω2).

The summation includes discrete and continuum states and RM1(ωj) and RE1(ωj)

are M1 and E1 operators for the j-th photon. To consider possible parity experi-

ments one can measure direction, energy and polarization of both photons. Then

the decay probabilities given by Eqs. 5.5 and 5.6 are summed over the polariza-

tion and photon direction, determined for the photon denoted by the index 2.

The decay probability for the photon denoted by the index 1 is expressed by the

formula:

dw2γ
dk1
= A + ηBk̂1 · ε̂∗1 × ε̂1.. (5.7)
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5. Weak neutral current interactions

with two independent parameters A and ηB. However, the coefficients A and B

have been calculated and can be found in the paper [13]. As a result the param-

eter η could be experimentally determined.

Thanks to recent technical advances in experimental techniques and position-

sensitive detectors, measurements of two-photon angular correlations (investi-

gation of the angular and polarization properties of the radiation emitted in

atomic decays) could be performed within the near future e.g. at GSI-Darmstadt

[59, 65, 66], which can test quantum correlations of the photon pair [24] and PNC

in He-like ions [25].
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Chapter 6

Conclusions

Here we collect and summarize the formulas derived and considerations raised in

this thesis.

1. Electron capture in hydrogen- and helium-like ions

Using Fermi’s Golden rule and the wave functions derived in Chapter 2,

we obtained the ratio between the decay probabilities for helium- and

hydrogen-like ions.

For the transitions I → I + 1

PHe =
2(I ± 1

2
) + 1

2I + 1
PH

×(1− δ1 +
δ2
QEC
)(1− 5

16Z
)3(1 + δ3),

where ± corresponds to the nuclear transitions I → I+1 and I → I−1,
respectively.

For the transitions I → I

PHe = (
2(I + 1

2
) + 1

2I + 1
P+H +

2(I − 1
2
) + 1

2I + 1
P−H )

×(1− δ1 +
δ2
QEC
)(1− 5

16Z
)3(1 + δ3),

where P±H is the probability of the EC decay in a H-like ion for the
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transitions I ± 1
2
→ I ± 1

2
.

It turns out that the most significant contribution of all the corrections

obtained is the electron screening effect. The correction has a simple form

(1 − 5/16Z)3(1 − δ3) which ranges from almost fifty percent in helium to
one percent in heavier nuclei.

2. Electron capture for He-like and H-like ions in a hot environ-

ment. Electron capture in 7Be has astrophysical consequences. In a hot

environment, where the temperature is higher than the hyperfine splitting

energy, states in a H-like ion are populated statistically. The calculated ra-

tio of probabilities in electron capture of He-like and H-like ions equals 1.57.

However, without the screening corrections the ratio equals 2.

3. Ionization probability in electron capture of a helium-like ion.

A new electron capture decay channel in a helium-like ion with emission

of orbital electron into the continuum was briefly discussed. The estimated

ionization probability reaches a value of about 10% for light nuclei and

monotonically decreases down to 5.6× 10−5 for Pb isotopes.

4. Population of excited states in a helium-like ion

From ratios derived in Chapter 2, one can find that a daughter helium-

like ion is created mostly in the 21S0 and 2
3P1 excited states. The ratio of

population probabilities for these two states depends on the spin I of the

mother nucleus and the type of the electron capture transition:

P21S0
P23P1

=
2I + 1

2(I ± 1) + 1 .

5. Electron capture in a lithium-like ion

Additionally, the following simple relation between the probabilities of elec-

tron capture for lithium- and hydrogen-like ions has been found:

PLi = PH(
2(I ± 1/2) + 1
(2I + 1)

+
ρ2s(Z)

2ρ1s(Z)
)(1− q

Z
)3,
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where q=0.464.

6. Ionization probability in beta decay

Using the sudden approximation the ionization probability of an orbital

electron during the beta decay process in a H-like 6He ion has been derived.

The probability obtained is in a perfect agreement with measurement.

7. Neutral weak interaction

As an example, the parity non-conservation effect in a helium-like ion was

briefly discussed. The 21S ′0 excited state is a linear combination of the 2
1S0

and 23P1 states, both with zero angular momentum and different parity.

A method how to determine the a mixing parameter from the two-photon

transition to the ground state was proposed.

8. Experimental applications

There are several areas where the formulas obtained in this thesis could be

applied.

First is the possibility of spin measurement in the mother nucleus of a de-

caying ion. This is especially important for short lived neutron-deficient

exotic nuclei, which mostly have unknown ground state spin values. As-

suming the type of the orbital EC transition in lithium-like ion (I → I±1)
and measuring the ratio P21S0/P23P1, the spin I in the mother nucleus can

be experimentally determined from Eq. 2.36.

As a second application one could measure the ratio of relativistic 2s and 1s

electron densities at the nucleus. From the experimentally determined ratio

PLi/PH together with additional knowledge of the type of the orbital elec-

tron capture transition the density ratio could be determined from Eq. 2.38.
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Appendix A- Dirac equation and

Dirac spinors

The Dirac equation has the form [14]

HΨ = [α · pc+ βmc2 + V (r)]Ψ, (1)

where V=−Ze
2

r
is the Coulomb potential. The spinor, for the problem of a central

field can be written as:

Ψ =


 f(r)ϕ

(l)
jm

−ig(r)σ·r
r
ϕ
(l)
jm


 , (2)

There exist two types of the two-component angular functions:

j = l + 1
2

ϕ
(l)
jm =



√
l+1/2+m
2l+1

Y
m−1/2
l√

l+1/2−m
2l+1

Y
m+1/2
l


 , (3)

j = l − 1
2

ϕ
(l)
jm =



√
l+1/2−m
2l+1

Y
m−1/2
l

−
√
l+1/2+m
2l+1

Y
m+1/2
l


 , (4)

where the latter function exists only for l > 0. Spherical harmonics satisfy the

following condition: Y ∗l,m = (−1)mYl,−m. Both component functions are also eigen-

57



Appendix A- Dirac equation and Dirac spinors

functions of the angular momentum J2 and its projection Jz

J2ϕ
(l)
jm = j(j + 1)ϕ

(l)
jm.

The energy spectrum of Eq. 1 is expressed in the form [14]

En = mc
2
[
1 +

(
Zα

n−(j+ 1
2
)+
√
(j+ 1

2
)2−Z2α2

)2]− 12
, (5)

where n = 1, 2, . . . ,∞ and the eigenvalues of angular momentum l satisfy the
condition 0 ¬ l ¬ n− 1.
As an example the normalized eigenfunctions corresponding to the ground state

(with n = 1 and j = 1/2) are:

|−〉1s = (2mZα)
3/2

√
4π

√
1 + γ

2Γ(1 + 2γ)
(2mZα)γ−1emZαr




0

1
i(1−γ)
2α
sin θe−iφ

−i(1−γ)
2α
cos θ



,

|+〉1s = (2mZα)
3/2

√
4π

√
1 + γ

2Γ(1 + 2γ)
(2mZα)γ−1e−mZαr




1

0
i(1−γ)
2α
cos θ

i(1−γ)
2α
sin θe−iφ



,

. (6)

where γ =
√
1− (Zα)2.
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Appendix B- Relativistic

screening correction

The Hamiltonian for two self-interacting electrons in the field of a nucleus with

electric charge Ze has the form

H = [α · p1c+ βmc2]−
Ze2

r1
+ [α · p2c+ βmc2]−

Ze2

r2
+
e2

r12
, (7)

where electrons e1 and e2 are marked as shown in Fig. 1. pi- are momentum

operators for each electron [6], Ze
2

ri
- is responsible for the interaction with the

nucleus, e
2

r12
- is partly responsible for the interaction between the electrons. In

the next step the parameter: Z ′ = Z − q is introduced, marked later as the

effective charge of the nucleus, where q denotes the screening correction, then the

hamiltonian has the form

H = [α · p1c+ βmc2]−
Z ′e2

r1
+ [α · p2c+ βmc2]−

Z ′e2

r2
(8)

+
(Z ′ − Z)′e2

r2
+
(Z ′ − Z)e2

r2
+
e2

r12
.

As a wave function we use a product of two hydrogen-like wave functions in the

ground state, given by Eq. 6, taken with an effective nuclear charge Z ′e. In this
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Appendix B- Relativistic screening correction

Figure 1: He-like ion with two self-interacting electrons e1 and e2 in the field of
a nucleus with charge Ze

case the expected values are equal to

〈α · p1c + βmc2 −
Z ′e2

r1
〉 = mc2

√
1− (αZ ′)2, (9)

〈α · p2c + βmc2 −
Z ′e2

r2
〉 = mc2

√
1− (αZ ′)2, (10)

where α is fine structure constant.

The energy of the two electrons as a the function of parameters Z ′ and Z can be

written as:

E(Z,Z ′) = 2mc2
√
1− (αZ ′)2+ (Z ′−Z)e2〈 1

r1
〉+ (Z ′−Z)e2〈 1

r2
〉+ e2〈 1

r12
〉, (11)
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Appendix B- Relativistic screening correction

The second and third component are equal to:

〈e
2

r1
〉 = mc2Z

′

γ
,

〈e
2

r2
〉 = mc2Z

′

γ
. (12)

The latter component equals:

〈 e
2

r12
〉 = mc2Z ′γΓ(2γ)

2 − Γ(4γ)2−4γ
(γΓ(2γ))2

(13)

where Γ(x) denotes the gamma function.

The final expression for the energy of two self-interacting electrons in the potential

of a point-like nucleus with charge Ze has the form:

E(Z,Z ′) = mc2(2
√
1− (αZ ′)2 + 2α2Z

′(Z ′ − Z)
γ

+ α2Z ′
γΓ(2γ)2 − Γ(4γ)2−4γ

(γΓ(2γ))2
).

(14)

The latter expression should be minimized numerically with respect to Z ′ = Z−q
with fixed nuclear charge Ze. The corrections q are presented in Fig. 2.1, page 18

and Table 2.1, page 17.

61



Appendix C- Hyperfine splitting

A nuclei with an odd number of protons or neutrons mostly have non-zero spin

value I and a nuclear magnetic dipole moment µ. A H-like ion with one electron

in the 1s orbit has two electronic states with a total angular momentum equal to

F± = I ± 1
2
. These two states, due to the coupling of the magnetic moments of

the electron with the nucleus have slightly different energies. The state F− has a

lower energy than F+ for positive nuclear magnetic moment and vice versa. The

electron energy of the hyperfine splitting δE is given by the equation:

δE =
4

3
α(αZ)3

µ

µN

m

mp

2I + 1

2I
A(αZ)mc2, (15)

where m,mp, µ, µN and α denote the mass of electron, the mass of proton, the

nuclear magnetic moment, the nuclear magneton and the fine structure constant,

respectively. The function A(αZ) has the form:

A(αZ) =
1

(2
√
1− (αZ)2 − 1)

√
1− (αZ)2

. (16)

The transition probability from the excited state F± to the ground state F∓ is

given by the expression:

WF±→F∓ =
4α

3
δE3

1

~m2c4
2F∓ + 1

2I + 1
. (17)
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Appendix C- Hyperfine splitting

In Table 1 the hyperfine splitting energies for transitions between the hyperfine

states are listed. Energies vary from mili-electronvolts up to the order of several

electronvolts.

In a hydrogen-like ion the electron capture transition 1→ 0 is allowed for an F−
state. Only beta decay can take place from the F+ state (see Fig. 2).

This example shows that nuclear transitions in H-like ions are governed by a few

Figure 2: Possible transitions from states with F± for H-like ion with positive
nuclear magnetic moment.

electronvolts hyperfine splitting.
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Appendix C- Hyperfine splitting

H − like ion Iπii → I
πf
f

µ
µN

δE(eV ) τ1/2

19Ne 1
2

+ → 1
2

+ −1.89 0.004 3d

37Ar 3
2

+ → 3
2

+
+1.15 0.01 10 h

64Cu 1+ → 0+ -0.22 0.009 7h

68Ga 1+ → 0+ +0.01 0.001 5 yr

71Ge 1
2

− → 3
2

−
+0.55 0.041 12 min

108Ag 1+ → 0+ +2.69 0.53 0.24 s

131Cs 5
2

+ → 3
2

+
+3.54 0.98 31 ms

141Nd 3
2

+ → 5
2

+
+1.01 0.43 0.4 s

178Ta 1+ → 0+ +2.74 2.87 16 ms

Table 1: The hyperfine splittings δE and half-lives τ1/2 for the transitions between
hyperfine states for several H-like ions. Experimental values of magnetic moments
µ are taken from [56].
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