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Abstract

An accurate prediction of the flow distribution inside fuel rod bundles is required for both

design and safe operation of innovative as well as conventional nuclear systems. The unsteady

axial characteristic flow pulsations which appear in the bare rod bundle configuration have been

investigated (experimentally and numerically) over the last 70 years and remain a research topic

up to the present time.

In the past, the majority of studies of flow and heat transfer inside the fuel rod bundles

have been performed experimentally. However, most of them were conducted on the simplified

geometries and under conditions that are not the same as in normally operating reactors.

A good prediction of the flow and heat transfer inside the rod bundle is a challenge for

the available and commonly used RANS (Reynolds-Averaged Navier-Stokes) turbulence models

and these models need to be validated and improved accordingly. Although the measurement

techniques are constantly getting improved, the CFD-grade (Computational Fluid Dynamics)

experiments of flow mixing and heat transfer in the subchannel scale are often impossible or

quite costly to be performed. In addition, lack of experimental databases makes it impossible

to validate properly and/or calibrate the available RANS turbulence models for certain flow

situations. In that context, Direct Numerical Simulation (DNS) can be served as a reference for

model development and verification.

In this thesis, a numerical experiment for a tight lattice bare rod bundle case using different

Prandtl fluids (air, water, liquid metal) is designed. In the next step, the high fidelity database

by means of DNS is generated. The obtained DNS results serve as a reference database to

validate and calibrate/improve the available and commonly used low order turbulence models.

The RANS turbulent models are thoroughly investigated in order to understand their capabilities

and limitations. Finally, the comprehensive CFD methodology toward the accurate prediction

of turbulent flow and heat transfer phenomena at sub-channel level with the set of the best

practices guidelines is developed.
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Streszczenie

Poprawne modelowanie przepływu chłodziwa wewnątrz kasety paliwowej reaktora jądrowego

jest jednym z głównych problemów badanych zarówno przy projektowaniu nowych reaktorów,

jak i w analizach bezpieczeństwa tych istniejących. Przepływ w ściśle upakowanych kasetach

paliwowych charakteryzuje się występowaniem pulsacji płynu pomiędzy sąsiadującymi prętami

paliwowymi. Zjawisko to badane było (eksperymentalnie oraz numerycznie) przez ostatnich 70

lat i wciąż pozostaje nie do końca rozwiązane.

W przeszłości badania przepływu i wymiany ciepła wewnątrz kasety paliwowej realizow-

ane były zazwyczaj eksperymentalnie. Niestety, większość z tych eksperymentów rozważała

jedynie uproszczone geometrie w warunkach odbiegających od warunków normalnej pracy reak-

tora jądrowego.

Poprawne modelowanie przepływu i wymiany ciepła wewnątrz kasety paliwowej reaktora

jądrowego jest wyzwaniem dla dostępnych i powszechnie stosowanych uśrednionych modeli tur-

bulencji, tzw. modeli RANS (Reynolds-Averaged Navier-Stokes). Modele te wymagają walidacji

oraz udoskonalenia. Chociaż eksperymentalne techniki pomiarowe są stale poprawiane, to ek-

sperymenty przepływowe klasy CFD (numeryczna mechanika płynów) są często niemożliwe lub

zbyt kosztowne do przeprowadzenia. Ponadto brak eksperymentalnych baz danych uniemożli-

wia prawidłową walidację i/lub kalibrację dostępnych modeli turbulencji RANS dla konkretnych

zastosowań. W tym kontekście rozwiązaniem staje się podejście CFD. Stosując najbardziej

wyrafinowaną technikę tzw. Direct Numerical Simulations - DNS, można stworzyć numeryczne

referencyjne bazy danych, które utożsamiane są z danymi pozyskanymi z eksperymentów fizycz-

nych.

W niniejszej rozprawie zaprojektowano eksperyment numeryczny dla geometrii ściśle

upakowanej kasety paliwowej, w której chłodziwem są płyny o różnych liczbach Prandtla

(powietrze, woda, ciekły metal). Wygenerowana została numeryczna baza danych wysokiej

wierności za pomocą techniki DNS. Pozyskane w ten sposób dane mogą służyć jako dane ref-

erencyjne do walidacji i kalibracji dostępnych i powszechnie stosowanych modeli turbulencji

niższego rzędu. W tym sensie szereg modeli typu RANS zostało dokładnie sprawdzonych w celu

określenia ich możliwości i ograniczeń. Opracowana została także kompleksowa metodologia

CFD w celu dokładnego modelowania zjawiska turbulentnego przepływu i wymiany ciepła w geo-

metrii ściśle upakowanej kasety paliwowej z zestawem kryteriów dotyczących tzw. najlepszych

praktyk.
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1 Introduction

1.1 Motivation and research questions

Rod bundles form the basic configuration for most of the fuel element

designs used in the existing and future nuclear reactors. They consist of

tightly packed arrays of rods, which contain the nuclear fuel and are sur-

rounded by flowing coolant. Coolant flowing through the channels within

the fuel assemblies removes the heat generated by the nuclear fission. In

an ideal scenario, the temperature distribution through the fuel assemblies

should remain uniformly distributed under normal operating conditions of

a nuclear reactor. However, in reality this does not happen, and accord-

ingly, it leads to inter-subchannel mixing phenomena.

Given the high priority of safety in the operation of nuclear reactors,

it is necessary to have a comprehensive understanding of the coolant flow

behavior. The interesting geometry of the rod bundles, with the presence of

wide and narrow regions results in a unique flow profile, with the presence

of large-scale swirling structures, so-called gap vortex street [13]. These

structures are known to be coherent in nature and result in cross-flow

zones in the otherwise axial flow in rod bundles.

These peculiar flow patterns differ from the ones encountered in regular

channel and pipe flows. The correct prediction and control of these flow

distribution is essential for the reactor design and safety assessment, and

has been an active area of research in reactor thermal-hydraulics.

Additionally, to the flow characteristics there is another very important

phenomena, namely turbulent heat transfer. Turbulent heat transfer is

an extremely complex phenomenon that has challenged turbulence model-

lers for various decades. Both turbulent momentum and heat transfer are

based on the same physical mechanism of cross-streamwise mixing of fluid

elements. Therefore, modellers have often assumed that the turbulent heat

transfer can be predicted from the knowledge of momentum transfer; this
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approach is known as the Reynolds analogy. Even though this approach

is overly simplistic, it has been successfully adopted for several decades

in a large majority of industrial applications of Computational Fluid Dy-

namic (CFD), which are based on Eddy Diffusivity models (EDM). This

success is justified because for fluids with a Prandtl number (Pr) close to

unity and particularly in wall-bounded forced convection flows, this ap-

proach has provided reasonable predictions of global parameters such as

Nusselt numbers and mean temperature distributions.

Fig. 1 provides an overview of the Pr for different working fluids used

in different reactor types [14]. It is clearly noticeable that apart from the

gas-cooled reactor, none of the working fluids exhibit equality in the mo-

mentum and the thermal boundary layer. Therefore, one should always

be careful in applying the Reynolds analogy to non-unity Pr fluids, par-

ticularly to low-Pr fluids and must realize its limitations with respect to

accuracy. Nevertheless, the obvious limitations of this assumption for nat-

ural and mixed convection flow regimes have become more evident and are

highlighted in [15,16].

Figure 1: Comparison of momentum (δm) and thermal (δt) boundary layers for different

working fluids in various reactor applications [14].
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Several investigations have been undertaken to study the velocity and

temperature fields associated with the thermal mixing in the bare rod

bundle configuration. However, the available experimental databases are

not sufficient to describe the involved physics in adequate detail, and, due

to experimental limitations, accurate data on velocity and temperature

fluctuations in regions close to the wall are not available. CFD can play

an important role in predicting such complex flow features. However, pre-

dicting complex thermal and momentum phenomena is a challenge for the

available pragmatic turbulence models. Therefore such models need to be

extensively validated and, if needed, improved accordingly.

Taking this into account, the author decided to develop the comprehens-

ive methodology regarding the validation approach of URANS turbulent

models. As a first step in a validation approach toward fuel assembly level

and ultimately reactor core level modelling, a CFD methodology needed to

be developed which provided accurate predictions for heat transport and

unsteady flow phenomena (gap vortex street formation) at sub-channel

level. The high fidelity CFD (by means of Direct Numerical Simulations -

DNS) provided reference data for RANS approaches validation. Those were

objectives of the research project which are more extensively described in

the following subsection 1.2.

The author conducted a comprehensive analysis of this concept and

formulated the following Thesis Statement: ”The accurate prediction of

turbulent flow and heat transfer phenomena inside nuclear rod bundles is

very challenging for ”off-the-shelf” URANS models. Therefore this models

need to be properly validated and if needed accordingly improved. This is

especially important for non-unity Prandtl number (Pr) flows, particularly

in the liquid metal flows.”
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1.2 Objective of the study

There are four main objectives of the present PhD project.

The first is to design a numerical experiment for a tight lattice bare rod

bundle case using different Prandtl fluids, which is used in order to generate

DNS type reference database. This takes into account the turbulent mixing

and the evolution of the temperature distribution for fluid flow. In order to

do this the calibration methodology is developed. In the calibration proced-

ure the geometrical configuration as well as boundary conditions have been

investigated. Eventually, the final closely-spaced rod bundle configuration,

which is feasible for the available computational resources have been set up.

The second objective was to generate the high fidelity database by means

of Direct Numerical Simulations (DNS). The obtained DNS results served

as a reference database to validate and calibrate/improve the available and

commonly used low order turbulence models.

The third objective is the validation of pragmatic CFD turbulent mod-

els. To the date, none of the commonly used turbulence models have been

validated for this particular case of a turbulent flow in a tightly spaced bare

rod bundle configuration. To make the most appropriate choice of model

for specific application, one needs to understand the capabilities and lim-

itations of the various options and models.

The last objective, which in a way is the essence and the resultant of the

aforementioned three objectives, is the development of comprehensive CFD

methodology toward the accurate prediction of turbulent flow and heat

transfer phenomena at sub-channel level with the set of the best practices

guidelines.
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1.3 Outline of the thesis

The dissertation consists of seven chapters. The comprehensive scope of

work is outlined below.

The first chapter presents the theses, objectives, and scope of the dis-

sertation.

The second chapter describes the state of the art considering flow and

heat transfer in the rod bundles. This chapter consists of two subsections

- the first one is devoted to the experimental findings while the second one

describes the results of the numerical simulations.

The third chapter contains the general description of turbulent ap-

proaches used in the calculations performed in the dissertation. Addi-

tionally the used turbulence models are briefly presented.

Chapter four describes the whole procedure and methodology developed

in order to design a numerical experiment. Performing a DNS computation

requires a huge amount of computational power. Hence, a wide range of

unsteady RANS study has been performed to calibrate and optimize the

case for the targeted DNS study. As a first step, the Reynolds number of

the original experimental Hooper case is scaled down in such a way that

the overall phenomenology of the flow field remains the same, i.e. the

very existence of the axial flow pulsations. Afterwards, the calibration of

the computational domain with the respective boundary conditions is per-

formed in order to obtain an optimized Hooper case, which is feasible for

the available computational resources. In addition to the flow field, a para-

metric study for four different passive scalars is performed to take into

account the heat transfer analysis, which was not included in the original

Hooper case. These passive scalars correspond to the Prandtl numbers of

three different working fluids, i.e. air, water and liquid metal fluids. The
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heat transfer of these three fluids has been studied in combination with two

different boundary conditions at the walls, i.e. a constant temperature and

a constant heat flux. Accordingly, the final DNS set-up has been assessed.

The fifth chapter, based on the previously prepared parameter config-

uration, the DNS of the Hooper case are performed. As it was already

mentioned, the thermal boundary conditions used in this work are both

iso-thermal and iso-flux conditions which correspond to the two extreme

scenarios of a Conjugate Heat Transfer (CHT). The fluid properties are

assumed to be constant. Hence, the temperature is treated as a passive

scalar. Thanks to this assumption in one single DNS computation, mul-

tiple passive scalars have been included. These passive scalars correspond

to the Prandtl numbers of three different working fluids, i.e. water, air

and liquid metal fluids, i.e. Pr = 2, 1 and 0.025, respectively. The heat

transfer of these three fluids has been studied in combination with two dif-

ferent boundary conditions at the walls, i.e. a constant temperature and

a constant heat flux. Therefore, in total, the DNS computation consists

of six thermal fields. Thus, the final DNS yield in an extensive valida-

tion database for flow and the thermal fields representing different reactor

coolants.

In the sixth chapter the validation of pragmatic RANS turbulent models

is presented. The aim of the validation study is to assess the capabilities

of different turbulence models for prediction of turbulent flow and heat

transfer in a tightly spaced bare rod bundle. It is worthwhile to mention

that none of the considered turbulence models is tuned for a particular

case of a turbulent flow in a tightly spaced bare rod bundle configuration.

The last chapter is a summary of the work. The results presented in

the previous sections are comprehensively discussed and analyzed.
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2 Turbulent flow and heat transfer in rod bundle

The patterns, which are formed in a moving fluid have fascinated people

since the earliest recorded observations of Leonardo da Vinci. In order to

portray the random and chaotic behavior of these unique patterns, he used

the word turbulence (“la turbolenza” - in Italian, originating from Latin

“turba”, which means turmoil).

Turbulence is commonly observed in everyday phenomena such as fast

flowing rivers, billowing storm clouds, or smoke from a chimney, and most

fluid flows occurring in nature or created in engineering applications are

turbulent. Turbulent flows could exhibit organized motion of different

scales. The figure 2 depicted the diversity in the scale of these organized

patterns for flow past different obstacles:

� an island - in nature (source: Image by USGS, Public domain). The

flow pattern visualized by clouds off the Chilean coast near the Juan

Fernandez Islands (also known as the Robinson Crusoe Islands) pho-

tographed by the Landsat 7 satellite on September 15, 1999.

� a cylinder - in the laboratory [17].

An interesting feature of these vortical patterns is their coherence, i.e.,

they retain their identity for a significant lifetime and appear repeatedly in

more or less the same form (henceforth-coherent vortices or vortex street).

The coherent vortices, despite its aesthetic appearance, have the po-

tential of affecting the transport and mixing of passive particles (water

masses, temperature, pollutants, etc.). Passive particles, mean particles

that take on the velocity of a fluid very rapidly without a significant in-

fluence on the flow field. This property marks the practical significance

of the coherent vortices in meteorology, oceanography and different engin-

eering applications. For example, environmental dispersion of pollutants,

sediment transport along the banks of a flood plain and heat transfer in

the core of a nuclear reactor (often being a tube bundle geometry).
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Figure 2: Vortex street in the wake of an island (upper - source USGS) and cylinder

(bottom - [17]).

Development of a deep understanding of the transport by coherent struc-

tures in the core section of a nuclear reactor is one of the primary aim of

the work presented in this thesis.

2.1 Vortex street in rod bundle

Nuclear fuel rods in the most of existing and future nuclear reactors are

grouped into fuel assemblies, characterized by their geometric arrange-

ments. Mainly, it is either square or triangular configuration, where coolant

is flowing axially through the bundles. The flow area bounded by four or

three fuel tubes defines a sub-channel as depicted in Fig. 3. Two adjacent

sub-channels are connected by a gap between two rods. This gap spacing

is defined as a pitch (P ) to rod diameter (D) ratio (P/D). The fuel rod

assembly belongs to the class of compound geometries, where flow is iden-

tified by a peculiar patterns, which are not encountered in pipes or simple

channels.

Depending on the P/D ratio, the axial coolant flow in a bare rod bundles

30



Figure 3: Cross-sectional view of a square (left) and triangular (right) pitched tube bundle

defining gaps and sub-channels.

is characterised by strong, transverse, large-scale motions across the gaps

between neighbouring fuel assemblies, which extremely enhance the mixing

between flows in adjacent sub-channels (see Fig. 4). An appropriate term

to characterize these flow patterns is gap vortex street [13]. These vortices

are profitable from the heat transfer point of view. However, the gap

instability [13] could cause flow-induce vibrations in rod bundles, which in

turn could result in temperature pulsations.

These temperature pulsations may result in a fatigue of structure ma-

terials of fuel cladding [18]. It is worth pointing that coolants ranging

from liquid metals to molten salts, yield a wide variety of heat transfer

conditions. Keeping the above aspects in mind, it is crucial to accurately

predict flow and temperature distribution inside fuel rod bundles from

design and safe operation point of view. The unsteady axial flow pulsa-

tions/structures, which appear in the bare rod bundle configuration, have

been investigated (experimentally and numerically) over the last 50 years

and remain a topic of interest up to the present time [19].
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Figure 4: Gap vortex street created in the gap region between two adjacent sub-channels.

2.2 Experimental observations

Numerous experiments have been carried out to investigate a fully de-

veloped turbulent flow in the bare rod bundles. A mechanism constituting

the single-phase crossflow in a bare rod bundle and influencing the process

of inter-subchannel mixing was identified by Rogers and Todreas [20]. In

the following years the existence of large-scale coherent vortices near the

gap region in a bare rod bundle geometry has been verified by a different

research groups around the world.

In 1973, Rowe [21] specified the implications on the existence of periodic

flow pulsation in the bare rod bundle with the use of two-component Laser

Doppler Velocimetry (LDV). Moreover, he showed, that the P/D ratio is

the most significant geometric parameter affecting the flow structure.

Trupp and Azad, in 1975 [22], checked the spatial distribution within

a primary flow cell of the mean velocity and Reynolds stresses as a function

of Reynolds number and tube spacing [22].
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In an experimental study of Hooper [23], it was found that the departure

of the turbulent flow structure from axisymmetric pipe flow, especially

in the rod gap region, strongly depends on the P/D ratio. In particular

the axial and azimuthal turbulence intensity in the rod gap region, for

developed turbulent flow through parallel rod bundles, increase strongly

with decreasing rod spacing [24, 25]. Additionally, Hooper and Wood [26]

showed that the wall shear stress distribution is determined primarily by

the pressure gradient and the transverse shear stress (uw), which in turn

confirmed the negligible size of the mean secondary flow.

In 1991, Möller [27] pointed out that flow pulsations have a characteristic

frequency, which depends on the rod bundle geometry (P/D ratio) and on

the flow velocity.

In 1995, Lee at al. [28] developed a linear relationship between turbu-

lent normal stresses and turbulent kinetic energy for fully turbulent flow

through regularly spaced bare rod arrays.

Additionally to the mentioned studies, researchers were investigating the

spatial correlations of coherent structures in the rod-wall gap region. In the

following works [29–35], it was confirmed that the flow near the narrow gaps

between rods and between rods and surrounding duct was dominated by

quasi-periodic transverse flow pulsations, and these pulsations contributed

significantly to the velocity fluctuations across the gap. The source of the

flow pulsations are large-scale vortices, which form in pairs on either side

of each gap. A ”coherent” structure is a connected, large-scale turbulent

fluid mass with a phase-correlated vorticity over its spatial extent [36].

That is, underlying the three-dimensional random vorticity fluctuations

characterizing turbulence, there is an organized component of the vorticity

which is phase correlated (i.e., coherent) over the extent of the structure.

The proper prediction of the flow behaviour in rod bundles is of funda-

mental concern in a variety of engineering fields. It is especially important,

if the heat transfer is taken into account. Inside heated rod bundles, co-
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herent structures across the gap region would prominently enhance the

mixing of fluid between two adjacent sub-channels and local convective

heat transfer. This results in extracting more heat from the rod walls and

decreasing the average fluid temperature in the gap region. Any distor-

tion in the geometries of gap region (such as flow-induced vibrations or

thermally induced rod deformation) could lead to local overheating [37],

which in consequence, can lead to boiling and dryout, and further can cata-

strophically affect the operation of the system. The effects of the turbulent

temperature fluctuation were extensively investigated in [38–41].

2.3 Numerical simulations

Nowadays, with the expansion of the computer technology, the Computa-

tional Fluid Dynamics (CFD) simulations are another widely used meth-

odology to study the flow and heat transport which can substitute/replace

experiments. In fact, numerical modeling, in the form of CFD, represents

an essential tool which can allow overcome the limitations of traditional

experimental techniques. This is because experiments are very often per-

formed on the idealized geometries, under normal conditions (ambient con-

ditions) or measurements are limited to points, lines or single planes. In

this regard, CFD has been considered as an attractive alternative.

The most accurate and reliable CFD method is the Direct Numerical

Simulation (DNS). In the past, only a few DNS studies have been per-

formed [42,43]. Besides, these computations were limited to low Reynolds

number and the selected computational domain was relatively small.

Another method, Large Eddy Simulation (LES) approach is computa-

tionally less demanding than DNS and it enables simulating flow at re-

latively larger Reynolds number and a bigger rod bundle computational

domain. Numerous researchers have utilized the LES approach to simu-

late momentum and heat transfer in different rod bundle configurations

[42,44–53].
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It is important to realize that a successful prediction of flow pulsations

requires relatively long streamwise computational domain, which allows

the development of large axial coherent structures. Therefore, most of the

simulations aiming to reproduce pulsations in rod bundles applied a com-

putationally less demanding approach, i.e. Unsteady Reynolds-Averaged

Navier-Stokes (URANS) simulation. Several URANS studies [3, 18, 43, 49,

51,54–58] have been performed to predict the appearance of flow pulsations

in rod bundles (particularly in the closely packed bundles).

CFD techniques are realized as more ond more reliable tools in nuclear

engineering. The papers of [19, 59, 60] provided an extensive reviews of

the experimental and numerical analysis for the thermal hydraulic phe-

nomenon in tight lattice sub-channels and in particular turbulent models

prediction capabilities. The authors summarized that the URANS model-

ling approach, especially based on anisotropic models, was able to predict

the overall flow characteristics in tightly packed rod bundle. It is worth-

while to mention that these conclusions are mainly related to the flow field

prediction. An accurate prediction of heat transfer in rod bundle configur-

ation is an additional issue that needs more attention in terms of numerical

studies. Turbulent heat transfer is an extremely complex phenomenon and

has challenged turbulence modellers for many decades [19]. The modellers

have often assumed the possibility that turbulent heat transfer may be pre-

dicted only from the knowledge of momentum transfer, in what is known as

the Reynolds analogy. Although this assumption is overly simplistic, it has

been successfully adopted for the last four decades in the large majority of

industrial applications of CFD, which are based on Eddy Diffusivity mod-

els (EDM). The success is related to the fact that for fluids with a Prandtl

number close to unity, this approach has provided reasonable predictions.

Nevertheless, a good prediction of the flow and heat transport inside the

rod bundle is a challenge for the available URANS turbulence models and

these models need to be validated and improved accordingly. Although
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the measurement techniques are constantly getting improved, the CFD-

grade experiments of flow mixing and heat transfer in the sub-channel

scale are often impossible or quite costly to be performed. In addition,

lack of experimental databases makes it impossible to validate properly

and/or calibrate the available RANS turbulence models for certain flow

configuration/application. In that context DNS can serve as a reference for

model development and verification. However, despite the advancement in

the super computing, performing a DNS for a realistic rod bundle at a high

Reynolds number is not foreseeable in the near future. In this regard,

a research program has been initially set up between Nuclear Research

and Consultancy Group (NRG), the Netherlands, and National Centre

for Nuclear Research (NCBJ), Poland, to generate a high-quality DNS

database for a rod bundle configuration. The project started in 2017 and

has been lasting up to spring 2022. In 2021 NRG proposed some parameter

changes in the basic DNS set-up in order to accelerate the simulations. At

the same time, the author decided to continue the calculations with the

base settings, which took into account very restrictive settings regarding

the time step, so as not to lose the accuracy of the final calculations. The

results of the DNS with the base configuration are presented in this thesis.
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3 Turbulence theory and turbulence modelling

3.1 Brief introduction

Turbulence is the apparent chaotic motion of fluid flows. Fluid flows can

be laminar, when they are regular and flow in an orderly manner. When

the speed or characteristic length of the flow is increased, the convective

forces in the flow overcome the viscous forces of the fluid and the laminar

flow transitions into a turbulent one. The ratio between convective and

viscous forces is called the Reynolds number. This number can be used to

classify the type of flows, the higher the number the more turbulent the

flow is.

In general, fluids flows can be categorized into laminar, transitional

and turbulent flow. Most of the flows around us are turbulent flows, e.g.

a strong wind, the flow in the river, even the wind generated by funs.

The turbulent flow is prevalent in industrial applications mainly due to its

high mixing rate compared to laminar flow. For example, the flows in the

nuclear reactor core or in the jet engine or in the pipe of oil refinery are

all turbulent flows. The turbulence theory included in the section is very

brief, more details can be found in several textbooks, for instance Pope

(2000) [61,62].

3.2 Characteristic of turbulent flow

Although the turbulent flow widely exists in the world and has been studied

over a century, no one can give a precise definition of turbulence. However

some common characteristics of it have been established, which are listed

below.

Randomness - all of the turbulent flows are random or irregular, which

makes the statistical tools important in turbulence studies. However, not

all of the irregular flows are turbulent.
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Diffusivity - one of the main differences between the turbulence and lam-

inar flow is that turbulence can result in more efficient fluids transport and

mixing, which are important features concerned in many applications.

Rotational and three dimensional - all of the turbulent flows con-

tain high level of turbulent vortices. As a result, the irrotational random

waves cannot be classified into turbulence.

Dissipation - the kinetic energy of turbulence is dissipated by the vis-

cous shear stress and added as internal energy to fluids. So the continuous

supply of energy from the mean flow is needed to maintain the existence

of the turbulence vortices.

Continuous - turbulence is a continuous phenomenon, governed by the

Navier-Stokes equations [62].

Turbulence is the characteristic of the flow - turbulence is a feature

of the flow. It can be characterized by using the dimensionless parameter

Reynolds number (Re), proposed by Osborne Reynolds (1894) and defined

as

Re =
uL

ν
=

ρuL

µ
, (3.1)

where: u is the flow speed, L is the characteristic dimension, ν is the

kinematic viscosity, ρ is the density if the fluid, µ = νρ is the dynamic

viscosity.

No matter what fluid it is, the dynamics of the turbulence is similar, if

the Reynolds number is the same. According to the observation in Reyn-

olds’s experiment, the flow remains laminar when Re < 2300, but becomes

turbulent when Re > 4000. The turbulence arises from the instability
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mechanism in the high Reynolds number flows, which would cause three-

dimensional disturbances. The local three dimensional disturbances would

merge with each other forming a turbulence flow field [62].

3.3 Energy cascade and turbulent scales

Turbulent flows are unsteady and three dimensional in nature. One of the

main advantage turbulence offers in industrial applications is enhanced

mixing. Inside a nuclear reactor, it is important that the coolant is well

mixed and the heat is distributed evenly. The flow in physics of interest

is essentially characterized by turbulent transfers (e.g., momentum and

energy transfers). Turbulent flows are characterized by a full spectrum of

space and time scales, ranging from large scales, driven by the geometry

and boundary conditions, down to the smallest scales where the energy is

finally dissipated. This phenomenon is named as energy cascade. The idea

of energy cascade was first suggested by Richardson (1922) [63] and later

quantified by Kolmogorov (1941) [64].

This statistic-based theory relies on local isotropy and similarity as-

sumptions. The energy cascade means that because of the nonlinear inter-

actions between the different scales, the energy transfer takes place from the

large scales to the small ones. At some point, depending on the Reynolds

number, the energy transfer competes with the viscous dissipation of the

energy into heat, and this latter effect becomes dominant. The final dissip-

ation occurs at a scale defined by Kolmogorov and called the Kolmogorov

scale. This energy cascade is represented by a relation between the local

characteristic wavenumber k of eddies and the turbulent kinetic energy

contained by such eddies E(k) (see Fig. 5).

The large wavenumber range (e.g., the large scales) is the production

range where the energy is injected into turbulence because of existing gradi-

ents in the mean flow or any external forcing. Thus, one can find here the

largest eddies containing most of the energy. The high wavenumber range
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Figure 5: The energy cascade of turbulence.

or small scales is the dissipation range where the smallest eddies could be

found and where viscosity is playing an important role. Between these two

zones is the inertial range where the energy transfers from the larger scales

to the smallest ones. The extent of this zone is function of the Reynolds

number as it gives an idea of the difference between the largest scales and

the smallest scales present in the flow. Actually, as the Reynolds increase

the smallest scales become even smaller while the large scales are not sig-

nificantly modified because they are more related to the geometry. The

largest eddies of this range (inertial range) are proportional to the physical

geometry, while the smallest are determined by the viscous dissipation and

viscosity. Along the inertial range, under an equilibrium assumption, the

transfer rate of energy between scales equals the dissipation rate ε.

The dimension of E(k) is (m3s−2). In the inertial range E(k) = f(k, ε).

As k has the dimension (m−1), and the dissipation ε has the dimension

(m3s−3) it gives:
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E(k) ∼ ε2/3k−5/3. (3.2)

This finally gives the so-called Kolmogorov law E(k) = CKε
2/3k−5/3 with

CK = 1.6 and explains the −5/3 slope in Fig. 5 for the inertial range.

According to Richardson’s theory, the various turbulent vortices in the

turbulent flow can be characterized by their length scale. For the eddies

with a length scale l, its characteristic velocity can be written as ul, and

then, the time scale can be defined as τ = l
ul
. The large scales vortices

have the length scale l0, which is comparable to the flow scale L, while

their characteristic velocity u0 has the same order of the root mean square

(r.m.s.) of the fluctuating velocity. So, the time scale of the largest eddies

can be defined as τ0 = l0
u0
. The Reynolds number of these eddies is large,

so the dissipation effect of molecular viscosity is small enough to be ignored.

However, the large eddies are unstable due to the existence of the strain

field. They would break into smaller eddies with energy transfer. These

smaller eddies follow the same mechanism, transferring the energy to even

smaller eddies. This process continues until eddies are sufficiently small,

while the molecular viscosity can effectively dissipate the kinetic energy.

This means that the energy just dissipates at the end of process. The rate

of dissipation ε is determined by the rate of transfer of energy at the first

step of the process, which can be written as

ε =
u20
τ0

=
u30
l0
. (3.3)

There are some questions remaining in Richardson’s theory. What is

the size of eddies which molecular viscosity can effectively dissipate the

energy from? What is the relations between the length scale of eddies and

the characteristics velocity/time scale? These questions were answered by

Kolmogorov [64] in the form of three hypotheses.
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Kolmogorov’s hypothesis of local isotropy - the small scale turbulent

motions are statistically isotropic, if the Reynolds number is high enough.

Kolmogorov’s first similarity hypothesis - in every turbulent flow

at sufficiently high Reynolds number, the statistics of the small-scale mo-

tions have a universal form that is uniquely determined by ν and ε. Then

the so-called Kolmogorov scales can be defined as

η = (
ν3

ε
)1/4, (3.4)

uη = (εν)1/4, (3.5)

τη = (
ν

ε
)1/2, (3.6)

where: η, uη, τη are the Kolmogorov length scale, the Kolmogorov velocity

scale, and the Kolmogorov time scale, respectively. It is easy to conclude

that the Reynolds number evaluated by the Kolmogorov scales is equal to

unity.

Combining equation (3.3) with equations (3.4), (3.5), (3.6), the relation

between the scales of smallest eddy and largest ones can be written as

η

l0
≃ Re−3/4, (3.7)

uη
u0

≃ Re−1/4, (3.8)

τη
τ0

≃ Re−1/2. (3.9)
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Kolmogorov second similarity hypothesis - in every turbulent flow

with sufficiently high Reynolds number, the statistics of the motion of

scale of l in the range η ≪ l ≪ l0 have a universal form that is uniquely

determined by ε, independent of ν. The velocity scales and time scales can

be formed by l and ε:

ul = (εl)1/3, (3.10)

τl = (l2/ε)
1/3

. (3.11)

3.4 Navier-Stokes equations

The motion of fluids can be described by a set of equations, named after

Claude-Louis Navier and George Gabriel Stokes, which are based on three

basic physical principles: mass conservation, second Newton law, and en-

ergy conservation. The incompressible forms of the equations are listed

below.

The continuity equation (mass conservation):

∂ui
∂xi

= 0. (3.12)

The momentum conservation equation (Newton law):

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj2

, (3.13)

where: ρ - density, ν - kinematic viscosity.

The energy conservation equation:

∂T

∂t
+ uj

∂T

∂xj
=

ν

Pr

∂2T

∂xj2
, (3.14)

where: Pr - is the Prandtl number.
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The Prandtl number (Pr) is a dimensionless number, named after the

German physicist Ludwig Prandtl, defined as the ratio of momentum dif-

fusivity to thermal diffusivity. The Prandtl number is given as:

Pr =
ν

α
=

momentum diffusivity

thermal diffusivity
, (3.15)

where α - thermal expansion coefficient.

No analytical solution of Navier-Stokes equations is supplied by the

mathematicians. This is mainly due to the non-linear convective term and

pressure gradient terms in the equations. However, these equations can be

solved numerically. A brief introduction on the simulation and turbulence

modelling is included in Section 3.5.

3.5 Turbulence Modelling and Numerical Method

The turbulent flow can be studied either by experiment or by numerical

simulation. In comparison with the experimental method, the numerical

simulation is generally cheaper and more efficient, but it is necessary to

check the reliability of the numerical models using experimental results.

The most accurate computational approach is Direct Numerical Simula-

tion (DNS), which solves the Navier-Stokes equations directly and resolves

all of the scales of turbulence, as shown in Fig. 5. However the cost of this

method is extremely high. From the CFD point of view, where space is

discretized in a finite number of cells in each direction, equation (3.7) has

a crucial consequence. Indeed, l0 is proportional to L, the physical geo-

metry length scale, which can be discretized by n points in each direction

of space, L = n∆h, ∆h being the grid size. This implies in 3D:

n3 ∼ Re9/4. (3.16)

From eq. 3.16 the number of mesh elements required for resolving the

three dimensional flow is proportional to Re9/4. For example, to investigate
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a flow with Re = 10000, the total number of mesh element required by

using DNS is in the order of 109, which makes this method too expensive

for almost all industrial applications. More precisely, as a grid of size

h could capture an eddy of size 2h (Nyquist theorem [65]), an ideal DNS

grid would require hDNS ≤ 2η.

The opposite approach (e.g., the RANS) is based on the modeling of

the full spectrum presented in Fig. 5. It means that (3D) turbulent fluc-

tuations are not explicitly simulated, the effect of turbulence is simply

mimicked by adding an extra diffusion to any transported variable. The

grid has to be fine enough to capture gradients of the mean flow, which is

far less demanding than DNS. Thanks to this feature, the RANS approach

is widely used in engineering applications, where the interest is focused on

the time averaged flow properties. More details on these two approaches

can be found in textbooks, such as [61] and [66].

3.5.1 Reynolds averaged Navier-Stokes (RANS) model

The RANS methodology is focused on the mean flow and the effects of

turbulence on mean flow properties [66]. In order to obtain an equation

for the mean flow, Reynolds decomposition is applied to the Navier-Stokes

equations. The vector and scalar fields are decomposed into a mean and

a fluctuation component. The instantaneous velocity Ui, pressure P , tem-

perature T , and density ρ can then be written as

Ui = ⟨Ui⟩+ u
′

i, (3.17)

P = ⟨P ⟩+ p
′
, (3.18)

T = ⟨T ⟩+ T
′
, (3.19)

ρ = ⟨ρ⟩+ ρ
′
, (3.20)
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where: ⟨·⟩ express the mean component and (·)′ is the fluctuation com-
ponent.

Applying the Reynolds decomposition to the Navier-Stokes equations,

the Reynolds Averaged Navier Stokes equations (RANS) are obtained. The

RANS equations for continuity, momentum, and scalar conservation are

described by

∂⟨Ui⟩
∂xi

= 0, (3.21)

∂⟨Ui⟩
∂t

+ ⟨Uj⟩
∂⟨Ui⟩
∂xj

= −1

ρ

∂⟨P ⟩
∂xi

+ ν
∂2⟨Ui⟩
∂xj2

−
∂⟨u′

iu
′

j⟩
∂xj

, (3.22)

∂⟨T ⟩
∂t

+
∂⟨Uj⟩⟨T ⟩

∂xj
=

ν

Pr

∂2⟨T ⟩
∂xj2

−
∂⟨u′

jT
′⟩

∂xj
. (3.23)

The decomposition leads to additional terms in the momentum and

scalar conservation equations. The newly appeared ⟨u′

iu
′

j⟩and ⟨u′

jT
′⟩ are

named as the Reynolds stresses and turbulent heat flux. The Reynolds

equations are not closed due to the Reynolds-stress term; a closure is re-

quired in terms of known flow parameters. Thus, additional equations are

required to solve.

3.5.2 Wall-bounded turbulent flows

A brief overview of different terms used in wall flows is given. As the flow

in rod bundles is affected by the gap region, the effect of the wall is very

important. For a fully developed channel flow, the total shear stress, τ , is

the sum of viscous stress, ρν d⟨ui⟩
dxj
, and Reynolds-stress −ρ⟨ui

′
uj

′⟩.

τ = ρν
d⟨ui⟩
dxj

− ρ⟨ui
′
uj

′⟩. (3.24)

At the wall, ui = 0, hence the Reynolds-stress goes to zero. Therefore,

the viscous stress is the only contribution to the wall shear-stress (τw),

given by
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τw = ρν(
d⟨ui⟩
dy

)y=0, (3.25)

where ui is the streamwise velocity and y the wall-normal direction. The

viscous velocity scale - uτ and length scale - δτ are defined as the following:

uτ =

√
τw
ρ
, (3.26)

δτ
+ =

ν

uτ
. (3.27)

On basis of the above defined velocity and length scales, the friction

Reynolds number Reτ is defined as

Reτ =
uτδ

ν
, (3.28)

where: δ is the half width of the channel. The distance from the wall is

measured in terms of wall units, y+. It is given by

y+ =
uτy

ν
. (3.29)

Von Kármán [67] proposed that the average velocity of a turbulent flow

at a certain point is proportional to the logarithm of the distance from

that point to the wall. This is known as the law of the wall. In the viscous

sub-layer in the region 0 < y+ ≤ 5, the shear stress is dominant and the

velocity is proportional to the wall distance as below:

u+ =

{
y+ , 0 < y+ ⩽ 5 (viscous sublayer),

1
κ · ln(y

+) + C+ , y+ > 30 (log-law-region),
(3.30)

where: κ ≈ 0.41 - von Kármán constant, C+ ≈ 5.0 - wall function constant,

y+ - dimensional wall distance (eq. 3.29).

u+ =
u

uτ
, (3.31)
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u+ is the dimensionless velocity.

With this assumption it is possible to model the velocity gradient in

those regions without applying a full mesh resolution in this region. The

law of the wall is valid for fully developed turbulent flow that is mainly

parallel to a hydraulically smooth wall. The velocity gradient in stagnation

flow cannot be predicted by this model. Figure 6 (source: Wikipedia, avail-

able at: https://en.wikipedia.org/wiki/Law_of_the_wall, accessed:

10 June 2022, CC BY-SA 3.0) shows the velocity distribution as function

of the wall distance.

Figure 6: Dimensionless velocity u+ as function of the wall distance y+ (source: Wikipe-

dia).

Table 1, constructed from [61], shows the different wall regions defined

on the basis of wall units and the corresponding property there, where

ui
+ = ⟨ui⟩/uτ .
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Table 1: Wall regions.

Region Location Property

Inner layer y/δ < 0.1 ⟨ui⟩ determined by uτ and y+, independent

of bulk velocity and δ

Viscous wall region y+ < 50 Significant viscous contribution to total

shear stress

Viscous sublayer y+ < 5 Reynolds shear-stress is negligible compared

to viscous stress

Outer layer y+ > 50 Negligible effects of viscosity on mean flow

Overlap region y+ > 50, y/δ < 0.1 Region of overlap between inner and outer

layers

Log-law region y+ > 30, y/δ < 0.3 ui
+ = f(ln(y+))

Buffer layer 5 < y+ < 30 Transition region between viscosity domin-

ated and inertia dominated parts

3.5.3 Boussinesq Approach vs. Reynolds Stress Transport Models

The Reynolds stresses terms in the Reynolds averaged Navier-Stokes equa-

tions can be determined either via a model based on turbulence viscosity

hypothesis/Boussinesq hypothesis or modelled directly (Reynolds Stress

Model) [61].

In the Boussinesq hypothesis (proposed by Boussinesq in 1877), the

Reynolds stresses are proportional to the mean rate of deformation [66],

namely, the mean strain rate can be written as:

−⟨u′

iu
′

j⟩ = µt(
∂⟨Ui⟩
∂xj

+
∂⟨Uj⟩
∂xi

)− 2

3
kδij. (3.32)

The Boussinesq hypothesis is used in the Spalart-Allmaras model, the

k − ε models, and the k − ω models. The advantage of this approach

is the relatively low computational cost associated with the computation

of the turbulent viscosity, µt. In the case of the Spalart-Allmaras model,

only one additional transport equation (representing turbulent viscosity) is

solved. In the case of the k− ε and k−ω models, two additional transport

equations (for the turbulence kinetic energy, k, and either the turbulence
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dissipation rate, ε, or the specific dissipation rate, ω) are solved, and µt is

computed as a function of k and ε or k and ω. The disadvantage of the

Boussinesq hypothesis as presented is that it assumes that µt is an isotropic

scalar quantity, which is not strictly true. However, the assumption of an

isotropic turbulent viscosity typically works well for shear flows dominated

by only one of the turbulent shear stresses. This covers many technical

flows, such as wall boundary layers, mixing layers, jets, and so on.

The alternative approach, embodied in the Reynolds Stresses Model

(RSM), is to solve transport equations for each of the terms in the Reynolds

stress tensor. An additional scale-determining equation (normally for ε or

ω) is also required. This means that five additional transport equations

are required in 2D flows and seven additional transport equations must be

solved in 3D.

In many cases, models based on the Boussinesq hypothesis perform

very well, and the additional computational expense of the Reynolds stress

model is not justified. However, the RSM is clearly superior in situations

where the anisotropy of turbulence has a dominant effect on the mean flow.

Such cases include highly swirling flows and stress-driven secondary flows.

In Section 6 different turbulent models will be thoroughly validated.

Results obtained with different turbulence models will be compared with

the reference DNS results as well as among each other. It will allow to

assess the prediction capabilities of the gap vortex street formation and

turbulent heat flux in the tightly packed bare rod bundles. A general

description of the different types of RANS turbulent models is given in

section 3.5.4.

3.5.4 Turbulence models

In practice, the RANS equations can be solved in two regimes:

1. steady;
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2. unsteady.

In the steady RANS, the time dependent terms are not included, and it is

useful for flows which do not contain any temporal dynamics. The unsteady

RANS or URANS, on the other hand, solves the complete RANS equations

including the time-dependent terms. In cases of wall resolved flows, the

size of the mesh is very small close to the wall, and therefore small time-

steps of the order of 10−3 − 10−5 s are required. This makes URANS

computationally more expensive than steady-RANS, but still remains less

expensive than DNS.

There exist different approaches to obtain a closure relationship for the

Reynolds stresses. They can be roughly divided into the following three

types:

1. based on the linear eddy-viscosity hypothesis;

2. based on the non-linear eddy-viscosity hypothesis;

3. solving equations for each Reynolds stress.

Linear eddy viscosity models

These are turbulence models in which the Reynolds stresses, as obtained

from a Reynolds averaging of the Navier-Stokes equations, are modelled

by a linear constitutive relationship with the mean flow straining field, as:

−ρ⟨u′

iu
′

j⟩ = 2µtSij −
2

3
ρkδij, (3.33)

where: µt - is the coefficient termed turbulence ”viscosity” (also called the

eddy viscosity);

k = 1
2(⟨u1u1⟩+ ⟨u2u2⟩+ ⟨u3u3⟩) - is the mean turbulent kinetic energy;

Sij =
1
2 [

∂Ui

∂xj
+

∂Uj

∂xi
]− 1

3
∂Uk

∂xk
δij - is the mean strain rate.

Non-linear eddy viscosity models

This is class of turbulence models for the RANS equations in which an
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eddy viscosity coefficient is used to relate the mean turbulence field to the

mean velocity field, however in a nonlinear relationship

−ρ⟨u′

iu
′

j⟩ = 2µtFnl(Sij,Ωij, . . .), (3.34)

where: Fnl is a nonlinear function possibly dependent on the mean strain

and vorticity fields or even other turbulence variable;

k = 1
2(⟨u1u1⟩+ ⟨u2u2⟩+ ⟨u3u3⟩) - is the mean turbulent kinetic energy;

Ωij =
1
2 [

∂Ui

∂xj
− ∂Uj

∂xi
] - is the mean vorticity.

Reynolds Stress Model (RSM)

This is class of turbulence models for The Reynolds Stress Models (RSM),

also known as the Reynolds Stress Transport Models, which are higher level

turbulence closures, and represent the most complete classical turbulence

model. The method of closure employed is usually called a Second Order

Closure. In Reynolds Stress Models, the eddy viscosity approach is avoided

and the individual components of the Reynolds stress tensor are directly

computed. These models rely on the exact Reynolds stress transport equa-

tion. They are able to account for complex interactions in turbulent flow

fields, such as the directional effects of the Reynolds stresses.

The Reynolds stress model involves calculation of the individual Reyn-

olds stresses, ρu′iu
′
j , using differential transport equations. The individual

Reynolds stresses are then used to obtain closure of the Reynolds-averaged

momentum equation.

The exact transport equations for the transport of the Reynolds stresses,

u′iu
′
j , may be written as follows:
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∂
∂t(ρu

′
iu

′
j) +

∂
∂xk

(ρuku′iu
′
j) =

∂
∂xk

[ρu′iu
′
ju

′
k + p′(δkju′i + δiku′j)]

+ ∂
∂xk

[µ ∂
∂xk

(u′iu
′
j)]

−ρ(u′iu
′
k
∂uj

∂xk
+ u′ju

′
k
∂ui

∂xk
)

+p′(
∂u′

i

∂xj
+

∂u′
j

∂xi
)

−2µ
∂u′

i

∂xk

∂u′
j

∂xk

−2ρΩk(u′ju
′
mεikm + u′iu

′
mεjkm)

(3.35)

or

Local time derivative+ Cij = DT,ij

+DL,ij

+Pij

+ϕij

−εij

+Fij

(3.36)

where: Cij is the Convection-Term, DT,ij equals the Turbulent Diffusion,

DL,ij stands for the Molecular Diffusion, Pij is the term for Stress Produc-

tion, ϕij is for the Pressure Strain, εij stands for the Dissipation and Fij is

the Production by System Rotation.

The following terms, Cij, DL,ij, Pij and Fij do not require modelling.

However, DT,ij, ϕij, and εij have to be modelled for closing the equations.

The fidelity of the Reynolds stress model depends on the accuracy of the

models for the turbulent transport, the pressure-strain correlation and the

dissipation terms.

The turbulence theory included in the section is very brief. More de-

tails can be found in several textbooks, for instance [61,62,66]. Some other

turbulent models used in this thesis will not be presented in details. All

the specific information can be found in given references. In the thesis, the

following turbulence models are considered:
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� Linear eddy viscosity models:

– Realizable k − ε ( [68]) (hereafter RKE)

with Menter-Lechner Near-Wall Treatment

– Shear-Stress Transport k − ω ( [69]) (hereafter SST k − ω)

with Corner Flow Correction option

– Generalized k − ω ( [70]) (hereafter GEKO)

with Corner Flow Correction option

� Non-linear eddy viscosity model

– k − ε based model (hereafter RG EASM)

with Enhanced Near-Wall Treatment

– k − ω based model ( [71])(hereafterWJ-BSL-EARSM)

with GEKO option

� Reynolds Stress Model ( [72–74])

– Stress-BSL formulation (hereafter RSM)

with GEKO option

None of the applied turbulence models have been tuned for a particular

case of a turbulent flow in a bare rod bundle configuration. All the selected

turbulence models have been used in the low Reynolds formulation, which

means that the equations are solved up to the wall. ANSYS Fluent com-

mercial software used to preform all the RANS type simulations provides

many additional options for different turbulence models. However if not

mentioned above only the default options for every model have been ap-

plied in the present study. The detailed description of turbulence models

implementation in the use code can be found in [70,75–77].
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4 Design of a numerical experiment

In this section the design of a numerical experiment for a tight lattice bare

rod bundle case is described. In the calibration procedure the set of the

precursor RANS and URANS simulations were performed. As a result

the optimal setup by means of geometrical configuration and boundary

conditions for targeted DNS simulation was defined.

4.1 The Hooper case

As a starting point, Hooper′s hydraulic experiment [23, 25] of a bare rod-

bundle is selected, hereafter it will be called as the Hooper case. For the

sake of understanding some of the key parameters of the Hooper case are

recalled here. The cross-section of the Hooper case, which consists of six

rods arranged in a square configuration, is shown in Figure 7.

The diameter (D) of the rod is 14 cm and the pitch (P) between the

two rods is 15.5 cm. Accordingly, the pitch-to-diameter ratio (P/D) of

the considered case is 1.107, which makes itself a close-spaced rod bundle.

The streamwise length of the test section is 9.14 m, which is equivalent to

128 hydraulic diameters. Air at room temperature was used as a working

fluid for the Hooper case [23]. The bulk Reynolds number of the selec-

ted configuration is Reb ≈ 49000, which corresponds to the mean axial

inlet velocity of 10.3 m/s. Performing a DNS of the Hooper case requires

a huge amount of computational power. An initial mesh estimation of this

case was performed (based on the obtained URANS results) and it would

require a total of 14 billion grid points only for the flow field to perform

a true DNS. Furthermore, additional constraints with respect to the simu-

lation time-step etc. would make this DNS not feasible in the near future.

Hence, a calibration of the Hooper case is performed to optimize the flow

configuration in such a way that it preserves the essence of the Hooper

experiment, i.e. the gap vortex street formation. Moreover, it will also
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allow introducing the thermal field, which was not included in the Hooper

case.

Figure 7: Cross section of the Hooper′s hydraulic experiment of a tight lattice rod-bundle

(based on [25]).

4.2 Numerical Methodology

4.2.1 Computational domain and boundary conditions

In the recent past, a number of attempts have been made by the research-

ers to numerically replicate and/or study the Hooper case [3,18]. In these

studies, the cross-section of the considered computational domain was re-

duced by only taking into account the narrowest gap between the rods,

as highlighted in Figure 8. Further breaking-down of this domain (also

shown in Figure 8) indicates that it consist of four primary flow cells. Nev-

ertheless, authors of mentioned numerical studies were able to reproduce

the appearing axial flow pulsations. However, recently [3] it was found out

that for high fidelity type simulations (such as LES or DNS), this reduced

cross-sectional domain of the Hooper case is not sufficient and may lead

to unwanted numerical errors. This point is also highlighted by several
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other high fidelity numerical simulations for different rod bundle configur-

ations [52] and [78]. Hence, to avoid such unwanted numerical errors, the

complete/full cross-sectional domain of the Hooper case is considered; this

also includes the side walls (as highlighted in Figure 9).

Figure 8: Cross-section of the Hooper case – the dashed lines represent the selected region

for the previous CFD numerical analysis.

Figure 9: Computational domain corresponding to the Hooper case.

It is worthwhile to remind that the Hooper experiment was realized
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with the application of a classical inlet-outlet boundary conditions and the

corresponding streamwise length of the domain was 9.14 m. However, for

the targeted DNS a periodic boundary conditions are imposed, which is

indeed preferable to sustain the turbulence level. In addition, it will also

allow the provision to reduce the computational domain and eventually

the overall computational cost. Hence, for the present calibration study,

a periodic boundary condition is employed by imposing a constant mass

flow rate of 0.213 kg/s, which corresponds to the Reynolds number of

49 000. A list of other considered mass flow rates are given in Section

4.3.1. Moreover on the rods, a non-slip condition is used along the two

different thermal boundary conditions, which are explicitly mentioned and

discussed in Section 4.3.3. This selected computational domain along with

the boundary conditions is given in Figure 9.

4.2.2 CFD Solver

The commercial software ANSYS Fluent version 17.2.0 [79] is selected to

perform this calibration and optimization study. Since the design of the

Hooper case would require a series of pre-cursor unsteady computations,

the URANS turbulence modelling approach is considered and a linear SST

k − ω model [69] is selected in this regard. With respect to the numerical

schemes, a second order upwind scheme is used for the momentum and

energy equations. The least square cell based scheme is used for gradi-

ents. This spatial discretization is performed by using a pressure-velocity

coupling method combined with a SIMPLE-scheme algorithm. Moreover,

a pressure-based solver is considered, which employs a second order pres-

sure interpolation scheme. Lastly, for the temporal discretization, a second

order implicit scheme available in the code ANSYS Fluent is selected. It

is worth mentioning that for all the URANS computations presented in

this article, the CFL (Courant-Fridrichs-Lewy) number is always kept less

than 1 with 30 sub-iterations per time step. CFL - the convergence condi-
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tion by Courant–Friedrichs–Lewy is a necessary condition for convergence

while solving certain partial differential equations numerically. The CFL

condition has the following form:

C =
u∆t

∆x
⩽ Cmax, (4.1)

where the dimensionless number C is called the Courant number, u is the

magnitude of the velocity, ∆t is the time step, ∆x is the characteristic

length.

In total, 22 test cases of URANS computations are performed for this

research work and each simulation has run for an average 0.3 million iter-

ations. All the simulations are performed on the CIŚ (Świerk Computing

Centre) [2] at the National Centre for Nuclear Research (NCBJ), Poland,

by using an average of 130 processors. A total computational time of ∼ 0.3
million core hours is used to perform this work.

4.2.3 Meshing strategy

The commercial software ANSYSMeshing version 17.2.0 [80] is used to gen-

erate meshes for the precursor simulations. A hexahedral meshing strategy

is employed to generate the mesh. In this regard, a two-step approach is

employed to generate the mesh, that is:

Step 1. A 2D mesh for the cross-section is generated, as shown in Fig.

10.

Step 2. Afterwards, this 2D mesh is uniformly extruded in the stream-

wise direction.

As mentioned previously that the calibration and optimization of the

Hooper case involve a wide range of URANS computations, varying the

Reynolds number and other geometric parameters, hence it is not optimum

to perform the mesh sensitivity study at the forehand. Nevertheless, an
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Figure 10: Computational mesh.

initial mesh is generated, which has to be good enough to correctly repro-

duce the overall flow features appearing in all considered test cases. This

initial mesh is generated corresponding to the original Hooper case and it

consists of 6.8 million grid points. The mesh includes a structured mesh

boundary layer (16 grid points with a stretching ratio of 1.2) in the near

wall region in order to better capture the flow gradients. The size of the

first cell was computed such that the value of average y+ is kept below 1

(y+ represents the normalized distance from the nearest wall in the wall

units and is defined as given in equation 3.29). This mesh is sufficiently

fine to capture the appearing flow fields in considered flow configurations,

which is also confirmed in the mesh sensitivity study reported in Section

4.5.

4.3 Calibration and optimization of the rod bundle

A series of test cases are performed in three steps in order to calibrate and

optimize the Hooper case, i.e.:

Step 1. Scaling of the Reynolds number.

Step 2. Optimization of the computational domain.
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Step 3. Introduction of the thermal fields.

These steps are explicitly discussed in the following sections.

4.3.1 Scaling of the Reynolds number

The first calibration is related to the scaling of the Reynolds number, more

precisely the scaling-down of the Reynolds number is the goal here. As

mentioned earlier, performing a DNS of the Hooper case with original

flow parameters is not feasible and foreseeable in the near future. Hence,

following the work of Shams et al. [81,82], s scaling-down of the Reynolds

number is performed in such a way that the main flow characteristics of

the Hooper case are preserved and the flow field remains in the turbulent

regime. Accordingly, URANS computations of ten test cases are performed

by decreasing the Reynolds number in a systematic way and are given in

Table 2. Among the listed test cases, case 1 represents the original Hooper

case.

Table 2: List of test cases considered for the scaling of the Reynolds number.

Cases Nomenclature Scale down Re Mass flow rate [kg/s]

1 R1 R1 49 000 0.2134

2 R2 R1/2 24 500 0.1063

3 R3 R1/3 16 333 0.0708

4 R4 R1/4 12 250 0.0531

5 R5 R1/5 9 800 0.0425

6 R6 R1/6 8 167 0.0354

7 R7 R1/7 7 000 0.0304

8 R8 R1/8 6 125 0.0267

9 R9 R1/9 4 083 0.0178

10 R10 R1/10 3 063 0.0134

11 R11 R1/11 1 531 0.0067

For the sake of proper post-processing, two different cross-sectional

planes are selected, which are highlighted in Fig. 11. Cross-section plane
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represents a xy-plane view and is extracted at the mid length of the compu-

tational domain, whereas, streamwise plane is taken in the xz-plane along

the streamwise direction to explicitly visualize the appearing gap vortex

street in the domain.

Figure 11: Location of the cross-section and streamwise plane for the post-processing

purpose.

Before performing the scaling analyses, it is important to assess the

prediction capabilities of the selected numerical method and the turbu-

lence modelling. Hence, the obtained results corresponding to the original

Hooper case Reynolds number are (qualitatively and quantitatively) com-

pared with the available experimental data [25]. A qualitative comparison

of the obtained velocity signal is shown in Fig. 12. By looking at the

comparison, it can be seen that although the obtained numerical results

are not exactly the same as the experimental ones (mainly because an

isotropic URANS approach is used), the overall flow characteristics are

correctly reproduced.

Particularly, a similar number of axial flow pulsations are captured by

the numerical results. An average cycle frequency (f) of these flow pulsa-

tions is computed using the power spectral density (PSD), and is presented

in Fig. 13. The PSD of the URANS results display a prominent frequency
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Figure 12: Comparison of the URANS (bottom) reproduction of flow pulsations versus

the measured (top) turbulent-velocity component u located at the rod-gap centre [25].

of the appearing axial flow pulsations and show a peak around 30 Hz,

which is found to be in a good agreement with the experimental data [25].

This suggests that the considered numerical methodology is good enough

to reproduce the overall flow pulsations appearing in the Hooper case.

Figure 13: The PSD of analyzed axial velocity fluctuations for Re = 49 000.

Furthermore, Fig. 14 displays the iso-contours of the instantaneous

velocity fields obtained from the URANS solutions corresponding to all
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eleven Reynolds numbers listed in Table 2. These contours are shown for

the streamwise plane (as per Fig. 11) highlighting the axial flow pulsations

in the gap region. By looking at the results, it can be seen that for all the

considered Reynolds number cases, the overall flow topology of the axial

flow pulsations is preserved. Results depict that the flow pulsations in the

centerline (narrowest gap) region progressively increase with the decreas-

ing Reynolds number. Particularly, the low-velocity gap region becomes

more prominent with the decreasing Reynolds number. The mean cyclic

frequency corresponding to all the Reynolds number cases is computed

and also compared with the available experimental measurements [25], see

Fig. 15. The plot in Fig. 15 illustrates the measured characteristic fre-

quency for a wide range of Reynolds numbers and indicates a linear correl-

ation for a specific P/D ratio. A similar trend is also reproduced by all the

performed URANS computations, however, with a slight under-prediction

of the pulsation frequency.

It is important to mention that for all the cases, a similar initial condi-

tion is used to perform the URANS computations, i.e. first a RANS com-

putation is performed to obtain a fully developed field and subsequently,

the URANS computation is performed to observe the gap vortex street.

Nonetheless, the exact physical time of the onset of the flow pulsations

varies with the Reynolds number. Namely, Fig. 16 clearly shows that with

the decreasing Reynolds number, the gap vortex street appearance time

exponentially increases and leads to a maximum of 15 sec for the lowest

considered Reynolds number. This, in turn, also increases the computa-

tional cost. Despite the delay in the appearance of the gap vortex, it is

interesting to see that all the cases have shown the appearance of the axial

flow pulsations.

To investigate each test case further, the obtained results were compared

quantitatively. For the sake of any quantitative comparison presented in

this thesis, the results are extracted along three different lines. The exact
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Figure 14: Iso-contours of velocity magnitude for different Reynolds numbers.
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Figure 15: Mean cyclic frequency of large-scale turbulent structure in the open rod gap

as a function of Reynolds number - experimental vs numerical results.

Figure 16: Evolution of the physical time for the appearance of the axial flow pulsations

w.r.t. different Reynolds numbers.
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location of these lines is shown in Fig. 17. Line 1 (denoted as L1) is

taken at the mid of the computational domain and highlights the profiles

in the narrowest gap region. Line 2 (L2) is taken in the mid of xy-plane.

Whereas, Line 3 (L3) is taken in the diagonal direction to pass through

the sub-channel region, where the maximum velocity field appears in the

computational domain.

Figure 17: Lines location.

For the comparison purpose, the velocity profiles corresponding to L1

are extracted and given in Fig. 18. In a rod bundle flow, the maximum

velocities appear in the center of the sub-channel region, whereas in the

gap region, the observed velocities are relatively small. This means that

the Reynolds number in the sub-channel region is always higher than in

the gap region. Therefore, when the velocity in the gap region is non-

dimensionalized with the respective bulk velocity (Ub), the corresponding

ratio remains less than one.

Fig. 18 depicts that for the lowest Reynolds number, the flow is laminar

and resembles with a typical parabolic profile. For the other two lowest

Reynolds number configurations, i.e. Re = 3063 and Re = 4083, the flow

can easily be categorized as laminar or transitional flow regime. However,

for the rest of the considered Reynolds numbers, the flow is mostly depict-
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Figure 18: Velocity profiles along Line 1 for different Reynolds numbers [hereafter y1

corresponds to non-dimensionalized L1; y1 is non-dimensionalized by the length of the

specific line as follows y1 = y/ymax].

ing a turbulent profile. With the decreasing Reynolds number, the velocity

gradient close to the wall becomes less steep. A gradient of all the velocity

profiles, in the wall normal direction, is calculated and given in Fig. 19. It

is clearly visible that the lowest Reynolds number displays a linear gradi-

ent close to the wall, which is typical for the laminar flow regime. For the

other two lowest Re cases, the observed profiles show a hint of an inflexion,

nevertheless the flow can easily be categorized as being in laminar or trans-

itional regime. The rest of the cases show clear non-linear trend followed

by an inflexion point illustrating a turbulent velocity profile.

The turbulent kinetic energy of all the cases is computed and given in

Fig. 20. Once again, for the lowest three Reynolds number cases, similar

conclusions can be deduced. Namely, profiles for these Reynolds numbers

are typical for the laminar flow regime. Interestingly, the cases R7 and

R8 (i.e. Re = 7000 and Re = 6125) show clear signs of flow being very

close to the transition region. It means that the flow regime corresponding

to these two Reynolds number could be very sensitive to the prediction

capabilities of different RANS models. In the work of Shams et al. [83]
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Figure 19: Gradients of the velocity across L1 (till the mid of the gap) for different

Reynolds numbers - top a), bottom b) is a zoom of a).
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where a low-Reynolds k−εmodel was used to reproduce flow in a turbulent

channel flow, it was found out that the flows corresponding to low Reynolds

numbers (i.e. close to Reτ = 180) were very sensitive to the applied model.

This issue is also highlighted in the work of Shams et al. [82], however, for

a wire-wrapped rod bundle. Hence, it is important to select a Reynolds

number which is not sensitive to the RANS model, and consequently should

not predict the flow relaminarize while performing the validation study. In

that context, as a first step, the friction Reynolds numbers corresponding

to all eleven Reynolds numbers are computed and listed in Table 3.

Figure 20: Turbulent kinetic energy profiles along L1 for different Reynolds numbers.

Table 3: Computed friction Reynolds number for the precursor simulations.

Re R1 R2 R3 R4 R5 R6 R7 R8 R12 R16 R32

Reτ 1812 973 683 532 439 376 330 295 211 167 100

Table 3 shows that the case R6 (which is also in the turbulent flow re-

gime) corresponds to the friction Reynolds number of 376. This friction

Reynolds number (eq. 3.28) is high enough in order not to be sensitive

to the RANS models and become relaminarized. Nonetheless, in order to

avoid this to happen, an additional URANS study for the R6 case is per-
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formed using a linear k − ε model [84], and the obtained velocity profile

for L1 is compared with the SST k − ω model, see Fig. 21. It is clearly

noticeable that for the case R6, this considered k− ε model is not relamin-

arizing. Similar turbulent flow profiles were also observed in the work of

Chang and Tavoularis [37,85,86], where an RNG k − ε model was used.

Figure 21: Velocity profiles along L1 for SST k − ω and k − ε model for the case R6 (i.e.

Re = 8167).

It must be acknowledged that the axial flow pulsations have been pre-

dicted for the considered rod bundle configuration, irrespective of the lam-

inar, transition or turbulent flow regimes. To the best of author knowledge,

this is the first time that the flow pulsations are numerically predicted in

a laminar flow regime. These findings are in accordance with the experi-

mental work of Gosset and Tavoularis [32], and Mahmood [87], who have

also observed the axial flow pulsations in a laminar flow for a rod bundle

configuration. Ramm et al. [88] theoretically predicted the onset and ex-

tent of laminarization in infinite square and triangular arrays as a function

of bulk Reynolds number and the P/D ratio. In view of the capabilities of

the theoretical approach they considered the following criteria to charac-

terize the occurrence of laminarization: (ϵMr/ν)φ=0, which represents the
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gap average value of the eddy diffusivity of momentum in the radial dir-

ection normalized by the (molecular) kinematic viscosity. Fig. 22 presents

the predicted transition curves based on the criterion ϵMr/ν = 0.2, which

according to Ramm et al. [88] seems to describe the occurrence of the

transition reasonably well. In the present study, a square arrangement of

the rod bundle is considered with a P/D = 1.107, hence all the considered

Reynolds numbers are also explicitly indicated in Fig. 22.

Figure 22: Prediction of the onset and extent of laminarization in infinite triangular and

square arrays along with the Hooper case for different Reynolds numbers.

It is noticeable that for the considered flow configuration, Reynolds

number above 8000 is clearly turbulent. Hence, to be on the safe side, the

case R5 (i.e. Re = 9800) instead of R6 (i.e. Re = 8167) is considered for

the targeted DNS computation. However, the feasibility of this Reynolds

number has to be checked and is reported in the following sections.

4.3.2 Optimization of the computational domain

In this section, the optimization of the computational domain, particularly

the streamwise length of the domain, is performed. In this regard, three

additional test cases are computed by reducing the axial length (L [m]) of
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the domain, i.e. L/4, L/5, L/6. These test cases are listed in Table 4 and

the obtained results are presented in Fig. 23.

Table 4: List of test cases considered to optimize the (streamwise) length of the compu-

tational domain.

Cases Re Length [m] Mesh [mln] Mass flow rate [kg/s]

12 9800 2.285 1.7 0.042506

13 9800 1.828 1.35 0.042506

14 9800 1.523 1.13 0.042506

By looking at the iso-contours of the velocity field, it can be noticed that

all the considered domains are sufficiently long to reproduce the expected

axial flow pulsations. Moreover, the mean cyclic frequencies of all these

cases are also computed and shown in Fig. 24.

Figure 23: Iso-contours of velocity magnitude for different length of computational do-

main.

It is clearly noticeable that all the domains are able to predict the same

dominant frequency of the axial flow pulsations. This highlights the fact

that the considered domains are sufficiently long to reproduce the overall

topology of the flow field.
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Figure 24: PSD for short domains.

As reported earlier, a periodic boundary condition has been applied in

the streamwise direction for the considered computational domain. Ac-

cordingly, a two-point correlation is performed for all three computational

domains (not presented in this thesis) and it seems that the domain is

sufficiently long enough to uncorrelate the influence of the boundary con-

ditions. However, according to [78] the axial (streamwise) length of the do-

main should be long enough to capture at least four wavelengths (4λ [m])

of the appearing gap vortex. Based on the frequency of the gap vortex

street predicted for these three cases (see Fig. 24), the axial length of the

domain is around 7λ, 6λ, and 5λ for L/4, L/5 and L/6, respectively. From

Fig. 24, it can be noticed that these three cases predict the same frequency

as the original domain: meaning that appearing axial flow pulsations are

not influenced by the considered sizes of the domain. It is worth reminding

that the targeted DNS will also include the thermal field analyses. In the

work of [89], it was found that for low Prandtl fluids, the computational

domains should be somewhat longer than the unity Prandtl fluid cases.

Namely, the structures which appear in the low Prandtl fluids are larger

than the structures in the unity Prandtl fluids and a domain, which is cal-
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ibrated for the unity Prandtl fluid, may induce some numerical errors for

low Prandtl flows. Nonetheless, it is important to mention that these errors

were mainly observed for second order statistics of the thermal field [89].

By considering all these facts, an axial domain L/4, which corresponds to

7λ, is considered for the final DNS computations.

4.3.3 Introduction of the thermal fields

In the work of [40, 41], in addition to the existence of large-scale periodic

fluctuations of velocity, fluctuations of temperature were intensively invest-

igated. The authors found that these fluctuations are responsible for the

high inter-subchannel heat and momentum exchange. Moreover, in some

numerical simulations [37, 85, 86], it was demonstrated that the temper-

ature fluctuations and turbulent kinetic energy increases with a decrease

of the gap rod. Apart from that, in the nuclear industry, flow and heat

transfer in the rod bundles are usually calculated with a sub-channel ap-

proach, in which the temperature, pressure and velocity in a sub-channel

are averaged, and one representative thermal-hydraulic condition specifies

the state of the sub-channel. Since these sub-channel codes are essentially

based on solving one- or two-dimensional equations and are taking into

account turbulent interactions between sub-channels by using empirical

inter-subchannel mixing coefficients, then, they cannot take into account

the complicated heat transfer phenomena and its contribution to the mix-

ing process in the gap region. Therefore, it is important to take into

account the thermal aspect of the rod bundle flow and provide a reference

database for the validation purpose. Considering the fact the that selected

flow configuration is a forced convection flow regime, it allows introduction

of the thermal field as a passive scalar. Although in the original Hooper

case air was considered as a working fluid, in our case, we make use of pass-

ive scalars, and so three different working fluids are selected to study the

thermal effects. These passive scalars correspond to four different Prandtl
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numbers of air, water at two different temperatures, and liquid sodium,

i.e. Pr = 1, 2, 7, and 0.025, respectively. In order to thoroughly assess

the effect of the thermal field in the final DNS, all four passive scalars are

tested here for two different thermal boundary conditions at the surface of

the rods, i.e. constant temperature and constant heat flux. In this regard,

a total of eight simulations are performed and explicitly listed in Table 5.

Periodic heat transfer is possible for both Dirichlet (in thermodynamics

this type of boundary condition indicates a situation when a fixed tem-

perature is held on the surface) and Neumann (prescribe heat flux from

a surface) boundary conditions [90] and applied to the temperature field.

Table 5: List of test cases considered to introduce the thermal fields.

Cases Re Length [m] Mesh [mln] Mass flow rate [kg/s] Pr T [K] Heat flux [W/m2]

15 9800 2.285 1.7 0.042506 0.025 296 -

16 9800 2.285 1.7 0.042506 1 296 -

17 9800 2.285 1.7 0.042506 2 296 -

18 9800 2.285 1.7 0.042506 7 296 -

19 9800 2.285 1.7 0.042506 0.025 - 0.12

20 9800 2.285 1.7 0.042506 1 - 0.12

21 9800 2.285 1.7 0.042506 2 - 0.12

22 9800 2.285 1.7 0.042506 7 - 0.12

The periodic scaled temperature θ(r⃗) is defined as:

θ(r⃗) =
T (r⃗)− Tw

Tb(r⃗)− Tw
(4.2)

where T (r⃗) [K] is temperature in a certain position r⃗, Tb [K] is bulk tem-

perature, and Tw [K] is temperature on the wall.

For Dirichlet boundary condition, the scaled temperature can be written

as:

T (r⃗)− Tw

Tb(r⃗)− Tw
=

T (r⃗ + L⃗)− Tw

Tb(r⃗ + L⃗)− Tw

=
T (r⃗ + 2L⃗)− Tw

Tb(r⃗ + 2L⃗)− Tw

= · · · . (4.3)

where L⃗ is a translation vector.

For Neumann boundary condition, the quantity Tb − Tw is constant

across modules. Thus, equation (4.3) can be simplified to:
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T (r⃗)−Tb(r⃗) = T (r⃗+ L⃗)−Tb(r⃗+ L⃗) = T (r⃗+2L⃗)−Tb(r⃗+2L⃗) = · · · . (4.4)

Here the bulk temperature Tb [K] is defined by the relation:∫∫
A |uieL,i|T dA∫∫
A |uieL,i| dA

= 0 (4.5)

where A [m2] is an area of cross-section, ui is the ith−component of the
velocity vector, and eL,i is the ith−component of the unity vector êL in the
direction L⃗.

4.3.4 Constant temperature on rods

For the constant temperature boundary condition, a temperature of 295 K

has been imposed on rods. Simulations are performed for all four passive

scalars and the obtained results are presented for two different planes: in

cross-sections and streamwise, in Fig. 25 and 26, respectively.

Figure 25: Streamwise iso-contours of static temperature.

In addition, temperature profiles are also extracted corresponding to

Line 1 and 3 and are given in Fig. 27. By looking at the results, it can be
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Figure 26: Iso-contours of scaled temperature for Dirichlet boundary condition on tem-

perature at cross-section in the middle of the domain.

noticed that different temperature fields are obtained for different Prandtl

fluids in comparison to the velocity field in Fig. 14: the thermal boundary

layer is thicker for liquid sodium, the same for air, and thinner for water

at T = 292.8 K and T = 355 K than momentum boundary layer. This

suggests that in order to resolve all these small thermal scales, a much

finer mesh would be required, which will eventually increase the overall

computational cost of targeted DNS.

4.3.5 Constant heat flux on rods

In the case of constant heat flux boundary condition (Neumann condition),

the heat flux of 0.12W/m2 has been imposed on rods. The obtained results

are presented in Fig. 28 and 29. In comparison with the constant tem-

perature boundary conditions, it is clearly noticeable that the predicted

thermal boundary layers for the Pr ≥ 1 are not so prominent. Although

a similar trend is also visible for liquid sodium with Pr = 0.025, non-

etheless the thermal boundary layer is still thicker than the momentum

boundary layer, so the gradients are not so sharp. In summary, both

thermal boundary conditions imply that a much finer mesh is required to
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(a) along L1

(b) along L3

Figure 27: Thermal boundary layer for constant temperature boundary condition.
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resolve the smaller thermal scales present for Pr ≥ 1 fluids. Other than

that, both boundary conditions display different thermal fields for

the respective Prandtl numbers, hence, the resulting DNS seems

to provide promising and extensive database for the validation

purpose.

Figure 28: Streamwise iso-contours of scaled temperature for Neumann boundary condi-

tion.

4.4 Finalized rod bundle configuration for targeted DNS

Based on the wide range of URANS computations (precursor analysis) per-

formed in the previous section, the Hooper case which is based on a tightly

spaced bare rod bundle case, has been calibrated and optimized in order to

perform a DNS computation involving flow and heat transfer analyses. The

important parameters of this finalized design are summarized in Table 6.
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(a) along L1

(b) along L3

Figure 29: Thermal boundary layer for constant heat flux boundary condition.
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Table 6: Finalized parameters of the tightly-spaced bare rod bundle (based on the Hooper

case) for the DNS study.

Parameter Value Units

Rod diameter (D) 14 cm

Pitch (P) 15.5 cm

P/D 1.107 -

Re 9800 -

Mass flow rate 0.043 kg/s

Axial length 2.285 m

Selected Pr numbers 7, 2, 1, 0.025 -

Temperature on the rods 15.5 K

Heat flux on the rods 0.12 W/m2

4.5 Mesh estimation for the DNS

In order to assess the feasibility of the optimized rod bundle for the targeted

DNS computation, in this section, an attempt is made to estimate the

overall mesh requirement. Previously obtained URANS solution has been

utilized to provide an insight into different length scales present throughout

the computational domain. Particularly, the estimation of Batchelor and

Kolmogorov length scales are the most crucial ones from the determination

of the overall mesh requirement point of view. However, in order to gain

the trust in these estimated length scales, it is essential to make sure that

the obtained URANS or the RANS solutions are grid independent. Hence,

a pre-requisite mesh sensitivity study of the finalized rod bundle case is

performed and discussed in the following section.

4.5.1 Mesh sensitivity study of RANS precursor analysis

In order to perform a mesh sensitivity study for the considered flow con-

figuration, it is important to perform the RANS computations rather than

the URANS, which has been the case in the previous sections. In this

regard, additional RANS computations are performed for three different

meshes. The details of these meshes are listed in Table 7.
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Table 7: Considered three different meshes for the mesh sensitivity study.

Mesh No. of grid points (million)

M1 0.9

M2 1.7

M3 4.1

It is worthwhile to mention that in the previous sections, all the URANS

computations corresponding to Re = 9800 have been performed on mesh

M2. Fig. 30 and 31 show the comparison of the velocity magnitude along

Lines 1 and 3, for these three meshes. The presented velocities were divided

by the local bulk velocities ub. It can be noticed that all the profiles overlap

each other, which suggests that even M1 is good enough to capture the

overall flow topology appearing for the Re = 9800.

Figure 30: Comparison of the velocity magnitude for three different meshes along L1.

Such type of comparison is also performed for more parameters such

as, turbulent kinetic energy and temperature. Looking at the results for

turbulent kinetic energy presented in Fig. 32 and 32, and for the tem-

perature presented in Fig. 34 and 35 the similar trend as for velocities is

observed for all the meshes. However, along L1 (namely in the narrow-

est gap region) slight discrepancies are noticeable, nevertheless the profiles
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Figure 31: Comparison of the velocity magnitude for three different meshes along L3.

follow a consistent trend. While for the sub-channel region, where L3 was

extracted, it is observed, that turbulent kinetic energy k close to the rod

walls is moderately overestimated for M1.

Figure 32: Comparison of the turbulent kinetic energy for three different meshes along

L1.

It was found that even M1 is good enough to capture the overall flow

topology and displays a difference of less than ∼ 1 − 3% with respect to
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Figure 33: Comparison of the turbulent kinetic energy for three different meshes along

L3.

Figure 34: Comparison of the temperature for three different meshes along L1.
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Figure 35: Comparison of the temperature for three different meshes along L3.

the other meshes. In summary, even though all the considered meshes are

sufficiently fine to reproduce the overall flow topology, however, the finest

mesh (i.e. M3) has been selected to extract the Kolmogorov and Batchelor

length scales and are discussed in the next section.

4.5.2 Mesh estimation for DNS

Two important length scales, i.e. Kolmogorov and Batchelor, are computed

to find out the mesh requirements for the targeted computation. In order

to do this, the available classical formulas are used. Kolmogorov length

scale (KLS) was already introduce, see equation 3.4. Batchelor length

scale (BLS) is defined as:

λB = (
α2ν

ε
)1/4, (4.6)

where ν is the kinematic viscosity, ε is the turbulence dissipation rate,

and α is the thermal diffusivity. The obtained length scales are non-

dimensionalized by using the mean friction velocity uτ over the surface

of the rod.

Figs. 36 and 37 display the iso-contours of non-dimensional Kolmogorov
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Figure 36: Cross-section iso-contours of KLS.

length scales for two different planes - cross-section and streamwise. The

obtained results suggest a wide range of scales ranging from a minimum of

1 to the maximum of 4.07 in the center of the sub-channel region. Moreover,

the profiles of these length scales are extracted corresponding to L1 and

L3 line, explicitly shown in Fig. 38.

Figure 37: Streamwise iso-contours of KLS.

The non-dimensional KLS profiles corresponding to Lines 1 and 3, clearly

shows that the KLS are relatively small in the gap region, (where the gap

vortex street appears) than in the sub-channel region. Hence, it is import-

ant to resolve these smaller scales which appear in the the gap region, as it

contributes to wall shear stress distribution which dictates the whole flow

field.

Moreover, since the thermal field has been introduced with the use of
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Figure 38: Non-dimensional Kolmogorov length scale in the gap and sub-channel region.

passive scalars, accordingly the momentum field corresponding to all the

Prandtl fluids remains the same and subsequently same distribution of

the KLS. However, the considered Prandtl fluids have different thermal

diffusivity, thus the BLS are also computed for all four Prandtl fluids. The

profiles of the computed BLS for L1 and L3 are presented in Figs. 39-42.

Figure 39: Non-dimensional Batchelor length scale in the narrowest gap region.

It is worth reminding that in Section 4.3.3, it was found out that the
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Figure 40: Non-dimensional Batchelor length scale in the narrowest gap region for fluids

of Pr number = 1, 2, and 7.

Figure 41: Non-dimensional Batchelor length scale along L3.
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Figure 42: Non-dimensional Batchelor length scale along L3 for fluids of Pr number = 1,

2, and 7.

thermal boundary layer for the imposed constant heat flux boundary case

is relatively thinner than what was observed for the constant temperature

boundary condition. Accordingly, the BLS are computed corresponding

to the heat flux boundary condition case. Nonetheless, by looking at the

results, it is clearly visible that the case with Pr = 0.025 displays the

largest BLS, which is expected because of its high thermal diffusivity and

consequently larger scales of the thermal field. Whereas, for Pr = 1 both

the KLS and BLS are similar. However, for the Pr > 1 the observed BLS

are found to be much smaller than the KLS. Nonetheless for all cases, these

scales are not uniformly distributed (as the observed flow field shows a very

complex three dimensional distribution). Therefore, an ingenious meshing

technique will be needed in order to create a computationally affordable

mesh for a DNS computations. Accordingly, an estimation of the mesh

is performed and it gives a total of ∼ 1 billion grid points in order to

perform the targeted DNS including all four passive scalars. This number

is mainly increased because of the Pr = 7, which exhibits smaller Batchelor

length scales. If the case of Pr = 2 is considered then the overall mesh is
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reduced to ∼ 600 million grid points. Taking into account the available

computer resources, it was decided that the final DNS will include three

passive scalars, namely up to the Prandtl fluid Pr = 2.
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5 DNS of the Hooper case

5.1 Brief introduction to DNS setup

Performed DNS is based on the calibration and optimization settings de-

scribed in Section 4. As mentioned in the previous section, the Reynolds

number based on the bulk velocity and the hydraulic diameter is Re = 9800,

which corresponds to a friction Reynolds number Reτ = 605. At the in-

let/outlet of the computational domain, a periodic boundary condition

has been imposed by means of mass flow rate. The rods are considered as

no-slip walls.

The thermal boundary conditions used in this work are both iso-thermal

and iso-flux conditions which correspond to the two extreme scenarios of

a Conjugate Heat Transfer (CHT) [11]. The fluid properties are assumed to

be constant. Hence, the temperature is treated as a passive scalar. Thanks

to this assumption in one single DNS computation, multiple passive scalars

have been included. It is to be noted here, that the temperature and other

transport scalars used here are passive scalars. This means that they do

not affect the velocity or the pressure fields, thus their governing equations

can therefore be solved separately and are not coupled to the momentum

equation. Such an approach reduces the computational effort, and also

allows multiple passive scalars to be simulated.

These passive scalars correspond to the Prandtl numbers of three dif-

ferent working fluids, i.e. water, air, and liquid metal, i.e. Pr = 2, 1, and

0.025, respectively. The heat transfer of these three fluids has been stud-

ied in combination with two different boundary conditions at the walls, i.e.

a constant temperature and a constant heat flux. Therefore, in total, the

DNS computation consists of six thermal fields.
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5.2 Numerical method

5.2.1 Governing equation and boundary conditions

Let us introduce the following dimensionless variables:

u∗ = u
U , t

∗ = tU
L , T = T ∗−T0

δT .

For the pressure scale we have two regimes:

� Convective effects are dominant i.e. high velocity flows p∗ = p
ρU2

� Viscous effects are dominant i.e. creeping flows (Stokes flow) p∗ = pL
µU

Under the assumption of constant fluid properties, the non-dimensional

incompressible Navier-Stokes, and temperature equations read:

∇ · u∗ = 0, (5.1)

∂u∗

∂t
+ (u∗ · ∇)u∗ = −∇p∗ +

1

Re
∇2u∗, (5.2)

∂T ∗

∂t
+ (u∗ · ∇)T∗ = −∇p∗ +

1

PrRe
∇2T∗, (5.3)

where u∗ = (u∗, v∗, w∗)T is the velocity, p∗ is the pressure, and T ∗ is the

temperature.

The no-slip boundary conditions on the walls are imposed by enfor-

cing the zero velocity condition. The iso-thermal and adiabatic boundary

conditions are enforced by imposing the wall temperature as a Dirichlet

boundary condition and the zero heat flux as a Neumann boundary condi-

tion, respectively, as shown in Fig. 43 by arrows.

5.2.2 Discretization and solution method

The DNS has been carried out using the massive parallel code NEK5000

[91] which uses spectral element method (SEM) [92] to discretized the

governing equations. In this approach, the domain is first discretized into
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Figure 43: Schematic of geometric dimensions and thermal boundary conditions.

several hexahedral macro-elements. Subsequently, the variables of the gov-

erning equations are approximated using polynomial expansions of degree

N used in each macro-element in order to approximate the solution. The

Gauss-Lobatto-Legendre (GLL) polynomial expansion is used along each

spatial direction and the same polynomial degree is adopted for the ve-

locity and the pressure (PN/PN-2 formulation) and as standard practice,

the over-integration and filtering stabilization schemes are used [92]. The

semi-discretized equations are then integrated in time with a third-order

scheme based on the use of an implicit backward difference formula (BDF)

and an explicit extrapolation scheme for the viscous and the convective

terms, respectively.

The NEK5000 code is well suited for High Performance Computing

(HPC) applications due to its good parallel scalability even with a very

large number of processors. Furthermore, the SEM formulation makes the

NEK5000 code extremely accurate for DNS applications. To this purpose,

the accuracy of NEK5000 has been studied in [93] where NEK5000 was

used to perform DNS of planar channel flows and the effects of different
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numerical parameters on the accuracy of the solutions were investigated.

Furthermore, the accuracy of NEK5000 on skewed grids was studied. It

was concluded that NEK5000 is able to produce high-quality DNS solutions

even on distorted grids, therefore it could be used for applications that in-

volve complex geometries. Additionally, dedicated performance tests [2]

with usage of NEK5000 were done at the Świerk Computing Centre (CIŚ),

located at National Centre for Nuclear Research, Poland. The tests assess

the influence of the CPU architecture, cooling infrastructure, and intercon-

nection performance on the solver running times. In general, the hardware

configuration, software used for on-demand deployment of dedicated sub-

clusters, and queuing systems were thoroughly tested. This was a very

important step, before the final DNS computations started. In order to

perform the targeted DNS, ∼ 10 000 processors were utilized. It was the
biggest single case job run at CIŚ infrastructure so far. The DNS calcu-

lations started in the spring of 2018 and continued until spring 2022 (not

counting the time of maintenance breaks and necessary repairs). A total

computational time of ∼ 375 million core hours is used to perform DNS!

5.2.3 Meshing strategy and turbulence scales

In Fig. 44 mesh generated for DNS is shown. This 2D mesh is uniformly

extruded in the streamwise (z-direction). A block-structured grid of macro-

elements has been generated using a non-uniform wall-normal spacing in

the computational domain. The spatial resolution required by the DNS

simulation was estimated using Kolmogorov and Batchelor length scale as

it was already presented in Section 4.5.2. The spatial resolution in the

domain ranging from a minimum of 1 (close to the wall) to the maximum

of 4 in the center of the sub-channel region. The obtained length scales are

non-dimensionalized by using the mean friction velocity over the surface

of the rod. There are: 8150 macro-elements in cross-section, 150 macro-

elements in z-direction, thus in total there are 1222550 macro-elements.
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Wall macro-element size is 0.3 mm and in the narrow gap region there

are 42 macro-elements. Spectral element size scale with 1/N , and total

number of spectral mesh elements scale with (N + 1)3, where N is the

polynomial order of the SEM calculation. In the other words, for an N-th

polynomial order, each macro-element is split into (N+1)3 GLL points. In

order to take into account the contribution of the polynomial refinement,

the average spatial resolution is computed by assuming a uniform point

distribution within each macro-element. That is, for the present case with

a polynomial degree N = 7, the average spatial resolution (∆) is obtained

by dividing each macro element with eight points distributed along each

spatial direction as shown in Fig. 45. In total there are approximately

630 million elements of the computational mesh.

Figure 44: Mesh for DNS on the xy-plane.

Whence, the generated mesh was based on the precursor RANS simu-

lations, as a next step, the spatial resolution was verified posterior against

the Kolmogorov and Batchelor length scale computed from the DNS.

Fig. 46 depicted the comparison of Kolmogorov length scales predicted

by RANS vs UDNS (UDNS stand for under-resolved DNS, which means

DNS with N=3). It is easily noticed, that UDNS calculation provides an
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Figure 45: Distribution of Gauss-Lobatto-Legendre points within one element.

Figure 46: Comparison of Kolmogorov length scales predicted by RANS vs UDNS.
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estimate of Kolmogorov scales similar to those predicted by RANS. Results

are presented in non-dimensional units, namely:

η+k = (
ηkuτ
ν

). (5.4)

Kolmogorov length scales:

� estimated from the Hooper UDNS simulation η+k = 1.2

� predicted by the precursor RANS simulations [1] η+k = 1.0

Cells size (∆ = Vol1/3) calculated from fully-resolved DNS (DNS with

N=7) is presented in Fig. 47.

Figure 47: Cell size calculated from fully-resolved DNS.

Knowing the Kolmogorov length scale KLS (ηk) calculated from UDNS

case and cell size calculated from fully-resolved DNS, the spatial resolution

criterion was checked. According to Pope [61], fully-resolved DNS should

satisfy the following criterion:

∆/ηk ∼ π. (5.5)

In Fig. 48 spatial resolution for fluid calculation, ∆/ηk, and spatial

resolution for thermal calculation, ∆/ηB, for Pr = 2.0, is presented. It
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Figure 48: Spatial resolution for fully-resolved DNS.

can be concluded that the fully-resolved Hooper DNS is using a spatial

resolution which follows the Pope criterion (5.5).

Additionally, in order to check the time resolution, the Kolmogorov time

scale (KTS) and Batchelor time scale (BTS) were checked. In Fig. 49 non-

dimensional Kolmogorov and Batchelor time-scales are presented.

Maximum value of non-dimensional KTS: τ ∗k = τkUb

Dh
= 0.042.

Maximum value of non-dimensional BTS: τ ∗B = τBUb

Dh
= 0.021.

For the current DNS calculations the criterion of Courant number C⩽ 0.4

was assumed. DNS simulation was initially performed with C = 0.1 (as

presented in Fig. 50). However the simulation proceeded very slowly, even

when using 10 000 cores. Therefore, when the desired time-converged flow

and temperature statistics have been achieved, the Courant number was

increased to C = 0.4. With this modification, simulation speeded up to

achieve the time-convergence much earlier, while retaining the solution ac-

curacy. For C = 0.1, the time-step size ∆t∗ ∼ 6× 10−6, while for C = 0.4,

the time-step size ∆t∗ ∼ 1.3 × 10−4. Thus, the criterion of C ⩽ 0.4 re-

stricts the time-step to a value two-four order of magnitude smaller than

the Kolmogorov and Batchelor time-scales, in order to minimize numerical
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errors of the integration and maintain high spatial and temporal accuracy.

Figure 49: Kolmogorov and Batchelor time scales in DNS.

As a conclusion, it was proved that the mesh size is sufficient by calculat-

ing the relative mesh size and comparing it with the smallest Kolmogorov

micro-scale at every time step. Overall, the mesh is judged to be sufficient

for DNS at every location. The implemented resolution is recognized as

sufficient for predictions of 3rd and 4th order statistics with DNS accur-

acy [94]. In this thesis the 1st and 2nd order statistic were only considered.

5.3 Approach toward the statistical steady state

The instantaneous fields of velocity and temperature are useless for any

comparisons with other methods, different implementations of the same

method, or even different runs of the same code with the same inputs.

The results of the simulation therefore need to be averaged in time and

the averages and higher moments of particular fields are then compared.

In order to meaningfully present the averages and higher moments of the

fields, the statistical properties of the flow have to be in a state, where

they do not significantly vary with time. When this condition is reached,

the simulation has reached a statistical steady state [61] or co-called quasi

steady state. Similarly, a field is statistically homogeneous if all statistics
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are invariant under a shift in position.

5.3.1 Temporal integration

The temporal integration is divided into two parts. The first part of the

simulation was used to reach the statistical steady state. Once it was

recognized that the simulation has reached the quasi steady state, time

integration was performed with averaging the various fields through time.

However, running DNS is not a straightforward procedure. Targeting to the

high fidelity results, starting the simulation with high order polynomial (N)

was not the best option. Thus, in the current study the following approach

was adopted, in order to avoid the numerical divergence and let the flow

properly developed:

1. As a starting point DNS with N=3 was computed. The implementa-

tion of passive scalars was tested, thus this phase is UDNS or testing

phase. Simulation was run as long as the flow and thermal fields

reached the quasi steady state.

2. In a second step, results from N=3 was interpolated to N=5 calcula-

tion.

3. Finally, the DNS with N=7 was run.

After a statistical steady state was reached, time averaging of results was

performed. To determine when the simulation reached statistical steady

state, a few parameters were calculated. These parameters are described

below.

Steady state for the friction velocity uτ

Fig. 50 illustrates the temporal integration history of the friction ve-

locity uτ computed on the rods surfaces. Fig. 51 shows the comparison

of the instantaneous and time averaged friction velocity. Instantaneous

profile perfectly depicts the turbulent nature of investigated flow.
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Figure 50: Evolution of friction velocity (uτ ).

Figure 51: Evolution of friction velocity (uτ ) - comparison of instantaneous and time-

averaged.
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It can be easily noticed, that flow field reach quasi steady state at

t∗ ∼ 55. However, time averaging could not be started yet. The reason of

this was the fact, that the temperature fields were not developed. Finally

the time averaging was started at t∗ = 131

Steady state for the wall heat flux - constant temperature BC

As it was mentioned before, in the present DNS six thermal fields were

introduced as a passive scalars. These passive scalars correspond to the

Prandtl numbers of three different working fluids, i.e. water, air, and liquid

metal, i.e. Pr = 2, 1, and 0.025, respectively. The heat transfer of these

three fluids has been studied in combination with two different boundary

conditions at the rods walls, i.e. a constant temperature and a constant

heat flux. For the sake of clarity the following naming for the certain

passive scalars was introduced:

� for constant temperature (Dirichlet boundary condition):

1. with Pr = 0.025 is denoted as PS1

2. with Pr = 1 is denoted as PS2

3. with Pr = 2 is denoted as PS3

� for constant heat-flux (Neumann boundary condition):

1. with Pr = 0.025 is denoted as PS4

2. with Pr = 1 is denoted as PS5

3. with Pr = 2 is denoted as PS6

In Fig. 52 temporal integration history of the the wall heat flux for

PS1-3. Large deviations were observed in interpolation of thermal scalars

to higher polynomial (N-) order. In order to avoid divergence of solution,

thermal fields were reset to initial condition with interpolation of only the

flow field! This is the cause of large spikes seen in heat flux monitors.
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Figure 52: Temporal integration history of the wall heat flux.

Additionally, looking at Fig. 52 one can get the impression that the tem-

perature fields, like the flow field, reached steady state very quickly. It is

actually a misleading impression. The reality is completely different. Fig.

53 presented the integration history of the wall heat flux for PS1-3 with

the zoomed area, where profiles were approaching the quasi steady-state

condition. It is noticed that thermal field for the smallest Prandtl fluid,

corresponding to liquid metal, reached statistical steady state relatively

fast. This is correlated with the fact, that for fluids with Pr ≪ 1, the
thermal boundary layer is much thicker than the momentum boundary

layer (see Fig. 1). The opposite situation is for the cases with Pr > 1.

Here, the thermal boundary layer is much thinner than the momentum

boundary layer. As a consequence longer time is required in order to reach

quasi steady state. As shown on Fig. 53, the wall heat flux for PS3 reached

steady stat at t∗ ∼ 120. This is why the time averaging was started only

at t∗ = 131. Fig. 54 presented the comparison of the instantaneous and

time averaged wall heat flux.

The results presented in Figs 52-54 referred to constant temperature
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Figure 53: Temporal integration history of the wall heat flux - determination of the

statistical steady state.
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Figure 54: Temporal integration history of the wall heat flux - comparison of instantaneous

and time-averaged.

boundary condition cases. Checking the wall heat fluxes for PS4-5 (with

Neumann boundary condition) is pointless since this condition is constant

heat flux by default. Therefore other monitors had to be proposed as a tool

to check statistical convergence of the temperature fields for the PS4-6.

Steady state for the wall heat flux - constant heat flux BC

In order to check some parameters, dozen probes were placed in differ-

ent locations in the domain. Probes were collecting point-wise different

parameters at every time step. Such probes were used in order to check

the statistical convergence for PS4-6 locally. As presented in Fig. 55 four

point-probes were chosen, in the following locations:

� Probe #21 - exactly in the center of the sub-channel region

� Probe #68 - exactly in the center of the gap region
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� Probe #25 - halfway between the gap and the sub-channel region

� Probe #40 - in the gap region very close to the rod wall

In the Fig. 55 probe monitor convergence history for PS1-6 is presented.

On the subplots temporal integration history of PS1-6 at different probe

locations is depicted. Additionally, the red solid lines indicated the time

averaged values of certain passive scalars. As it was stated already, PS1-

3 are fully developed. A different situation is observed for PS4-6 (with

constant heat flux BC), here only PS4 (with Pr = 0.025) reached quasi

steady stated. PS5 and PS6 still are characterized by a downward trend

over time, which means that a statistical steady state has not yet been

reached for these two passive scalars. Therefore, in this thesis the results

only for PS 1-3 are presented and thoroughly discussed.

Explanation, why PS 5 and 6 need much more time in order to reach

statistical steady state was given in Section 4.3.5. It was proved that:

both boundary conditions display different thermal fields for the respect-

ive Prandtl numbers, hence, the resulting DNS would provide extensive

database for the validation purpose. For example, looking at Fig. 55 and

analyzing profiles for PS1 and PS4 and in particular from Probe #40 (close

to the rod wall), one can observe very interesting feature. Namely, profiles

characteristics from Probe #40 for Pr =0.025 are completely different for

two different temperature BC. Such difference are not observed for Pr = 1

and 2.

5.3.2 Temporal averaging of results

Time averaging was performed over ∼ 15 flow-through times (FTT) of the
domain. Computed statistical quantities of first and second order statistics

are shown and commented in the next subsections. Several different ap-

proaches were used to estimate the quality of the gathered statistics. This

is of particular importance due to the three-dimensional nature of the aver-
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Figure 55: Probe monitors for PS1-6 - instantaneous and time-averaged.
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age flow profile in the rod bundle. The vast majority of the contemporary

DNS studies was performed in geometries with at least one homogeneous

dimension or as per [95, 96] in the channel-flow, as one of the most pop-

ular geometries for theoretical DNS studies of the near-wall turbulence,

contains two homogeneous directions. Spatial averaging over the homo-

geneous direction significantly reduces the requirements for long temporal

averaging. In the study [97] with the backward-facing step (BFS) geometry

with two-dimensional average flow pattern, the averaging times are below

10 flow-through times, which was declared as sufficient since the spatial

averaging complements the temporal one.

The stochastic nature of turbulence essentially makes the time-averaging

equivalent to spatial-averaging. Therefore performing a spatial averaging

provided the converged statistics much faster. If spatial averaging is not

performed, then time-averaging required a longer period. In current DNS,

spatial averaging was performed in z-direction. This reduced the time-

averaging period a lot. Additionally, the spatial averaging in the cross-

section was introduced. This further reduces the time period needed to get

the converged statistics.

The spatial averaging in the cross-section

In Fig. 56 the velocity fluctuations u
′
contour is presented. The observed

flow pattern is actually symmetric around so-called a ’unit cell’. This unit

cells is highlighted by dashed white lines. Lines #1a-3a are boundaries of

single unit cell. In Hooper domain, 16 such unit cells can be mapped out

as presented in Fig. 56 and 57.

However, averaging all 16 unit cells into one single cell cannot be done.

It is because the shortest edge for the central (in gap region) four unit

cells is not a wall. But for all other unit cells, the shortest edge is a wall

as presented in Fig. 57 a). Therefore the unit cell cannot be averaged
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Figure 56: Mean velocity patterns in unite cells.

16 times. But it can be average of four times. Something like folding the

2D plane in y-direction and x-direction. That way, all the wall edges will

only be averaged with other wall edges. The resulting domain would look

like shown in Fig. 57 b). By doing this, the total time required for time-

averaging was reduced even more. The results of cross-section averaging of

velocity fluctuations u
′
contour is presented in Fig. 58. The colours are not

exactly the same saturated because the images were rendered in different

softwares.

Finally, the quality of the gathered statistics were checked along unitLines

highlighted and defined in Fig. 57 c).

In typical statistical analyses, the errors are usually given as relative

values. However, average values of several computed statistics in various

monitoring points are around zero. Computing the relative errors does not

make sense for such quantities in these monitoring points.

Error calculated in the entire field:

εϕ =
|ϕ1 − ϕ0|

ϕ1
(5.6)

however, denominator in this equation approaches zero in certain regions.
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Figure 57: Unit lines in Hooper geometry.
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Figure 58: Cross-section averaging of mean velocity.

Therefore, it was decided to calculate integral error on the lines:

εϕ =

∫
|ϕ1 − ϕ0|∫

ϕ1
(5.7)

In order to check the quality of statistical quantities, the errors between

two different time steps were compared, namely data collection for 10 FTT

and 15 FTT were compared. The results of unitLine errors computed along

unitLine 3 are presented in Table 8.

Table 8: Errors between 10 and 15 FTT.

u v w PS1 PS2 PS3 PS4 PS5 PS6

avg 5.06 14.87 0.03 0.06 0.03 0.02 0.04 3.51 3.76

rms 0.21 0.13 0.14 0.27 0.14 0.12 0.46 15.44 16.87

covu 0.37 0.59 1.99 1.28 1.49 1.58 2.23 0.94 0.90

covv 0.59 0.24 1.66 1.35 1.55 1.60 1.98 3.74 4.31

covw 1.99 1.66 0.24 0.33 0.22 0.19 0.55 1.92 2.24

dissipation 0.15

The errors were computed for the first order statistics (mean values)

and second order statistics (fluctuations, Reynolds stresses and turbulent
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heat fluxes). For most of the quantities errors between two time steps are

lower than 1%. The highest values can be noticed for PS5 and PS6, how-

ever, it was already explained that those passive scalars did not reach the

quasi steady state and longer time is needed to fully develop these thermal

fields. The errors for the average values of u-velocity and v-velocity com-

ponents are quite high. Nevertheless, for the thesis perspective the most

important is the streamwise velocity component (w), which is the dominant

component. Comparing u− and v−velocity components to the w−velocity
component the difference of three-four orders is observed. Therefore, the

streamwise velocity component will be used for the turbulent model valid-

ation purpose, in details presented in Section 6. Finally, it was concluded

that the gather of statistical data is reliable and high fidelity, and could

be used as a reference database for further turbulent model validation pur-

pose.

5.4 Results of DNS

5.4.1 Analysis of the velocity field

The wall distribution normal to rod surfaces is calculated as a function of

u+z and y
+, to obtain profiles that conform to the law of the wall. Defini-

tions of all dimensionless quantities were given in Section 3. Subscript ’z’

indicated streamwise velocity and quantities are normalized with the local

value of friction velocity (uτ). Figure 59 showed the viscous sublayer with

u+z = y+ and the log layer with Kármán constant κ = 0.41 and the constant

C+ = 5.1. Overall, the viscous sub-layer is captured using DNS, and the

log-law region matches well with distributions found from turbulent em-

pirical data. Along L3 toward the sub-channel center in Fig. 59, velocities

match perfectly with the log-law region for DNS. The obtained results are

compared with those measured in the hydraulic experiment performed by

Hooper, Wood and Crawford [98]. Looking at the experimental data one

can notice that for the lowest Reynolds number Re = 22600 the velocities
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are under-predicted. This new finding reveals that even the lowest Reyn-

olds number corresponds with the logarithmic law, contrary to Hooper and

Wood′s [26]. In fact three highest Reynolds numbers of the four measured

in experiment followed the log-law region. The explanation for this differ-

ence is that the wall shear stress at the lowest experimental Reynolds was

over-predicted because of uncertainties in measurement techniques [26].

The last check made was analyzing documented viscosities in [98]. It was

noted that values vary in a non-linear way from 1.622×10−5, 1.475×10−5,

1.644 × 10−5, and 1.769 × 10−5 m2/s respectively for increasing Re num-

bers. Even small uncertainties in kinematic viscosity could influence the

reported Reynolds number, which can alter the friction velocity. In the gap

region, velocities also matched with the viscous sub-layer. For the log-law

region, velocities went slightly above the theoretical value because of their

proximity to the opposing rod. The length of L1 went only up to y+ = 102.

The distribution follows logarithmic law to a great extent and confirms the

consistency of DNS calculations.

Figure 59: Mean velocity profile along L3.
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Figure 60: Mean velocity profile along L1.

5.4.2 Wall Shear Stress

The average wall shear stress in the azimuthal direction was calculated

using the near-wall velocity gradients from DNS calculations. Results were

computed at every 5◦ across the surface of center rod, as it is shown in

Fig. 61. Additionally, the results were compared with the experimental

data [98]. This data was collected across the center rod and normalized us-

ing the mean wall shear stress (τw,m) between 0◦ ≤ θ ≤ 45◦. The same nor-

malization was applied for the calculated results. Both profiles in Fig. 61

are nearly identical. Overall, there is good correlation between experi-

mental data [98] and DNS calculations. DNS has great symmetry, since

the model considers perfectly smooth and symmetric rods.

5.4.3 Turbulent kinetic energy

In Fig. 62 the normalized turbulent kinetic energy (TKE) k was presented.

TKE was normalized by local friction velocity uτ and was calculated along
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Figure 61: Wall shear stress across surface of center rod.

L1 and L3. The length of these lines was normalized as:

L+ =
L

Lmax
(5.8)

where L is the length of certain line, Lmax is the distance to the lines

centers. This means L
Lmax

= 1 becomes a point of symmetry for statistics

at L1a and L3a. The TKE near the wall is highly characteristic for any

turbulent flow. An initial peak in fluctuations is present before they begin

to decay toward far-wall regions of the geometry. One feature to observe

is that the maximum normalized k decreases as the angle goes closer to

the gap center. On the other hand, the relative location of the maxima

increases as the angle decreases. This variation in k attributed to geomet-

rical effects may contribute to the difficulty of RANS models for capturing

the proper energy in this flow.
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Figure 62: Turbulent kinetic energy along L1a and L3a.

5.4.4 Momentum frequency

The flow in a tightly spaced rod bundles is characterized be the appearance

of gap vortex street [26,59,85,98,99]. These specific pattern can be identify

by dominant frequency f . Instantaneous velocity values were collected at

various locations, in order to reveal a characteristic frequency for this P/D

ratio.

The Welch’s method [100] was used to estimate the power spectral dens-

ity (PSD). In Fig. 63 PSD was calculated in the centre of gap region, at

Probe #68 (exact location of different probes was explained in Section

5.3.1 and shown in Fig. 55). In this location PSD occurs at 3.7 Hz, the

majority of the energy lies within this frequency, and high frequencies are

minimal. Also observation of the instantaneous spanwise velocity profile

showed characteristic oscillatory behavior at this location. The Strouhal

number defined as:
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Figure 63: Power spectral density of x-velocity in the middle of gap region (top and left

bottom) and instantaneous x-velocity (right bottom).
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St =
fL

U
, (5.9)

(where: where f is the frequency of vortex, L is the characteristic length

(for example, hydraulic diameter) and U is the flow velocity), was calcu-

lated and yield to 0.48, indicating that pulsations are large-scale in nature.

Figure 64: Power spectral density of x-velocity in the middle of sub-channel region (top

and left bottom) and instantaneous x-velocity (right bottom).

PSD of observed pulsations was check in the other location as well.

Here the results from the Probe #21, thus from the center of the sub-

channel region are discussed and presented in Fig. 64. While the location
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is farer from the walls, determination of the characteristic frequency be-

coming less prominent. It is due to the fact, that this region is governed by

local turbulent effects. Energy more clearly cascades to higher frequencies

and multiple small peaks appeared in the PSD plot. Nevertheless, still

one dominant peak was observed at 3.7 Hz, indicating that this frequency

could be a governing characteristic at other locations as well. Comparing

the instantaneous spanwise velocity profile at this location with the char-

acteristic in gap region, it can be noted that the amplitude of pulsations

is smaller and values are changing more frequently.

Although not showed in this thesis, analyses of PSD at other locations

have also been conducted and for transverse and axial velocities. In general,

PSD of the streamwise velocity uz is characterized by the set of multiple

peaks of characteristic frequencies. In contrary, the energy within uy has no

spectral peak that stands out among the wide range of frequencies. This

characteristic is partially attributed to the wall boundaries, suppressing

pulsations in the y direction for this geometry.

5.4.5 Instantaneous velocity field

In Fig. 65 the contour of the instantaneous velocity was depicted. It is

easily noticed many scales of motion captured by DNS. Whereas URANS

techniques would have steadier gap vortex street pattern in the gap region,

DNS revealed other turbulent effects as well. Since the flow pulsations

are moved side to side in the gap, mass is being exchanged from one sub-

channel region to another one. This, in turn, causes that the turbulent

kinetic energy in one sub-channel increases, the energy in the other sub-

channel decreases. Since this geometry does not represent an infinite rod

array, wall effects of the bonding walls suppress pulsations from occurring

at other gap locations.

Additionally, one can observe that in the sub-channel region whirls are

much larger. As the fluid approached closer to the walls, turbulent whirls
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Figure 65: Contours of the instantaneous velocity field in cross section (top) and stream-

wise plane (bottom).

increase in number, but decrease in size. The scales of motion are much

smaller near the wall, which allow these effects to be fully captured. The

large structures around the sub-channel regions are not unidirectional and

tend to follow a sinusoidal path - clearly visible in bottom plot presented

in Fig. 65. This characteristic is an expected feature for bare rod bundles

with low P/D as discussed by the work of Tavoularis [13].

5.4.6 Analysis of the thermal field

In this section, the average and instantaneous thermal fields are analysed.

It is worth recalling that constant fluid properties are considered, hence

the temperature is a passive scalar. The DNS has been performed with six

passive scalars (PS): for three different coolants, corresponding to water,

air, and liquid metal, in combination with two different thermal bound-

ary conditions (BC): iso-thermal boundary conditions (denoted as PS 1,

PS 2, and PS 3) and iso-flux boundary condition (denoted as PS 4, PS

5, and PS 6). The thermal field obtained with iso-thermal boundary con-
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ditions is analysed only, since the thermal fields with iso-flux BC did not

reach yet the statistical convergence. Nevertheless, some preliminary res-

ults were also highlighted in the theses for Neumann BS (mainly by means

of instantaneous field).

5.4.7 Instantaneous profiles of thermal field

The temperature contours of six passive scalars are consider qualitatively

and are presented in Fig. 66 in cross-section and in Fig. 67 along stream-

wise plane. The influence of Pr number was observed, namely Pr number

influencing/changing the scales of motion within the energy equation. The

temperature magnitudes were, different but still comparable with scaling.

Figure 66: Contours of the instantaneous temperature profiles with iso-thermal (left) and

iso-flux (right) BC for three Prandtl fluids.

122



Figure 67: Contours in the streamwise direction of the instantaneous temperature for six

passive scalars.

For the highest investigated Pr number (PS 3 and PS 6), the temper-

ature has much steeper gradients than its respective contours at the same

time. Moreover, the heat transfer characteristics become very complex.

The contours of Pr =1 (PS 2 and PS 4) looks the closest velocity contours

(which were presented in Fig. 65) since momentum (δm) and thermal (δt)

boundary layers are equal. While the Pr number decrease to the smallest

number, corresponding to the liquid metal fluid, the temperature field be-

came smoother, allowing the overall temperature to be closer to the bulk

temperature. Even with this very high thermal conductivity, gap vortex

street within the gap region was still observed, whereas temperature at

the bounding walls became roughly constant. This qualitative observa-

tion demonstrated that the large pulsating effects of the gap still have an
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significant influence on the thermal field even for the lowest Pr number

coolants.

5.4.8 Thermal frequency

Similarly as for momentum, the frequency of temperature was computed.

However, in order to properly compare energy in the frequency spectrum for

temperature, the magnitude of the signals must be the same. Therefore, the

amplitude of the signals was normalized to one by dividing the fluctuations

by three times the standard deviation (σ), since this mathematically lies

within the 99.7 percentile. Fig. 68 depicted the power spectral density of

Figure 68: Power spectral density of temperature in the middle of sub-channel region.

temperature in the middle of sub-channel region (at Probe #21). It can

be noticed that peak frequency shifted from lower to higher frequencies

as Pr increases. This feature was expected, since Pr increases, energy in

low frequencies is transferred to the higher frequencies. This pattern is

prominently visible up to 10 Hz where energy is systematically lower as Pr

number increases.
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A different behavior was observed in the gap region. The narrow gap

suppresses the higher frequencies, and the low frequencies are uniquely

characterized, as presented in Fig. 69. One can notice that the charac-

teristic frequency of 3.7 Hz is present, the same as for the momentum.

However, for 1 Hz and between 6 and 8 Hz, additional peaks were ob-

served, which manifested itself differently depending on the Pr number.

These additional peaks became prominent at low Pr and were higher in

intensity than the primary peak at 3.7 Hz. A similar mechanism (as in

the sub-channel region) is likely to act at low Pr number. Energy is trans-

ported with larger scale motions, while transport through smaller eddies

is less dominant because of the high value of thermal conductivity. As Pr

increases, the smallest scales play a larger and larger role.

Figure 69: Power spectral density of temperature in the middle of gap region.

5.4.9 Average temperature profiles

Average temperature profiles in different locations, namely in the gap

(along L1) and sub-channel regions (along L3) were investigated. Here-
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after, all the results will be presented at half the length of the lines L1 and

L3 (so actually along L1a and L3a), thus L+ is varying 0-1. In order to

compare the profile from different coolants, the temperature was normal-

ized, presented as scaled temperature θ, which was defined in Section 4.3.3,

see equation (4.2). In Fig. 72 scaled temperature along Line 3 are presen-

ted. For different Pr number the difference in near-wall (L+ = 0) gradients

for profiles toward the sub-channel center (L+ = 1) is clearly visible. The

gradients in temperature became much smaller, while thermal conductivity

is increasing with decreasing Pr number. For Pr = 1 and 2, the relative

temperature are nearly the same in magnitude. Additionally, profiles at

location ∼ L+ = 0.1 break and begin to flatten out. Completely different

characteristic is observed for the lowest Pr number (liquid metal). In this

case the profile starts to smooth around the center of the line. This feature

exemplifies one of the major difficulties that is involved in predicting heat

transfer for liquid metals and is a challenge for the RANS models.

Figure 70: Mean temperature profile in the sub-channel region.

The similar trends are observed in the gap region, as illustrated in
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Fig. 73. However, profiles for Pr = 1 and 2 are not so sharp close to the

wall-region and they more closely resemble the characteristics of the profile

for Pr = 0.025. Nevertheless, the break point can be observed from which

the profiles begin to flatten out, although now it is around ∼ L+ = 0.4,

so much farther from the wall. The proximity of two adjacent rods in this

location causes the radial temperature to become extremely high. This

leads to smaller variations in radial.

Figure 71: Mean temperature profile in the gap region.

5.4.10 Temperature Fluctuations

Due to the existence of gap vortex street and large swirls in the tightly

spaced rod bundles, the temperature fluctuations became very important

to analyze. Therefore the root-mean-square (RMS) of temperature was

calculated and presented in Fig. 72 and 73. RMS were normalized by the

local maximum value of RMS. Fig. 72 depicted the RMS of temperature

in the sub-channel region. The profiles for high Pr numbers has a similar

shape as the TKE. However, once the correlation between conductivity and
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viscosity break down, the profile becomes much different. The maxima

of fluctuations increase as Pr decreases. This highlights that at for low

Prandtl numbers the high thermal diffusion begins to outweigh the effects

of momentum fluctuations.

Figure 72: RMS of temperature profile in the sub-channel region.

For RMS temperatures toward the gap center, a different phenomenon

occurred. As shown in Fig. 73 with decreasing Pr number the maxima are

going toward the center of the line 1. This means that low Prandtl numbers

cause most of its temperature pulsations to occur in the gap center. Fur-

ther investigation into these physics should be done for different Reynolds

number to determine if this effect is dependent on the Prandtl number.

Still, this behavior is different from locations farther from adjacent rods,

because the two heated rods are in high proximity. These findings showed

that the shape of the temperature fluctuations change drastically depend-

ing on the Pr number and pose a challenge for modeling heat transfer in

such geometry.
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Figure 73: RMS of temperature profile in the gap region.

5.4.11 Collected statistical quantities

Although in this thesis only some of the first and second order statist-

ics were presented and discussed, the generated database consists of much

broader spectrum of computed and collected statistical quantities. The list

of gathered statistics is given below. The generated DNS results yield in

extensive database as a reference for validation purpose, therefore the col-

lected statistical quantities are available on request. Final data generated

for DNS, takes about 1.5 TB of disk space (included 3D fields).

List of collected statistical quantities.

� Instantaneous fields

– u, v, w, P, PS1. . . 6

� Time-averaged 3D fields

– Time average:⟨u⟩ , ⟨v⟩ , ⟨w⟩ , ⟨P ⟩ , ⟨PS1. . . 6⟩

– RMS:
〈
u

′〉
,
〈
v

′〉
,
〈
w

′〉
,
〈
P

′〉
,
〈
PS1. . . 6

′〉
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– Covariance with u-velocity:

⟨uu⟩ , ⟨uv⟩ , ⟨uw⟩ , ⟨PP ⟩ , ⟨uPS1. . . 6⟩

– Covariance with v-velocity:

⟨uv⟩ , ⟨vv⟩ , ⟨vw⟩ , ⟨PP ⟩ , ⟨vPS1. . . 6⟩

– Covariance with w-velocity:

⟨uw⟩ , ⟨vw⟩ , ⟨ww⟩ , ⟨PP ⟩ , ⟨wPS1. . . 6⟩

– Skewness: ⟨u⟩skew , ⟨v⟩skew , ⟨w⟩skew , ⟨P ⟩skew , ⟨PS1. . . 6⟩skew
– Flatness: ⟨u⟩flat , ⟨v⟩flat , ⟨w⟩flat , ⟨P ⟩flat , ⟨PS1. . . 6⟩flat
– Gradient x: ⟨udx⟩ , ⟨vdx⟩ , ⟨wdx⟩ , ⟨Pdx⟩ , ⟨PS1. . . 6dx⟩

– Gradient y: ⟨udy⟩ , ⟨vdy⟩ , ⟨wdy⟩ , ⟨Pdy⟩ , ⟨PS1. . . 6dy⟩

– Gradient z: ⟨udz⟩ , ⟨vdz⟩ , ⟨wdz⟩ , ⟨Pdz⟩ , ⟨PS1. . . 6dz⟩

� Streamwise-averaged 2D fields of the time-averaged quantities

– Time average:⟨u⟩ , ⟨v⟩ , ⟨w⟩ , ⟨P ⟩ , ⟨PS1. . . 6⟩

– RMS:
〈
u

′〉
,
〈
v

′〉
,
〈
w

′〉
,
〈
P

′〉
,
〈
PS1. . . 6

′〉
– Covariance with u-velocity:

⟨uu⟩ , ⟨uv⟩ , ⟨uw⟩ , ⟨PP ⟩ , ⟨uPS1. . . 6⟩

– Covariance with v-velocity:

⟨uv⟩ , ⟨vv⟩ , ⟨vw⟩ , ⟨PP ⟩ , ⟨vPS1. . . 6⟩

– Covariance with w-velocity:

⟨uw⟩ , ⟨vw⟩ , ⟨ww⟩ , ⟨PP ⟩ , ⟨wPS1. . . 6⟩

– Skewness: ⟨u⟩skew , ⟨v⟩skew , ⟨w⟩skew , ⟨P ⟩skew , ⟨PS1. . . 6⟩skew
– Flatness: ⟨u⟩flat , ⟨v⟩flat , ⟨w⟩flat , ⟨P ⟩flat , ⟨PS1. . . 6⟩flat
– Gradient x: ⟨udx⟩ , ⟨vdx⟩ , ⟨wdx⟩ , ⟨Pdx⟩ , ⟨PS1. . . 6dx⟩

– Gradient y: ⟨udy⟩ , ⟨vdy⟩ , ⟨wdy⟩ , ⟨Pdy⟩ , ⟨PS1. . . 6dy⟩

– Gradient z: ⟨udz⟩ , ⟨vdz⟩ , ⟨wdz⟩ , ⟨Pdz⟩ , ⟨PS1. . . 6dz⟩

� Time-averaged 3D TKE
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– Dissipation: ⟨εuu⟩ , ⟨εvv⟩ , ⟨εww⟩

– Production: ⟨Πuu⟩ , ⟨Πvv⟩ , ⟨Πww⟩

– Pressure diffusion: ⟨Duu⟩ , ⟨Dvv⟩ , ⟨Dww⟩

– Pressure strain: ⟨Puu⟩ , ⟨Pvv⟩ , ⟨Pww⟩

– Viscous diffusion: ⟨νuu⟩ , ⟨νvv⟩ , ⟨νww⟩

– Turbulent diffusion: ⟨tuu⟩ , ⟨tvv⟩ , ⟨tww⟩

� Stream-wise averaged 2D fields of the time-averaged TKE quantities

– Dissipation: ⟨εuu⟩ , ⟨εvv⟩ , ⟨εww⟩

– Production: ⟨Πuu⟩ , ⟨Πvv⟩ , ⟨Πww⟩

– Pressure diffusion: ⟨Duu⟩ , ⟨Dvv⟩ , ⟨Dww⟩

– Pressure strain: ⟨Puu⟩ , ⟨Pvv⟩ , ⟨Pww⟩

– Viscous diffusion: ⟨νuu⟩ , ⟨νvv⟩ , ⟨νww⟩

– Turbulent diffusion: ⟨tuu⟩ , ⟨tvv⟩ , ⟨tww⟩

� Stream-wise averaged 2D fields of the time-averaged THF quantities

– Dissipation: ⟨εuT ⟩ , ⟨εvT ⟩ , ⟨εwT ⟩

– Production: ⟨ΠuT ⟩ , ⟨ΠvT ⟩ , ⟨ΠwT ⟩

– Pressure-temperature gradient: ⟨guT ⟩ , ⟨gvT ⟩ , ⟨gwT ⟩

– Turbulent diffusion: ⟨tut⟩ , ⟨tvT ⟩ , ⟨twT ⟩

– Viscous diffusion: ⟨νut⟩ , ⟨νvT ⟩ , ⟨νwT ⟩

� Time-averaged 3D THF

– Dissipation: ⟨εuT ⟩ , ⟨εvT ⟩ , ⟨εwT ⟩

– Production: ⟨ΠuT ⟩ , ⟨ΠvT ⟩ , ⟨ΠwT ⟩

– Pressure-temperature gradient: ⟨guT ⟩ , ⟨gvT ⟩ , ⟨gwT ⟩

– Turbulent diffusion: ⟨tut⟩ , ⟨tvT ⟩ , ⟨twT ⟩

– Viscous diffusion: ⟨νut⟩ , ⟨νvT ⟩ , ⟨νwT ⟩
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6 Validation of RANS models

6.1 Introduction to RANS validation

It is an unfortunate fact that no single turbulence model is universally

accepted as being superior for all classes of problems. The choice of turbu-

lence model depends on considerations such as the physics of the flow, the

established practice for a specific class of problem, the level of accuracy

required, the available computational resources, and the amount of time

available for the simulation. To make the most appropriate choice of model

for certain application, one needs to understand the capabilities and limit-

ations of the various options. Therefore, the validation study presented in

this thesis aimed to assess the capabilities of different turbulence models

for the prediction of turbulent flow and heat transfer in a tightly spaced

bare rod bundle.

6.2 Numerical settings

6.2.1 CFD code

All the simulations for the validation purpose were performed with the use

of commercial software ANSYS Fluent version R1 2022 [75,76].

6.2.2 Flow and boundary condition

For the validation study, the same basics and conditions as defined in

Section 4 has been considered. Since the DNS for iso-flux boundary con-

dition was not finished, the validation assessment was done only for the

iso-temperature boundary condition.

6.2.3 Initial conditions

6.2.3.1 Steady-state RANS Velocity field was initialized as a uniform field

(0, 0, 1) m/s and a uniform temperature of 295 K was imposed in the entire

domain.
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6.2.3.2 Unsteady RANS Velocity and temperature fields were initialized

with converged RANS solution.

6.2.3.3 Turbulence modelling In order to perform validation study, six

turbulence models were considered. All the selected turbulence models

have been presented in Section 3.5.4. None of the tested turbulence models

have been tuned for modelling turbulent flow and heat transfer in a bare

rod bundle configuration.

6.2.3.4 Solver settings Steady-state RANS simulations (hereafter RANS)

have been performed using a coupled flow solver with SIMPLE algorithm.

Second order upwind numerical schemes have been applied. The unsteady

RANS simulations (hereafter URANS) have been performed using an im-

plicit unsteady solver with second order numerical schemes. The applied

time step (i.e. t = 0.001 s) resulted in a maximum convective Courant

number (C ∼ 0.3). with 30 sub-iterations per time step. The URANS

computations were carried out for a total time of t = 32.285 s. This cor-

responds to ∼ 14 flow-through times in the modelled geometry with a bulk

velocity of 1 m/s. The first ∼ 4 flow-through times (FTT) based results

were not considered for the analyses and within this time period the flow

was fully developed. Starting from the 5th FTT the data statistics were

collected in order to get time-averaged quantities.

6.2.4 Mesh

6.2.4.1 Mesh sensitivity Mesh sensitivity study for RANS simulations

was performed in 2 subsequent steps. As a first step, a 2D mesh sensitivity

study has been performed in the cross-section normal to the streamwise

direction. This study has been performed in a short streamwise computa-

tional domain with a length of 228.5 mm, which has been divided in 40

cells in the streamwise direction. Detailed mesh parameters are given in
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Table 9. Extruded hexahedral meshes were applied with different hexa-

hedral (i.e. base element size) as well as different arrangement of inflation

layers (number of layers - N). Thus, a 2D mesh is first generated in a cross-

section normal to the main flow direction. The total number of cells in

these meshes is given as 2D cell count in Table 9. For all of the meshes,

the first layer height is kept the same, whereas different values for growth

rate (GR) in the inflation layers have been applied. The first cell size was

set to a0 = 0.05mm, which corresponds to y+ ∼ 0.3 and it is kept the same

for all the meshes. Introducing ∆z as a streamwise spatial discretization

length, the maximal aspect ratio is ∆z/a0 = 228.5mm/(40 ∗ 0.05) ≈ 114

for every mesh listed in Table 9. Cross-sections of the applied meshes are

shown in Fig. 74 with gap region zoomed area.

Table 9: 2D mesh sensitivity study.

Mesh 2D cell el. ∆z Base size

[mm]

N GR uτ [m/s] Discr.

[%]

M1 6535 40 2.50 12 1.35 0.0591 0.96

M2 9295 40 2.00 13 1.30 0.0592 0.72

M3 14459 40 1.50 14 1.25 0.0594 0.49

M4 20199 40 1.25 16 1.20 0.0595 0.23

M5 29797 40 1.00 18 1.17 0.0596 0.09

M6 47688 40 0.75 20 1.15 0.0597 0

The mesh sensitivity study has been performed with the SST k − ω

turbulence model. Results of streamwise velocity component w, turbulent

kinetic energy k and ⟨v′
w

′⟩ Reynolds stress component along L1 and L3
were shown in Fig. 75

Although the mesh M1 is much coarser than the finest mesh M6 (see

Fig. 74), this did not affect the prediction of streamwise velocity profile.

In fact, similar velocity profiles are predicted on all considered meshes and

along both lines. Only small discrepancies could be observed close to the

center of L1, so in the centre of gap region [see Fig. 75 a)]. Additionally, the
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Figure 74: 2D cross-section meshes.
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Figure 75: Results of mesh sensitivity study along two lines: streamwise velocity - a),

turbulent kinetic energy - b), and ⟨v′
w

′⟩ Reynolds stress - c).
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similar profiles compatibility was observed for TKE and ⟨v′
w

′⟩ Reynolds
stress considering the sub-channel region (L3). However, visible differences

were noticed in the results for the TKE and ⟨v′
w

′⟩ Reynolds stress in the
gap region (L1) as depicted in Fig. 75 b) and c). Namely, results from

the mesh M1 significantly over-predicted TKE and ⟨v′
w

′⟩ Reynolds stress
with respect to the results from the finest mesh M6. Results from M2

and M3 meshes as well slightly over-predicted, while from other meshes

M4-M6 were found to be in a very good mutual agreement everywhere.

Especially results form M5 and M6 matched perfectly. As a second step,

mesh discretization has been varied in the streamwise direction only. In this

study, the complete rod bundle length (i.e. 2.285 m) has been simulated,

which is 100-times longer than the streamwise domain in the previous 2D

mesh sensitivity study. Mesh M5 from the previous 2D mesh sensitivity

study was used as a baseline 2D cross-sectional discretization. This mesh

proved to be fine enough since the profiles in Fig. 75 are converged as

well as the calculated mean friction velocity uτ (presented in Table 9) is

less within 0.1% of the result obtained on the finest mesh M6. Hence,

mesh M5 is extended to a 100-times longer domain using three different

streamwise discretizations, denoted as meshes M5 A, M5 B and M5 C,

and presented in Table 10. In spite of a much larger maximum aspect

ratio (max AR) of the cells, the applied streamwise discretization does not

affect the predictions of the wall shear stresses noticeably. Hence, it was

estimated that the spatial discretization of mesh M5 B is sufficiently fine

for steady-state RANS simulations. Therefore, this mesh was used for all

the other simulations performed in the validation study.

6.3 Results - validation study

URANS, time-averaged results of the of the validation study are presen-

ted in this section. A quantitative analysis was performed on the flow

behaviour along L1 and L3, which correspond to the gap and sub-channel
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Table 10: 3D mesh sensitivity study.

Mesh Mesh size [106] Nz Max AR uτ [m/s] Discr. [%]

M5 1.9 40 11.4 0.0596 /

M5 A 11.9 400 114 0.0596 0

M5 B 5.95 200 229 0.0596 0

M5 C 2.97 100 457 0.0596 0

region, respectively. Results obtained with different turbulence models

were compared with the reference DNS database as well as among each

other.

6.3.1 Wall shear stress

The proper prediction of the wall shear stress (WSS) distribution is the

most crucial result for the correct prediction of a pressure drop. In bare

rod bundles, wall shear stress is a non-uniform function of location with

the smallest value in the gap region, and the largest value at the widest

region of the sub-channel, which corresponds to the largest fluid velocity in

the bulk region. Fig. 76 depicted different predictions of wall shear stress

distribution along the perimeter of the bottom rod.

Clearly, all applied turbulence models usually over-predicted the wall

shear stress with respect to the prediction of the DNS results. The RKE

model as well as SST k− ω performed better than the other isotropic and

non-isotropic models in the gap region, which corresponds to θ = 90◦. On

the other hand, considering the sub-channel regions (θ = 45◦ and θ = 135◦)

these models significantly over-predicted wall shear stress. The best fit for

these locations was found with the WJ-BSL-EARSM model. Surprisingly,

the most sophisticated model - RSM, which was tested in the validation

study, did not give the best results. Those observations highlighted that

for this specific application, namely flow in the tightly spaced rod bundle,

there is no universal turbulent model, which could properly predict the

flow behaviour in the whole domain. In general, the analysis has shown
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Figure 76: Wall shear stress distribution along the rod surfaces.

that the prediction of the wall shear stress is still the main issue for correct

reproduction of a turbulent flow in a bare rod bundle. The reason for that

might be related to the fact that none of the applied turbulence models

have been tuned for this flow configuration. For a comparison, magnitudes

of the mean shear stress have been reported also in [54]. In this study

several linear and non-linear eddy viscosity models have been verified and

discrepancies in the mean wall shear stress predictions ranged from 3% to

14% for the k − ϵ linear and SST k − ω model, respectively.

6.3.2 Averaged velocity

Fig. 77 presents the comparison of normalized streamwise velocity. In the

gap region all models under-predict the velocity. The best fit is obtained for

the RKE model, which is related to the best mapping of WSS by this model

in gap region. In the sub-channel region, all the models over-predict the
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values of streamwise velocity. Actually, RANS models are almost consistent

with each other.

Figure 77: Comparison of the predicted streamwise velocity versus DNS results.

6.3.3 Turbulent kinetic energy

In Fig. 78 the comparison between the reference DNS result and vari-

ous turbulence models is presented. It turns out that in the gap region,

RG EASM, RKE, and RSM are in quite good agreement with DNS res-

ults. Comparing the general shape of the profiles, the shape of the RSM

most closely resembles the reference result. However, the peak in the close-

wall region (L+ = 0.1 ∼ 0.3) is clearly under-predicted. Considering the

peak magnitude, the best fit is found with RG EASM, but, this model

for L+ > 0.2 starts to deviate and is characterized by the steeper slope.

Quite good fit is found for REK model, but in this case the peak location

is moved toward the gap center. Comparing the results in the sub-channel

region, all the models under-predict the peak of TKE in the near-wall re-

gion, while in the center of the line, this trend reverse and all the models

under-predict the TKE.
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Figure 78: Comparison of the predicted turbulent kinetic energy versus DNS results.

6.3.4 Momentum frequency

In the validation study, the capability of the reproduction of the gap vor-

tex street in the tightly spaced rod bundle configuration is verified. As

illustrated in Fig. 79 all models are able to recreate the gap vortex street.

Fig. 79 depicts the contours of streamwise velocity. Although the velocity

magnitudes are different, they are still comparable with scaling.

Figure 79: Velocity contours - comparison between DNS and RANS models.
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It is easily to notice that DNS contour is very complex with a lot of small

and big swirls. The RANS models are able to only reproduce the macro-

scopic flow behavior. As it was mentioned in Section 5.4.4, the dominant

frequency of flow pulsations occurred at 3.7 Hz. For RANS models, the

characteristic frequency is computed as well. For all the RANS models the

characteristic frequency is similar ∼ 3.1− 3.2Hz, which is slightly smaller

value than for DNS. Additionally, for RKE and WJ-BSL-EARSM, apart

form the dominant frequency, a set of characteristic peaks is observed. In

these models, gap vortex street is composed of smaller and bigger waves

(see Fig. 79).

6.3.5 Thermal field

In the last step of the validation study, the RANS models are assessed to

model the turbulent heat flux. Usually, the heat transfer has been modelled

assuming a simple Gradient Diffusion Hypothesis (SGDH), which has used

a linear relationship between turbulent heat flux ⟨t′u′

i⟩ and the temperature
gradient:

⟨t′u′

i⟩ = −αt
∂T

∂xi
, (6.1)

where turbulent thermal diffusivity is applied as αt = νt/Prt using tur-

bulent momentum diffusivity νt calculated from the turbulence model and

the turbulent Prandtl number Prt = 0.9. The SGDH approach is based on

the Reynolds analogy. This approach is overly simplistic and is available

in all RANS based CFD codes. Although this approach is widely used,

then, it is not the best choice for predicting the heat transfer, especially

in liquid metal flows, as illustrated in Fig. 80 a). Considering the liquid

metal flow in the gap region, all the RANS models highly deviate. The

presented figure indicates that for RANS models the temperature field in

the gap region has almost the same value as the temperature imposed as

a BC on the rod walls. Similar, but not so significant trend is observed in
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the sub-channel region, where the temperature field is not uniform as in the

gap region, which means that all the RANS models highly under-predict

the temperatures.

Figure 80: Comparison of the thermal field in the gap and sub-channel region: (a) liquid

metal - Pr = 0.025, (b) air - Pr = 1, (c) water - Pr = 2.

For case with Pr = 1 presented in the Fig 80 b), temperature profiles

were fund in quite good agreement with the reference data. In this case
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the thermal and momentum BC are practically equal and in fact RANS

models in general are tuned for such BC. For the last passive scalar, namely

Pr = 2, RANS models ”loose” the prediction capabilities considering the

thermal fields. It is especially visible in the gap region. However, on the

contrary to the case with Pr ≪ 1, here the RANS models over-predict the
temperature fields.

These observations clearly prove that apart from the gas-cooled reactor,

the usage of RANS approaches can lead to the misleading results. There-

fore, one should always be careful in applying the Reynolds analogy to

non-unity Pr fluids, particularly to low-Pr fluids and must realize its limit-

ations with respect to accuracy. It is worth reminding, that all the tested

turbulent RANS models were run with default options. In this study, it

was found which models have given the most promising results. In the

future, those models will be thoroughly tested by changing the default val-

ues as well as the sensitivity and uncertainties study of turbulent constant

models will be performed. This would allow tunning the pragmatic tur-

bulent model and proposing the best practice guidance for the numerical

prediction of the turbulent flow and heat transfer in tightly spaced rod

bundles.
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7 Summary and conclusions

This thesis presents a comprehensive approach toward the accurate pre-

diction of the turbulent flow and heat transfer in a tightly spaced rod

bundles. As a reference, the Hooper’s hydraulic experiment [25] geometry

has been adopted. The diameter (D) of the rod was 14 cm and the pitch

(P) between the two rods was 15.5 cm, so the pitch-to-diameter ratio P/D

= 1.107, which makes itself a tightly spaced rod bundle. The streamwise

length of the test section was 9.14 m, which is equivalent to 128 hydraulic

diameters. Air at room temperature was used as a working fluid for the

Hooper case. However, performing a DNS of the Hooper case requires

a huge amount of computational power. An initial mesh estimation of this

case was performed (based on the obtained URANS results) and it would

require a total of 14 billion grid points only for the flow field to perform

a true DNS. Furthermore, additional constraints with respect to the simu-

lation time-step etc. would make this DNS not feasible for available com-

puter resources. Hence, a calibration of the Hooper case was performed to

optimize the flow configuration in such a way that it preserves the essence

of the Hooper experiment, i.e. the gap vortex street.

As a first step, the numerical experiment have been designed. A wide

range of unsteady RANS study has been performed to calibrate and op-

timize the Hooper case for the targeted DNS study. The calibration was

related to the scaling of the Reynolds number, which was scaled down in

such a way that the overall phenomenology of the flow field remained the

same, and the axial flow pulsations existed. Afterwards, the calibration

of the computational domain with the respective boundary conditions has

been performed to obtain an optimized Hooper case, which was feasible for

the available computational resources. In addition to the flow field, a para-

metric study for different passive scalars has been performed in order to

take into account the heat transfer analysis, which was not included in the
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original Hooper case.

Secondly, based on the set up configuration defined in the calibration

study, the proper DNS simulation has been performed. In the simula-

tions three different passive scalars, which corresponded to the Prandtl

numbers of three working fluids, i.e. air, water, and liquid metal have

been investigated. The heat transfer of these three fluids has been studied

in combination with two different boundary conditions at the walls, i.e.

a constant temperature and a constant heat flux. The final DNS has been

yielded in an extensive validation database for flow and the thermal fields

representing different reactor coolants. Although the results with constant

heat flux BC did not reach the statistical convergence, the obtained results

already gave an extensive reference database. This database with results

of first and second, then third, and fourth order statistics is available upon

a request to the author or author’s institution. The available variables

have been listed in Section 5.4.11.

Further, different RANS models have been thoroughly investigated in

order to assess their prediction capabilities and limitations. It has been

found that due to a complex geometry of the rod bundle, the flow was

characterized by non-uniform profiles. Validation study highlighted that

there has been no single turbulence model, which would universally ac-

curately predict turbulent flow and heat transfer in tightly spaced rod

bundles. The geometry is characterized by two regions: the gap and the

sub-channel. In the gap region - the narrowest area between two adjacent

rods - the lowest values of velocity and the highest values of temperat-

ure have been recorded. The opposite situation has been observed in the

sub-channel region: the highest values of velocity and lowest temperatures.

This has indicated that in order to get reliable RANS results, probably two

different models have to be used. In the validation study, some of the most

promising models have been defined. In the future study those models will

further be investigated in order to check the influence of model turbulent
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constants.

Finally, the comprehensive CFD methodology toward an accurate pre-

diction of turbulent flow and heat transfer phenomena at sub-channel level

with the set of the best practice guidelines has been developed and defined.
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