

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research ŚWIERK

Discrete symmetry tests using hyperon-antihyperon data

Nora Salone

Annual seminar of the Department of Fundamental Research

16th December 2022

Our group

- ► Joined BESIII collaboration in July 2021
- Members
 - dr. Varvara Batozskaya (IHEP, NCBJ)
 - dr. Marcin Berłowski (NCBJ)
 - prof. dr. hab. Andrzej Kupść (UU, NCBJ)
 - mgr. Nora Salone (NCBJ)¹
- Objectives of study
 - CPV in s-quark baryon decays: nonleptonic, semileptonic, radiative
 - $Y\bar{Y}$ produced at e^+e^- colliders

BESIII @ BEPCII

Beijing Electron-Positron Collider (BEPCII)

- e^+e^- collider with 2.0 GeV < E_{CMS} < 4.95 GeV
- $L_{\text{peak}} = 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$
- Data taking since 2009
- Beijing Spectrometer (BESIII)
 - Optimized for flavor physics
 - Covering 93% of 4π solid angle
 - 1.0 T super-conducting solenoid
 - Momentum resolution: $\sigma(p)/p = 0.5\%$ at 1 GeV/c
 - Time resolution: 68 (65) ps in the barrel (end cap)

[Nucl. Instrum. Meth. A598 (2009) 7]

Lowest-lying hyperons at BESIII

- World's largest charmonia sample in BESIII $10^{10}J/\psi$, $3 \times 10^9 \psi(2S)$
- Baryon-antibaryon production in spin-entangled state

Decay	$\mathcal{B}(\times 10^{-4})$	$\epsilon(\%)$	$N_{\rm obs}$	Reference
$J/\psi \to \Lambda \bar{\Lambda}$	$19.43 \pm 0.03 \pm 0.33$	42.37 ± 0.14	441×10^{3}	[PRD95(2017)052003]
$J/\psi \to \Sigma^0 \Sigma^0$ $J/\psi \to \Xi^- \bar{\Xi}^+$	$11.64 \pm 0.04 \pm 0.23 \\ 10.40 \pm 0.06 \pm 0.74$	17.83 ± 0.06 18.40 ± 0.04	111×10^{3} 43×10^{3}	[PRD93(2016)072003]
$ \begin{split} \psi(2S) &\to \Lambda \bar{\Lambda} \\ \psi(2S) &\to \Sigma^0 \bar{\Sigma}^0 \\ \psi(2S) &\to \Xi^- \bar{\Xi}^+ \end{split} $	$\begin{array}{c} 3.97 \pm 0.02 \pm 0.12 \\ 2.44 \pm 0.03 \pm 0.11 \\ 2.78 \pm 0.05 \pm 0.14 \end{array}$	$\begin{array}{c} 42.83 \pm 0.34 \\ 14.79 \pm 0.12 \\ 18.04 \pm 0.04 \end{array}$	31×10^{3} 6.6×10^{3} 5.3×10^{3}	[PRD95(2017)052003] [PRD93(2016)072003]

Weak parity-conserving (P) and -violating (S) amplitudes

$$\mathcal{A} = S + P\vec{\sigma} \cdot \hat{n}$$

 $S = |S| \exp(i\xi_S) \exp(i\delta_S)$ $P = |P| \exp(i\xi_P) \exp(i\delta_P)$

Weak parity-conserving (P) and -violating (S) amplitudes

$$\mathcal{A} = S + P\vec{\sigma} \cdot \hat{n}$$

 $S = |S| \exp(i\xi_S) \exp(i\delta_S)$ $P = |P| \exp(i\xi_P) \exp(i\delta_P)$

Weak parity-conserving (P) and -violating (S) amplitudes

$$\mathcal{A} = S + P\vec{\sigma} \cdot \hat{n}$$

 $S = |S| \exp(i\xi_S) \exp(i\delta_S)$ $P = |P| \exp(i\xi_P) \exp(i\delta_P)$

Weak parity-conserving (P) and -violating (S) amplitudes

$$\mathcal{A} = S + P\vec{\sigma} \cdot \hat{n}$$

 $S = |S| \exp(i\xi_S) \exp(i\delta_S)$ $P = |P| \exp(i\xi_P) \exp(i\delta_P)$

Two measurable parameters

$$\alpha = \frac{2\mathfrak{R}(S^*P)}{|S|^2 + |P|^2}$$
$$\beta = \frac{2\mathfrak{I}(S^*P)}{|S|^2 + |P|^2} = \sqrt{1 - \alpha^2} \sin \phi$$

$$A_{\rm CP} = \frac{\alpha + \bar{\alpha}}{\alpha - \bar{\alpha}}$$
$$\Phi_{\rm CP} = \frac{\phi + \bar{\phi}}{2}$$

Weak parity-conserving (P) and -violating (S) amplitudes

$$\mathcal{A} = S + P\vec{\sigma} \cdot \hat{n}$$

 $S = |S| \exp(i\xi_S) \exp(i\delta_S)$ $P = |P| \exp(i\xi_P) \exp(i\delta_P)$

Two measurable parameters

$$\alpha = \frac{2\Re(S^*P)}{|S|^2 + |P|^2}$$
$$\beta = \frac{2\Im(S^*P)}{|S|^2 + |P|^2} = \sqrt{1 - \alpha^2} \sin \phi$$

$$A_{\rm CP} = \frac{\alpha + \bar{\alpha}}{\alpha - \bar{\alpha}}$$
$$\Phi_{\rm CP} = \frac{\phi + \bar{\phi}}{2}$$

Updated values

nature physics

LETTERS https://doi.org/10.1038/s41567-019-0494-8

Polarization and entanglement in baryonantibaryon pair production in electron-positron annihilation

The BESIII Collaboration*

[Nature Phys. 15 (2019) 631]

Article | Open Access | Published: 01 June 2022

Probing CP symmetry and weak phases with entangled double-strange baryons

The BESIII Collaboration

 Nature
 606, 64–69 (2022)
 Cite this article

 11k
 Accesses
 7
 Citations
 96
 Altmetric
 Metrics

[Nature 606, 64-69 (2022)]

PHYSICAL REVIEW LETTERS								
Open Ac	1055						,	ccess by Pr
Preci	se Mea	suremer	nts of Dec	ay Para	meters a	and CP	Asym	metry

M. Abikim et al. (BESII Collaboration) Phys. Rev. Lett. 129, 131801 – Published 22 September 2022

[[]Phys.Rev.Lett. 129 (2022) 131801]

$$A_{\Lambda} = -\tan(\delta_P^{\Lambda} - \delta_S^{\Lambda})\tan(\xi_P^{\Lambda} - \xi_S^{\Lambda}) = -0.0025(46)$$

Baryon polarization in BESIII

[V. Batozskaya, BEACH22]

Produced *B* polarization from unpolarized e^- beam:

$$P_{y}(\cos\theta) = \frac{\sqrt{1 - \alpha_{\psi}^{2}}\cos\theta\sin\theta}{1 + \alpha_{\psi}\cos^{2}\theta}\sin(\Delta\Phi)$$

Decay angular distribution:

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\Gamma} \propto 1 + \frac{\alpha_{\psi}}{\cos^2\theta}$$

PHYSICAL REVIEW D 105, 116022 (2022)

Study of *CP* violation in hyperon decays at super-charm-tau factories with a polarized electron beam

Nora Salone[®],¹ Patrik Adlarson[®],² Varvara Batozskaya[®],^{3,1} Andrzej Kupsc[®],^{2,1,*} Stefan Leupold[®],² and Jusak Tandean[®]

With a **polarized** e^- beam: $P_x, P_z \neq 0$

$$\begin{pmatrix} 1+\alpha_{\psi}\cos^{2}\theta & \gamma_{\psi}P_{e}\sin\theta & \beta_{\psi}\sin\theta\cos\theta & (1+\alpha_{\psi})P_{e}\cos\theta \\ \gamma_{\psi}P_{e}\sin\theta & \sin^{2}\theta & 0 & \gamma_{\psi}\sin\theta\cos\theta \\ -\beta_{\psi}\sin\theta\cos\theta & 0 & \alpha_{\psi}\sin^{2}\theta & -\beta_{\psi}P_{e}\sin\theta \\ -(1+\alpha_{\psi})P_{e}\cos\theta & -\gamma_{\psi}\sin\theta\cos\theta & -\beta_{\psi}P_{e}\sin\theta & -\alpha_{\psi}-\cos^{2}\theta \end{pmatrix}$$

PHYSICAL REVIEW D 105, 116022 (2022)

Study of *CP* violation in hyperon decays at super-charm-tau factories with a polarized electron beam

Nora Salone⁰,¹ Patrik Adlarson⁰,² Varvara Batozskaya⁰,^{3,1} Andrzej Kupsc⁰,^{2,1,*} Stefan Leupold⁰,² and Jusak Tandean⁶⁴

With a **polarized** e^- beam: $P_x, P_z \neq 0$

($1 + \alpha_{\psi} \cos^2 \theta$	$\gamma_{\psi} P_e \sin \theta$	$\beta_{\psi}\sin\theta\cos\theta$	$(1 + \alpha_{\psi}) P_e \cos \theta$
	$\gamma_{\psi}P_e\sin\theta$	$\sin^2\theta$	0	$\gamma_{\psi}\sin\theta\cos\theta$
	$-\beta_{\psi}\sin\theta\cos\theta$	0	$\alpha_{\psi} \sin^2 \theta$	$-\beta_{\psi}P_e\sin\theta$
	$-(1+\alpha_{\psi})P_e\cos\theta$	$-\gamma_{\psi}\sin\theta\cos\theta$	$-\beta_{\psi}P_e\sin\theta$	$-\alpha_{\psi} - \cos^2 \theta$

PHYSICAL REVIEW D 105, 116022 (2022)

Study of *CP* violation in hyperon decays at super-charm-tau factories with a polarized electron beam

Nora Salone⁰,¹ Patrik Adlarson⁰,² Varvara Batozskaya⁰,^{3,1} Andrzej Kupsc⁰,^{2,1,*} Stefan Leupold⁰,² and Jusak Tandean⁶⁴

With a **polarized** e^- beam: $P_x, P_z \neq 0$

$$\begin{pmatrix} 1+\alpha_{\psi}\cos^{2}\theta & \gamma_{\psi}P_{e}\sin\theta & \beta_{\psi}\sin\theta\cos\theta & (1+\alpha_{\psi})P_{e}\cos\theta \\ \gamma_{\psi}P_{e}\sin\theta & \sin^{2}\theta & 0 & \gamma_{\psi}\sin\theta\cos\theta \\ -\beta_{\psi}\sin\theta\cos\theta & 0 & \alpha_{\psi}\sin^{2}\theta & -\beta_{\psi}P_{e}\sin\theta \\ -(1+\alpha_{\psi})P_{e}\cos\theta & -\gamma_{\psi}\sin\theta\cos\theta & -\beta_{\psi}P_{e}\sin\theta & -\alpha_{\psi}-\cos^{2}\theta \end{pmatrix}$$

CP tests sensitivities, P_e -dependent:

- Quantifiable improvement in predicted sensitivities with $P_e \neq 0$
- Contributions from baryon polarization and spin-entanglement can be distinguished using developed analytical approach

CPV in hyperon decays

$$A_{\rm CP} = -\tan(\delta_P - \delta_S) \tan(\xi_P - \xi_S)$$
$$\Phi_{\rm CP} = \frac{\alpha}{\sqrt{1 - \alpha^2}} \cos\phi \tan(\xi_P - \xi_S)$$

S, *P* amplitudes expanded up to LO $\Delta I = 1/2$ linear corrections [PRD105(2022)116022]

CPV in hyperon decays

$$A_{\rm CP} = -\tan(\delta_P - \delta_S) \tan(\xi_P - \xi_S)$$
$$\Phi_{\rm CP} = \frac{\alpha}{\sqrt{1 - \alpha^2}} \cos\phi \tan(\xi_P - \xi_S)$$

S, *P* amplitudes expanded up to LO $\Delta I = 1/2$ linear corrections [PRD105(2022)116022]

[Nature 606, 64–69 (2022)]:

first measurement of CP-odd phase difference

 $\xi_P - \xi_S = (1.2 \pm 3.4 \pm 0.8) \times 10^{-2}$ rad SM : $\xi_P - \xi_S = (-2.1 \pm 1.7) \times 10^{-4}$ rad

First measurement of Ξ^- polarization and decay parameters (directly)

 $\Delta \Phi = 1.213 \pm 0.046 \pm 0.016$ $\alpha_{\Xi} = -0.376 \pm 0.007 \pm 0.003, \ \phi_{\Xi} = 0.011 \pm 0.019 \pm 0.009 \text{ rad}$

Nonleptonic decays review

New data situation from BESIII called for an update of the theoretical predictions:

- $\Delta S = 1, B_1 \rightarrow B_2 \pi$ decays in χPT up to 1-loop corrections
- ▶ updated values of *S*, *P* amplitudes and baryon-meson coupling
- funded by NAWA "Preludium Bis 1" grant no. PPN/STA/2021/1/00011/U/00001
- ▶ 6-month fellowship in Uppsala University, Sweden
- joint, ongoing collaboration Warsaw Uppsala Valencia

Thank you for the attention!