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Abstract
Application of machine learning methods in astrophysics and cosmology

Artem POLISZCZUK

The aim of this work was to develop new machine learning (ML) techniques for
the automatic selection of active galactic nuclei (AGN), which would allow one to
mine big photometric catalogs with effectiveness unreachable for traditional methods.
The ML-based approach can then be used to create high-quality catalogs for astrophys-
ical and observational cosmology purposes. This work shows it is possible to create
a machine learning model which will be able to mimic mid-IR based photometric
AGN selection using only optical and near-IR broadband photometry. The described
model can preserve efficiency similar to mid-IR techniques. However, it allows one
to obtain much larger catalogs due to the lack of mid-IR detection conditions.

Studies are performed on the data from the deep sky survey in the AKARI NEP-
Wide field. This work introduces several methods which were not been used in
astronomy before. The technique of mimicking the mid-IR selection by the ML model
was based on two crucial mechanisms. The first one was connected to a specific
construction of the training sample. It allows one to indirectly impose information
about the mid-IR selection into the structure of the ML model. The second mechanism
was based on the avoidance of extrapolation risk. It was achieved by limiting the
shape of the generalization sample to the shape of training sample via the Minimum
Covariance Determinant estimator algorithm. This way, a better control of the model
performance and a higher quality of the AGN candidates catalog was achieved.

Additionally, this work presents an in-depth study on the effectiveness of var-
ious fuzzy logic strategies for an AGN selection. For this purpose, a large set of
supervised classification algorithms was used. Finally, the reader will find a study
on the effectiveness of outlier detection methods combined with low-dimensional
embedding visualization techniques to detect and remove various contamination
sources from the catalog. This way, cases of wrong photometric redshift estimation
and misclassified groups of sources were identified.

Methods developed in this work overcome detector limitations and allow one
to precisely control the quality of the final source catalog. Moreover, a user of this
method can identify different sources of catalog contamination. Presented techniques
allow one to match catalog properties to specific scientific needs, making them an
effective tool for modern astrophysics.

HTTP://WWW.NCBJ.GOV.PL
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Streszczenie
Application of machine learning methods in astrophysics and cosmology

Artem POLISZCZUK

Celem przedstawionej pracy było opracowanie nowych technik selekcji akty-
wnych jąder galaktyk opartych na algorytmach uczenia maszynowego, które poz-
woliłyby na efektywne przeszukiwanie dużych zbiorów danych fotometrycznych
ze skutecznością niedostępną dla tradycyjnych metod selekcji. Zastosowania takiej
metody pozwolą stworzyć wysokiej jakości katalogi aktywnych jąder galaktyk do
zastosowań w astronomii pozagalaktycznej i kosmologii obserwacyjnej. Badania
przedstawione w pracy pokazują, że możliwe jest stworzenie modelu opartego na al-
gorytmach uczenia maszynowego, który jest w stanie naśladować selekcję aktywnych
jąder galaktyk w zakresie średniej podczerwieni, używając jedynie danych fotom-
etrycznych z zakresu optycznego i bliskiej podczerwieni. Taka metoda zapewnia
wysoką efektywność selekcji charakterystyczną dla technik stosowanych w średniej
podczerwieni. Jednocześnie nowa metoda pozwala uniknąć znacznego zmniejszenia
rozmiaru katalogu wynikającego z wymogu pomiaru w średniej podczerwieni.

W pracy wykorzystano dane z głębokiego przeglądu nieba w polu AKARI NEP-
Wide. Wprowadzono szereg rozwiązań nie stosowanych dotąd w astronomii. Mech-
anizm naśladowania przez model selekcji opartej na średniej podczerwieni został
uzyskany poprzez dwa podstawowe mechanizmy. Pierwszym z nich było pośrednie
dostarczenie informacji na temat technik selekcji w średniej podczerwieni zawartych
w konstrukcji próbki treningowej. Drugim było ograniczenie ryzyka ekstrapolacji w
danych spoza próbki treningowej poprzez zastosowanie algorytmu Najmniejszego
Wyznacznika Kowariancji. Zasosowana technika pozwoliła efektywnie ograniczyć
obszar w wielowymiarowej przestrzeni cech do regionu reprezentowanego przez
dane treningowe.

Ponadto przeprowadzono badania nad efektywnością zastosowania różnych
technik logiki rozmytej w selekcji aktywnych jąder galaktyk na podstawie różnych
nadzorowanych algorytmów klasyfikacyjnych. Następnie zbadano efektywność
zastosowania metod wyszukiwania anomalii oraz technik niskowymiarowej wizual-
izacji danych do znajdowania zanieczyszczeń katalogu wynikowego. Pozwoliło to
zidentyfikować przypadki niepoprawnej fotometrycznej estymacji przesunięcia ku
czerwieni, a także potencjalne grupy nieprawidłowo sklasyfikowanych obiektów.

Metody wprowadzone w pracy pozwalają na ominięcie trudności wynikają-
cych z ograniczeń instrumentów pomiarowych, a także umożliwiają precyzyjną
kontrolę nad jakością katalogu wynikowego oraz rozpoznanie potencjanych źródeł
zanieczyszczeń. Pozwala to na dopasowanie katalogu wynikowego do potrzeb
konkretnych zastosowań i tworzy efektywny zestaw narzędzi dla współczesnej i
przyszłej astrofizyki.
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1
Introduction

The rapid development of astrophysics and observational cosmology in the twenty-
first century led to a major development of new statistical analysis methods in these
fields. A significant part of this methodological revolution is connected to the quickly
progressing field of big data and machine learning. Now, machine learning (ML) al-
gorithms are applied with great success to various tasks in extragalactic astrophysics
and cosmology. These are fundamental classification problems of catalog creation
(see, e.g., Clarke, A. O. et al., 2020), estimation of astrophysical and cosmological pa-
rameters (see, e.g., D’Isanto and Polsterer, 2018; Henghes et al., 2021; Pan et al., 2020),
or low-level ML-based telescope data processing pipelines for signal reconstruction
and classification (see, e.g., Narayan et al., 2018), to name a few. The fast emergence of
new algorithms and an exponentially growing amount of astronomical data suggest
that ML methods are becoming an inherent part of modern astronomy (Sen et al.,
2022).

The primary goal of this work was to create an ML-based method for photometric
Active Galactic Nuclei (AGN) selection, which mimics the broadband photometric
mid-IR selection method using only optical and near-IR broadband photometry. The
importance of such a technique results from the trade-off that comes with the mid-
IR AGN selection. The mid-IR range of the electromagnetic spectrum contains an
essential part of information about the AGN emission, allowing one to obtain AGN
catalogs characterized by both high purity and completeness (Padovani et al., 2017).
Moreover, the mid-IR-based selection is sensitive to a specific stage of AGN accretion
efficiency, which tights these objects to evolutionary processes of host galaxies and
their placement in the cosmic web (Hickox et al., 2009). These valuable features of
mid-IR AGN selection come with a significant limitation. Mainly, mid-IR telescopes’
source catalogs are significantly smaller than optical and near-IR instruments. Two
main factors cause this issue. One of them is the low resolution of mid-IR detectors.
Second is the nature of mid-IR observations. This part of the electromagnetic spectrum
is blocked by the Earth’s atmosphere Kim et al., 2012. Thus mid-IR observations are
possible only with space-based telescopes. However, it has to be artificially cooled
down to not make a mid-IR detector blind by thermal emission from the telescope
electronics. Moreover, such a cryogenic phase of the telescope work has limited
operation time (see, e.g., Murakami et al., 2007). Thus, the combination of the low
resolution of the instrument and limited operation time make obtaining large mid-IR
catalogs very challenging.

The fundamental idea that allowed to overcome the problem of mid-IR selection
was to indirectly impose mid-IR information into the structure of the classification



2 Chapter 1. Introduction

model. Model constructed this way could effectively search for similar AGN candi-
dates, exploiting the optical and near-IR data information. This approach overcomes
the mid-IR detection condition and obtains AGN candidates catalog with similar
properties but much larger size. The created method shown in this work is based
on the research published in two works Poliszczuk et al. (2019) and Poliszczuk et al.
(2021). These publications contain studies on various ML techniques applied to the IR
data collected by the space-based AKARI telescope in the North Ecliptic Pole region.
The first work (Poliszczuk et al., 2019) was a preliminary study on ML-based methods
for the combined near-IR and mid-IR AGN selection. For this purpose, a specific ML
algorithm called support vector machine was used to test different problems of classi-
fication. One of them was application of fuzzy logic to the classification algorithm
structure, which allowed one to differentiate the impact of different objects in the train-
ing set on the classification based on their specific properties, such as measurement
precision. To our best knowledge, this type of physically-motivated modification of
the model via fuzzy logic was never used in astronomy before. Another was testing
how the extrapolation outside of the region demarcated by the training data affects
the classifier performance. These results were treated as a preliminary study and
allowed to create a novel method for mimicking mid-IR selection using optical and
near-IR data. This approach was described in the second publication (Poliszczuk
et al., 2021), which is the basis of this work.

Compared to the mentioned publication, this work was modified and enriched.
First, it contains an in-depth discussion of different fuzzy logic strategies and a
comparison of their impact on classification with different types of supervised classi-
fication algorithms. This part was missing in the original work. It allows to better
understand how this new approach can modify model performance and how does
it affect the resulting catalog. The second substantial modification is the additional
research on unsupervised outlier detection techniques. These methods are used to
control AGN catalog properties better and remove different sources of contamination.
This way obtained AGN catalog can match the needs of different applications. The
part of developed machine learning pipeline which focuses on the outlier detection
methods will be the main topic of the publication currently being prepared by the
author (Poliszczuk et al., in prep).

This work is organized as follows. Chapter 2, contains a description of the Unified
Model of AGN, physical processes behind AGN spectral energy distribution, how
they affect different AGN selection methods, and some aspects of AGN connection
to galaxy evolution and observational cosmology. Chapter 3 contains a description
of data. The reader will find a general description of panchromatic data from the
North Ecliptic Pole (NEP) in its first part. The second part contains a review of the
multi-wavelength catalog of the AKARI NEP-Wide field, used to train ML models
and obtain the final catalog of AGN candidates. Finally, this chapter contains infor-
mation about the preparation and properties of training and generalization samples
used in this work. In particular, Sec. 3.3.2 describes how to mitigate extrapolation
risk during the prediction on the unlabeled data using the Minimum Covariance
Determinant (MCD) algorithm. In Chapter 4 I review machine learning methods used
in this work together with performance evaluation metrics, which were employed to
train classifiers as well as to compare them to mid-IR selection. Chapter 5 contains
a discussion of the obtained results. In particular, studies on the effectiveness of
different ML algorithms on the impact of various class-based and fuzzy logic weight-
ing strategies on classification. Furthermore, one will also find a discussion on the
properties of the obtained AGN catalog and compare it to the catalog created with
mid-IR selection methods. Finally, an additional experiment was done to test the
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possibility of boosting classification effectiveness even further to overcome problems
present in both mid-IR selection and the ML-based method. The last part of this work
shows different methods of outlier detection. These methods are used to find objects
with catastrophic photometric redshift estimation errors and catalog contamination
from the galaxy sample class. Chapter 6 presents a summary of obtained results.
Appendix A contains information about the software used in the present work. In
Appendix B reader will find additional data describing the performance evaluation.
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2
Active Galactic Nuclei

2.1 Unified Model of Active Galactic Nuclei

Active galaxies are defined as galaxies during a period of intensive accretion of matter
on their central supermassive black hole. The centers of the majority of galaxies are
occupied by a supermassive black hole (SMBH). In active galaxies, material infalling
onto SMBH radiates a large amount of energy in the X-ray and optical/UV part of
the electromagnetic spectrum, which is then re-emitted at longer wavelengths in the
close neighborhood of SMBH. This luminous region in the vicinity of SMBH is called
active galactic nucleus (AGN). In this work, we will use the terms active galaxy and
AGN interchangeably and refer to the galaxy hosting an active nucleus in the center
as a host.

There were identified a large number of AGN classes, which differ in their relative
emission strength in various parts of the electromagnetic spectrum as well as spec-
troscopic properties or presence of strong relativistic radio jets (for a comprehensive
review, see, e.g., Padovani et al. (2017)). A large number of these properties can be ex-
plained in terms of the unified model of AGN. In its basic form described in Antonucci
(1993), AGN classes were explained in terms of three parameters: inclination angle of
AGN with respect to the line of sight (LOS), AGN luminosity, and covering factor of
AGN. Visualization of the basic unified model is shown in Fig. 2.1

The structure of AGN is axisymmetric and divided into several main regions.
The Central black hole is surrounded by a sub-pc accretion disc of fully ionized,
dust-free matter. High-density clouds of ionized, dust-free gas form the broad line
region (BLR) at the distance of '1pc up to 103−5 gravitational radii from the central
BH. Torus placed outside of BLR is a mixture of gas and dust with a partially clumpy
structure. The inner radius of the torus is roughly demarcated by the sublimation
radius. This radius is a distance at which the temperature falls to ∼2000 K, which
is the temperature above which dust grains start to evaporate (Netzer, 2015; Jones,
Lambourne, and Serjeant, 2015). A region perpendicular to the torus plane forms
an ionization cone, where low-ionization clouds of gas located at the distance of
hundreds of parsecs from the torus plane are forming the narrow-line region (NLR).
Additionally, a relativistic jet might occur along the central axis perpendicular to the
torus plain. underlies the classification of aGNs as radio loud or quite Presence or
lack of the jet underlies the classification of AGNs as radio loud or quiet. This leads to
a complementary radio classification of AGNs which is beyond the scope of this work.
The reader is encouraged to refer to other publications such as Urry and Padovani
(1995) for the review.
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FIGURE 2.1: General picture of AGN Unified Model proposed in
Antonucci (1993).

The inclination of the torus with respect to the LOS gives the primary division into
two classes of AGN. The type-I AGN is characterized by the LOS facing ionization
cone not obscured by the dusty torus. In this case, the UV-optical-NIR spectrum
shows broad permitted, and semi-forbidden lines with typical gas velocities of 1000-
20 000 km s−1 originated in BLR together with a bright, non-stellar central component.
In addition, type-I AGN spectra (except for some high-luminosity sources) show
forbidden narrow emission lines 1 which originated in the NLR with typical gas
velocities of 300-1000 km s−1 are present. Despite referring to these lines as "narrow,"
they are still broad compared to emission lines that originated in the galaxies. Based
on the source luminosity, such objects can be divided into Seyfert type-I galaxies,
characterized by lower luminosity and quasars. In addition, a separate class of AGN
with a relativistic jet pointing toward the observer is referred to as blazars. The type-II
AGN occurs when the dusty torus blocks the LOS between observer and BLR. Such
a situation makes emission from the BLR invisible to the observer. In this case, UV-
optical-NIR spectra show only low-ionization narrow emission lines, which originate
in the NLR outside the torus plane, without the broad line component. Type-II can be
further divided into two sub-groups. The first one referred to as hidden type-I shows
a broad line component obscured by the dusty torus in the polarized light. Hidden
type-I AGNs can also be divided into Seyfert type-II galaxies and type-II quasars based
on their luminosity. The second one, true type-II AGN, does not have any signatures
of broad emission lines. These objects with typically lower luminosity compared to
hidden type-I constitute approximately 30% of type-II AGN in the local Universe (see,
e.g., Brightman and Nandra, 2011; Merloni et al., 2014a).

1Spectral emission lines in astronomy can divided with respect to the gas density at the place of their
origin. Contrary to permitted lines, forbidden lines are produced in very low gas density regions. These
lines cannot originate in denser environments because they are related to long-living excited states, and
in high-density gas, these excited atoms are likely to be de-excited by collisions (Jones, Lambourne, and
Serjeant, 2015).
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In addition to these main classes there are objects with mixed properties of nor-
mal and active galaxies, such as host-dominated AGNs (Kauffmann et al., 2003b),
low-ionization nuclear emission-line region or LINERS (Ho, 2008), low-luminosity
optically dull AGNs (Trump et al., 2009) or weak line quasars (Meusinger and Bal-
afkan, 2014). These objects are often interpreted as representations of intermediate
evolutionary stages between active and normal galaxies or objects with an insufficient
accretion flow near the SMBH. A full explanation of physical mechanisms causing the
behavior of weak line AGNs is still an open question (see discussion in (Trump et al.,
2009) and references therein). Another puzzling class of objects was recently discov-
ered changing look AGNs (CL AGN, e.g., LaMassa et al., 2015a; Charlton et al., 2019),
which can transition between properties of type-I and type-II AGNs. Discussions on
possible explanations of CL AGN properties can be found in LaMassa et al. (2015b),
Stern et al. (2018), and Dodd et al. (2021). Further discussion on the properties of
these objects is beyond the scope of the present work, and readers are encouraged to
refer to the cited sources.

Unified model issues such as difficulties with explaining properties of WLQ and
CL AGN (Dodd et al., 2021), poor prediction on SMBH evolution and modeling of
merging hosts or indication of much more complex structure of torus as well as the
connection between torus interaction with a host galaxy show incompleteness of
the basic AGN unification scheme. Discussion of unified model problems as well as
possible ways to overcome them is presented in detail in Netzer (2015) and Heckman
and Best (2014) and references therein.

Besides the AGN Unified Model, there is another way to interpret AGN properties
and classify them based on the mechanism that dominates the energy outflow near
the central engine. In order to better understand this distinction, we need to introduce
a concept of Eddington limit (or Eddington luminosity). The Eddington limit defines
the maximum luminosity, which an object can achieve in the state of hydrostatic
equilibrium, i.e., when the radiation force acting outwards is balanced by the inward
gravitational force (Peterson, 1997). Thus, when the radiation pressure exceeds the
gravitational force at all radii, the gas surrounding the source will be blown away by
the occurring outward winds. For a central black hole with mass MBH , the Eddington
limit is given by Shapiro and Teukolsky (1983)

LEdd = 1.3× MBH

M�
erg s−1. (2.1)

Another essential object property tightly connected to the Eddington limit is the
Eddington ratio, which is the ratio of object bolometric luminosity to its Eddington
limit: L/LEdd.

The classification based on the dominating mechanism of the energy outflow
near the SMBH distinguishes two main AGN populations or modes. The first class
of objects is referred to as the radiative mode (often called quasar mode or wind
mode). This mode occurs in a luminous AGN, where the SMBH is surrounded by a
geometrically thin and optically thick accretion disk. These objects are characterized
by the efficient accretion flow and high Eddington ratios (L/LEdd > 0.01). The second
class is referred to as the kinetic mode, also called radio jet mode. These objects
are associated with inefficient accretion at rates that do not exceed the 1% of the
Eddington limit (L/LEdd < 0.01). In the case of kinetic mode AGNs, the geometrically
thin accretion disk is truncated in the inner regions. Another property of this mode
is that most of the energetic output is translated through the large radio jets in bulk
kinetic form (however, radiative-mode AGNs may also show jet structures). A visual
comparison of the general structure of both modes is shown in Fig. 2.2. This work



8 Chapter 2. Active Galactic Nuclei

is primarily focused on the radiative mode AGNs. However, a further in-depth
discussion on the nature of both modes and the implication of their presence on host
galaxy properties is present in many reviews such as, e.g., Kormendy and Ho (2013)
and Yuan and Narayan (2014). The mode-based classification of AGNs is crucial for
understanding the connection between the AGN activity and galaxy evolution and
the role AGN plays in observational cosmology. These topics are further discussed in
Sec. 2.3.

2.2 Multi-wavelength AGN emission and corresponding se-
lection methods

Observations of AGNs in different parts of the electromagnetic spectrum highlight
emission from specific parts of the AGN structure and are tightly connected to
the broadband AGN selection properties. This section reviews the most important
mechanisms producing AGN SED shape in the range from X-rays to IR and describes
how they are used to recover AGN samples from sky surveys catalogs. This section
does not cover γ-ray and radio properties of AGN since they are broad and complex
topics not related to the scientific problem of this work. A large part of the description
of AGN selection and bias effects in different parts of the spectrum was inspired
by Padovani et al. (2017) and Donley et al. (2012) and references therein, where a
reader can find a more profound analysis of these problems.

The X-ray band defined as 0.2–200 keV energy range gives one a well-established
field for high completeness and purity AGN selection. The main contribution to the
X-ray AGN flux comes from the inverse Compton scattering of the accretion-disk
photons in the region of X-ray corona in the vicinity of SMBH (Gilfanov and Merloni,
2014). Additional X-ray flux may come from thermal emission inside the accretion-
disk (Sobolewska, Siemiginowska, and Zycki, 2004) as well as relativistic jets (Harris
and Krawczynski, 2006).

Despite additional mechanisms, AGN X-ray emission is strongly correlated with
the accretion-disk emission and shows isotropic properties across the AGN popula-
tion (Lusso and Risaliti, 2016). Universal properties of AGN X-ray emission combined
with moderate resilience to the dust obscuration (especially in hard X-ray band) and
low contamination from the host galaxy make X-ray studies well suited for AGN
selection. The general approach to the AGN X-ray selection is to impose the X-ray
luminosity (LX) threshold onto the compact, point-like source catalog. In this case one
can distinguish quasars with LX > 1044 erg s−1, Seyfert galaxies placed in the range
LX = 1042 − 1044 erg s−1 and low-luminosity AGNs LX < 1042 erg s−1 (Padovani
et al., 2017). Possible contamination of AGN candidates catalog may come from high-
redshift galaxy clusters or compact groups of galaxies when objects are probed at
lower-energy X-ray bands, which are sensitive to the X-ray thermal radiation (Bulbul
et al., 2021). The additional contaminant may occur in the case of low-luminosity
sources, where X-ray emission from the host galaxy X-ray binaries may become a
significant contribution to the overall X-ray flux (see, e.g. Fabbiano, 2006).

Several biases are present in X-ray AGN selection in which the main role plays
energy-dependent X-ray absorption. Soft X-ray emission has higher absorption effi-
ciency than hard X-ray emission (Wilms, Allen, and McCray, 2000). This phenomenon
translates to the redshift bias, where high-redshift sources are probed at higher rest-
frame energy and thus show a lower effect of absorbed X-ray flux. Additionally, a
Compton-thick AGNs (CT AGN) class is defined as highly obscured sources in which
material column density exceeds the cross-section value of the inverse Thomson
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(A)

(B)

FIGURE 2.2: Classification based on the dominating mechanism of the
energy outflow near the SMBH. Panel a: Radiative mode. The SMBH
is surrounded by the geometrically thin and optically thick accretion
disk. Radiative mode AGNs are characterized by the efficient accretion
flow and high Eddington ratios. Panel b: Radio jet mode. These objects
are characterized by the dominant radio jet and insufficient accretion

of the material onto SMBH and low Eddington ratios.

scattering. These AGNs are especially difficult to detect at the X-ray range. They can
escape purely X-ray-based selection (see, e.g. Comastri, 2004; Comastri and Fiore,
2004), and recovery of these objects often requires multi-wavelength studies. There is
a good agreement between absorption in UV-optical passband and X-rays: the vast
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majority of type-I AGNs do not suffer from X-ray obscuration, while type-II objects
are mainly recognized in X-ray bands as CT AGNs (see, e.g. Merloni et al., 2014b;
Padovani et al., 2017).

Emission from the accretion-disk in the rest-frame optical-UV band with char-
acteristic power-law continuum together with broad and narrow emission lines
originated in BLR and NLR, respectfully, provides us a lot of information about the
structure and kinematics of AGN. A major part of our picture of accretion-disk and
broad- and narrow-line regions comes from spectroscopic studies (see, e.g. Elvis et al.,
1994; Vanden Berk et al., 2001; Netzer, 2015 and references therein) as well as AGN
reverberation mapping. In reverberation mapping, the spatial resolution is swapped
with time resolution. Analyzing the time lag between optical and UV variability of
the spectrum and response variability of broad emission lines allows one to recon-
struct processes occurring in the neighborhood of SMBH. A detailed review of the
reverberation mapping method can be found in, e.g. Peterson, 1993; Cackett, Bentz,
and Kara, 2021. This section will only discuss the properties of broadband optical
AGN selection.

Optical photometric identification of AGNs provides large catalog volumes at
the expense of significant bias and contamination. Optically-selected AGN catalogs
probe mainly type-I sources with high Eddington ratio (L/LEdd > 0.01) (Vestergaard
et al., 2008; Trakhtenbrot and Netzer, 2012). The AGN appearance in broad optical
passbands is sensitive to the power-law continuum and broad emission lines. If
observed in the rest-frame, these properties give AGN a specific location in optical
color space. However, the color appearance becomes stellar-like at certain redshift
ranges, making them hard to separate (especially quasars, which are point objects).
This phenomenon introduces large stellar contamination, especially at low galactic
latitudes. These problematic redshift ranges are placed around z ∼ 2.6 and z ∼
3.5 (Richards et al., 2002; Richards et al., 2006; Padovani et al., 2017). Another
noticeable decrease in the completeness of optical AGN catalogs comes from low
sensitivity to type-II objects (see e.g. Zakamska et al., 2003).

Now let us analyze more deeply infrared properties of AGN since they are the
most important for this work. The infrared part of the spectrum can be divided
into three main parts: near-infrared (NIR, 1–5 µm), mid-infrared 2 (MIR, 5–50 µm)
and far-infrared (FIR, 50–500 µm). The IR radiation of AGN occurs primarily in the
range of NIR and MIR due to the reprocessing of emission from the accretion disk
by the silicate dust located in the torus. This dust produces NIR-MIR continuum
with distinctive power-law shape Fν ∝ να in the range 3− 8µm, with α < 0, being a
characteristic of AGN (Klaas et al., 2001; Alonso-Herrero et al., 2001; Alonso-Herrero
et al., 2006a). In particular Alonso-Herrero et al. (2006a) found AGN-dominated
galaxies exhibit−2.8 < α < −0.5 in the range 3.6− 8µm. In addition, the silicate torus
dust also produces two important spectral features located at 9.7µm and 18µm. These
features originate from the SiO stretching and bending modes respectfully (Thompson
et al., 2009). Other prominent spectral features present in MIR AGN spectra, which
may be important for AGN selection, are strong high-excitation lines [NeV] at 14.3µm
and [OIV] at 25.9µm. They are connected to the ionization by AGN continuum, most
likely originated in NLR (Lutz et al., 2003) and can have a significant contribution to
the broadband MIR flux.

Studies of IR AGN emission established fundamentals of the unified model (e.g.,
research on IR emission together with optical polarization confirmed the nature of

2In some publications, one can find an alternative division with NIR covering a range of 1–3 µm and
MIR, 3–50 µm respectfully.



2.2. Multi-wavelength AGN emission and corresponding selection methods 11

hidden type-I sources as AGNs with torus located at the LOS of the observer (Tran,
Miller, and Kay, 1992; Smith et al., 2002)), as well as allowed to study the distribution
of gas and dust in the torus (see, e.g., Thompson et al., 2009; Sirocky et al., 2008; Marin
et al., 2018; Lopez-Rodriguez et al., 2018). There exist three main groups of torus
material distribution models, which are trying to fit observed AGN multiwavelength
SEDs: continuous distribution models (Pier and Krolik, 1992; Fritz, Franceschini, and
Hatziminaoglou, 2006), clumpy torus models (Nenkova, Ivezić, and Elitzur, 2002;
Nenkova et al., 2008a) and composite models which are trying to combine continuous
and clumpy distributions (Stalevski et al., 2012). Comparison of these models can
be found in Feltre et al. (2012) and Lira et al. (2013) (see also detailed discussion
in Netzer, 2015).

Several observational results strongly oppose the continuous distribution model.
If the material in the torus were distributed smoothly, it would produce a strong
temperature gradient along the torus radius and a deep absorption feature since flux
emitted by the inner region of the torus would be absorbed by the dust material
located at a larger distance from the center. Thus the view of a hot inner region of the
torus should produce strong silicon emission at 9.7µm and smaller 18µm features. In
contrast, analysis of the outer torus regions should demonstrate absorption in these
features. Consequently, for a smooth torus model, a MIR picture of type-I AGN, where
the inner region of the torus is visible, should produce silicon features in emission.
On the other hand, in type-II AGN, where an observer can see only the outer region
- MIR silicon features will be present in absorption. However, observations show
much weaker 9.7µm absorption than predicted by continuous distribution model,
indicating clumpy structure of central obscurer (Shi et al., 2006; Nenkova et al., 2008b;
Martínez-Paredes et al., 2020). In addition, a comparison of the 9.7µm line with the
second silicon feature at 18µm allows one to make even better discrimination between
two dust distribution models and identify the dust composition of the torus (Hao
et al., 2005; Thompson et al., 2009) (however, see discussion on the impact of the
different chemical composition of models on silicate features predictions in (Sirocky
et al., 2008)). Secondly, strongly isotropic MIR emission of AGNs (see, e.g., Horst
et al., 2006) contradicts smooth torus models, which predict much brighter type-I
AGNs for a fixed intrinsic luminosity (Thompson et al., 2009). Finally, an extensive
range of dust temperatures observed at a specific distance from the central engine
(Jaffe et al., 2004; Beckert et al., 2008) is not possible in the case of a smooth torus,
where a strong temperature gradient should be present. Therefore, only a clumpy
structure, where gaps between clumps allow the central engine to heat more distant
material, can produce observed behavior.

As suggested in Netzer (2015), probably a more realistic torus structure is de-
scribed by the two-phase composite model, where the space between clumps is
filled with diluted dusty gas causing additional attenuation of incident radiation.
One of the reasons why diluted medium should be present in torus is the inevitable
collisions of dusty clouds. However, despite the observational clues, there is still
an ongoing debate on the structure of the torus (see, e.g., González-Martín et al.,
2019a; González-Martín et al., 2019b; Victoria-Ceballos et al., 2022). In addition to the
above discussion on torus geometry, the dust component also seems to be present on
the NLR’s outskirts. This dusty structure may strongly contribute to the 10–30µm
continuum emission (Schweitzer et al., 2008).

The IR selection of AGNs is focused on signatures of dust emission in NIR and
MIR passbands. The dust emission gives AGNs characteristic red colors at NIR and
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shorter MIR passbands, distinguishing them from stars and normal galaxies. 3 The
FIR emission is rarely used for AGN selection since it is primarily caused by the star-
forming activity of the host (Netzer et al., 2007; Hatziminaoglou et al., 2010; Mullaney
et al., 2011). Obscuration of the central region does not limit the selection capabilities
of IR broadband methods severely as it does in optical selection. Moreover, it also has
an advantage over X-ray selection in terms of much faster survey speed resulting in
larger catalog volumes (Padovani et al., 2017; Gorjian et al., 2008). The NIR-MIR color
AGN selection was applied in all major IR telescopes covering that part of spectral
range, such as Spitzer (Werner et al., 2004; Stern et al., 2005), WISE (Wright et al., 2010;
Stern et al., 2012; Assef et al., 2013) or AKARI (Murakami et al., 2007; Lee et al., 2007;
Oyabu et al., 2011).

There are, however, several sources of contamination and selection effects present
in the IR selection. The primary contamination at lower galactic latitudes comes from
brown dwarfs (Stern et al., 2007) and young stellar objects (Koenig et al., 2012), which
can mimic AGN IR colors at specific redshifts. The problem of proper identification
of these objects becomes less important at a larger angular distance from the Galactic
plane, where the main source of the catalog contamination comes from star-forming
galaxies (SFG). To better understand the nature of SFG misclassification, we need to
know how the stellar component contributes to the IR SED of the galaxy.

At the shorter NIR wavelengths, crucial role is played by 1.6µm spectral feature
called stellar bump (see, e.g, Padovani et al., 2017; Stern et al., 2005; Alonso-Herrero
et al., 2006b; Donley et al., 2012). It is caused by the opacity of the H− ion, which
has a minimum at the corresponding wavelength range (John, 1988). This feature is
characteristic of the atmospheres of cool stars and is an important SED element of
almost all stellar populations. However, this feature is missing in the very young hot
stars (∼1 Myr). In their case, the SED takes the form of the Rayleigh-Jeans power-law
shape. It might be also less prominent in low-metallicity stars since the production of
H− ions relies on the presence of free electrons (John, 1988). Another phenomenon
that might occur is a shift of the apparent wavelength of stellar bump towards the
red end caused by the ISM dust absorption of shorter wavelength component (see,
e.g., Sawicki, 2002 for an in-depth discussion of 1.6 µm stellar bump properties).
This 1.6µm stellar bump can strongly affect AGN selection. Especially in the case of
SFG at higher redshifts (z ≥ 1), 1.6µm stellar bump enters longer NIR wavelengths
characterized by a strong decrease of accretion-disk emission as well as low emission
from the dusty torus. As the result, 1.6µm may mimic presence of power-law shape
AGN SED and give high-z SFG AGN-like colors (Stern et al., 2005; Donley et al., 2012;
Assef et al., 2013).

The SED of non-active SFG shows a characteristic dip between 1.6µm stellar bump
and FIR (and longer wavelength MIR) emission from dust heated by star-forming
component. In the case of AGN, this dip is filled by a power-law shape thermal con-
tinuum produced by emission from dusty torus (Donley et al., 2012). While the host
component becomes less prominent in the MIR and longer wavelength NIR range, a
significant contribution may come from several dust emission features connected to
the ISM presence. The most prominent are spectral features connected to emission
from large polycyclic-aromatic-hydrocarbon molecules containing ∼50 carbon atoms
(PAHs) (Leger and Puget, 1984; Allamandola, Tielens, and Barker, 1985; Allamandola,
Tielens, and Barker, 1989). The PAH emission comes from reprocessed UV (and to
some degree optical) light (Uchida, Sellgren, and Werner, 1998) and, as such, is often

3Another strength of NIR-MIR AGN selection is based on the ability to find the most distant, high-
redshift quasars, which are undetectable in the optical passbands due to the Lyα absorption (Bañados
et al., 2016).
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used as a tracer of star formation. There was a long discussion on how accurately
PAH features may estimate star-forming components. Analysis of MIR spectroscopic
data from the Spitzer telescope as well as earlier studies of Infrared Space Observatory
(ISO; Kessler et al., 1996) showed that PAH emission does not trace the massive star
formation as marked by the presence of O stars (Haas, Klaas, and Bianchi, 2002), but
rather it traces the presence of B stars population, which make the main contribution
to the stellar component of the galaxy (Peeters, Spoon, and Tielens, 2004; Smith et al.,
2007; Maiolino et al., 2007).

Main PAH features are located in NIR and MIR ranges and are centered at 3.3µm,
6.2µm, 7.7µm, 8.6µm, and 11.3µm. Emission from PAH bands alone can contribute
up to 20% of infrared luminosity (LIR) in the case of galaxies with star-forming solid
component (Smith et al., 2007). Thus, PAH emission may significantly impact the
distribution of SFG in the IR color space. It can also hide the presence of AGN in
PAH-dominated spectra from the color-based selection.

The most prominent feature located at 7.7µm also played a major role in es-
tablishing observational evidence for AGN unified model. In Clavel et al. (2000)
authors compared MIR spectra of type-I and type-II Seyfert galaxies. By analyzing
the 7.7µm PAH feature properties, they showed that host properties are unrelated to
the AGN type. They also showed similarities in IR SED properties between Seyfert-II
galaxies and starburst galaxies, except for the NIR-MIR range dominated by torus
emission (Peeters, Spoon, and Tielens, 2004).

The PAH emission, together with IR AGN properties, was also used to study the
nature of ultra-luminous infrared galaxies (ULIRGs, LIR > 1012L�). The ULIRG pop-
ulation becomes an important group of sources when analyzing AGN selection and
the impact of star formation in IR data. Morphological studies of these objects showed
that most of them are complex systems of ongoing mergers Sanders and Mirabel,
1996. From the combined analysis of PAH emission, where the PAH spectrum of
ULIRGs is very similar to obscured starburst galaxy and silicate absorption features,
it was found that galaxies with the domination of both AGN and star-forming com-
ponent can appear as ULIRGs (Spoon et al., 2007). Also, no significant evidence for
classical model predictions, where more advanced mergers are AGN-dominated, was
found (Rigopoulou et al., 1999).

Regarding biases generated by IR AGN selection, one must consider several
important mechanisms. One crucial bias comes from the change of AGN IR colors
in the case of strong, broad emission Hα, which may fall into the short-wavelength
NIR band and reduce the object’s red color. This problem occurs at the redshift
range 3.5 ≤ z ≤ 5 and can be mitigated by using a combination of IR and optical
photometry for AGN selection (Richards et al., 2009). Another source of bias comes
from the identification escape of AGNs with a low ratio of AGN dust to host dust
emission (Hao et al., 2010). IR color selection methods might not capture these
objects due to the lack of the main distinguishing component - AGN dust emission
in MIR. Another, more subtle selection bias is coming from the host-AGN interplay.
In particular a major role is played by a correlation between the luminosity of the
spheroidal component of the host galaxy and AGN luminosity (Marconi and Hunt,
2003). This relation translates into the dependence of specific AGN to host luminosity
ratio Lν,AGN/Lν,host on the Eddington ratio and, as a consequence, creates a bias
against low Eddington ratio AGNs in IR catalogs ratio (Padovani et al., 2017). It
makes the most severe limitation of IR selection techniques. According to Hickox
et al. (2009) and Mendez et al. (2013) IR selection might probe only few percent
upper limit of X-ray AGN catalogs L/LEdd distribution. This effect also translates
into bias in MBH distribution, i.e., a large number of spiral galaxies with prominent
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disk component and lower MBH will be missing from IR catalogs (Padovani et al.,
2017; Magorrian et al., 1998).

When analyzing catalog properties and selection effectiveness, one should con-
sider the depth of the survey. While MIR AGN selection is regarded as a very effective
approach to AGN selection, it shows different properties for shallow and deep sur-
veys. As it was shown in Padovani et al. (2017) and Assef et al. (2013) in the case of
shallow surveys, MIR AGN selection can recover the AGN catalog characterized by
both high purity and high completeness. However, in the case of deep surveys, a
strong completeness-purity trade-off exists.

2.3 AGN Feedback and Its Connection to Observational Cos-
mology

Studies of statistical properties of AGN catalogs give us important insights into
galaxy evolution and the impact of AGN activity on the processes occurring in the
host galaxy, as well as the connection between AGN distribution and Large Scale
Structure of the Universe. The phenomenon of AGN affecting the star formation in the
host galaxy is known as AGN feedback. This process occurs via an interaction between
radiation from the matter accretion onto the SMBH and the bulge gas component.
The outward radiation pressure sweeps galaxy bulge out of ISM gas, terminating
the star formation in the galaxy’s central region. Simultaneously, the lack of gas in
the bulge limits the material needed for the accretion process, ending the activity
of the central engine. In particular, the relation between MBH and stellar velocity
dispersion in the host bulge (Gültekin et al., 2009) is often treated as an important
case of indirect observations of AGN feedback caused by the radiative-mode AGNs.
Another piece of evidence comes from the analysis of the brightest cluster galaxies
(BCG) mass. Without an energy input coming from kinetic AGN feedback, they
would appear even more massive as giant starburst galaxies. See Fabian, 2012 for
in-depth discussion on both of these evidences. Thus, there are separate fundamental
roles for the two AGN modes. The AGN in the radiative mode tends to sweep gas
out of the bulge. On the other hand, the kinetic-mode AGN keeps the gas hot enough,
so it does not cool and does not reinforce star formation processes in the vicinity of
SMBH.

Many studies on the AGN feedback suggest that AGN activity may play a major
role in the bimodal nature of the galaxy population and quenching of the star forma-
tion in blue galaxies in particular (see, e.g., Croton et al., 2006b; Croton et al., 2006a).
A bimodality of galaxy population (see, e.g., Kauffmann et al., 2003a; Blanton et al.,
2003) defines two main groups of galaxies. One group referred to as a blue population
or blue cloud, consists of late Hubble type galaxies with significant ongoing star for-
mation, small stellar masses, and tight relation between star formation rate and stellar
mass (Brinchmann et al., 2004). The second group referred to as a red population or a
red sequence, comprises early Hubble type galaxies with little ongoing star formation
and significantly larger stellar mass. A simplified scenario of galaxy evolution (Lilly
et al., 2013; Hickox et al., 2009) may be described as follows . First, the galaxy evolves
along the blue star-forming main sequence, accommodating mass through accretion
of IGM and, to a smaller degree, through mergers. After reaching a critical mass, both
accretion of cold gas and the star formation become quenched. This step determines
the galaxy entering the red population. Thus, according to the current paradigm,
the AGN feedback plays a major role in this process, keeping galaxies entering the
red population from further star formation. However, research on AGN feedback
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is a relatively new field, and further research should be done to understand this
process better. The key to obtaining a complete picture of the interaction between the
AGN activity and galaxy evolution lies in a subtle analysis of large astronomical data
sets. For this purpose, a study of host galaxy properties of different AGN types is
combined with an analysis of AGN properties and their clustering. One of the major
studies presented in Hickox et al. (2009) revealed several important observations.
Analysis of the clustering of different types of AGNs and their local environments
shows the connection between AGN mode and its host galaxy mass and age. It is
a well-established fact that red galaxies show larger clustering amplitudes and are
found in denser environments than objects from the blue population (Zehavi et al.,
2005; Coil et al., 2008). In the case of AGNs, the X-ray-selected AGNs predominantly
occupy host galaxies being in the transition between blue and red populations. These
AGNs are, in general, characterized by a larger clustering amplitude, inhabiting
dense environments (Gilli et al., 2005; Miyaji et al., 2007). Even more robust clustering
is shown by radio-selected AGNs, which occupy red sequence hosts, are found in
groups and clusters of galaxies, and show clustering properties similar to local ellip-
tical galaxies (Wake et al., 2008; Mandelbaum et al., 2009). Infrared-selected AGNs
residing in bluer hosts show, on the contrary, much weaker clustering properties,
with some indications of IR-bright AGN activity being triggered not only by the host
properties but also by a local, preferably underdense, environment (Hickox et al.,
2009).

This type of study opens up an opportunity to bring AGNs into the context of
observational cosmology. Clustering analysis on a scale of ∼Mpc allows one to
estimate the dark matter halo masses (Sheth and Tormen, 1999) and connect them
to different types of AGNs, similarly as it is done with normal galaxies (Faber et al.,
2007). In particular, radio-selected AGNs at relatively small redshifts (0.25 < z < 0.8),
with the strongest clustering, occupy most massive dark matter halos (Mhalo ∼
3× 1013h−1M�), with an increasing bias on a smaller scales (< 0.5h−1Mpc). Halos of
these masses characterize large galaxy groups or small clusters. The increasing bias
on a smaller scales implies that cross-correlation of radio-selected AGNs with normal
galaxies on these scales will tend to select pairs of objects occupying the same dark
matter halo (Zehavi et al., 2004; Coil et al., 2008; Brown et al., 2008). The estimated
dark halo mass obtained from X-ray selected AGNs clustering gives one smaller
value of Mhalo ∼ 1013h−1M�, typical for smaller galaxy groups. What is interesting, a
cross-correlation of X-ray AGNs with normal galaxies at smaller scales (∼ 1h−1 Mpc)
shows a smaller slope compared to the X-ray AGN autocorrelation function. A similar
result was obtained on the optically selected sample (Li et al., 2006), showing weaker
AGN-galaxy clustering on small scales. Authors explained this behavior as the AGNs’
tendency to occur in the central galaxies. However, in the case of X-ray AGNs, a small
AGN catalog size did not allow for an assured conclusion. The IR-selected AGNs
occupy even smaller halos of Mhalo ≤ 1012h−1M� masses. In this case, the authors
also made a hypothesis of IR-selected AGNs being present in the central galaxies of
the small halos.

As it was briefly mentioned in the Sec. 2.2, radio, X-ray and IR AGN selection
methods sample different ranges of Eddington ratio. In the Hickox et al. (2009),
authors showed that X-ray selected AGNs sample almost the whole Eddington ratio
range of 10−3 ≤ L/LEdd ≤ 1, while radio-selected AGNs sample lower limit of
the distribution (L/LEdd ≤ 10−3) and IR-selected AGNs represent the upper limit
(L/LEdd ≥ 10−2).

These observations were interpreted by the authors of the discussed work as
an AGN complement of the previously discussed galaxy evolution model. In this
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scenario, a radiative phase of the AGN and formation of the stellar bulge occurs
when the dark matter halo reaches a mass of 1012 - 1013M�. After this episode, star
formation in the host becomes suppressed, and AGN mode changes from radiative
(represented by optically and IR-bright AGNS) to kinetic mode (i.e., radio-bright
sources). Let us briefly summarize the picture of AGN and galaxy co-evolution
described in this section from the perspective of the present work. Different methods
of AGN selection allow us to trace different episodes of the AGN accretion modes,
different host galaxies, and different environments and dark matter halo sizes. These
properties make the statistical analysis of AGN catalogs a very powerful astrophysical
and cosmological tool. Thus, increasing the multi-wavelength catalogs volume and
preserving the high purity and completeness of these catalogs is crucial for modern
cosmological studies.
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3
Data

3.1 Sky surveys of the North Ecliptic Pole Field

The region of the North Ecliptic Pole (NEP; α(J2000) = 18h00m00s, δ(J2000) =
66◦33′88”, in Galactic coordinates l = 96◦.4, b = 29◦.8) is one of several deep sky
fields observed by unprecedentedly large number of instruments giving us a broad,
panchromatic view on the nature of astronomical objects. Space telescope missions
often choose the NEP region due to the convenience of observation from geocentric or-
bit and its properties with respect to the extragalactic studies: NEP is a non-distinctive
region of the sky at relatively high galactic latitude. This combination allows one to
perform a deep survey and reduce the cosmic variance.

The NEP region, observed in various wavelength ranges, gives us a broad,
panchromatic picture of the deep sky, from X-ray to radio data. The high-energy
picture of NEP was first investigated by ROSAT X-ray space mission (Truemper, 1982).
The ROSAT NEP survey (Henry et al., 2001; Voges et al., 2001; Henry et al., 2006)
observed a wide area of 80.6 deg2 centered around NEP (see also recent release of the
updated ROSAT NEP catalog in Hasinger et al., 2021). This catalog, together with
optical follow-up (Gioia et al., 2003), was used for many studies on galaxy clusters
(Gioia et al., 2001; Mullis et al., 2001; Gioia et al., 2004; Pratt and Bregman, 2020),
AGN studies (Wolter et al., 2005)) or study of AGN-cluster interplay (Branchesi et al.,
2006; Cappelluti et al., 2007). Other X-ray telescopes performed observations of
the NEP region as follow-ups to the existing (or forthcoming surveys). The Chan-
dra telescope (Weisskopf et al., 2000) performed follow-up in the AKARI NEP-Deep
field (Krumpe et al., 2015) and NuSTAR (Harrison et al., 2013) performed follow-up in
the now planned James Webb Space Telescope North Ecliptic Pole time-domain field
(Zhao et al., 2021), which is a small field of 0.16 deg2 area near the NEP center. In the
near future the NEP region will be also observed with the eROSITA telescope (Predehl
et al., 2021) if the eROSITA comes back to operational mode.

Optical and ultraviolet studies of the NEP region were done almost exclusively as
follow-ups for particular fields observed by other, mainly IR instruments. Several
major IR missions observed the NEP field. The first deep IR observations were done
by the IRAS satellite (Neugebauer et al., 1984) in the MIR-FIR range (Hacking and
Houck, 1987) with succeeding radio follow-up with the VLA (Hacking et al., 1989).
This catalog provided observations for pioneering works on IR properties of galaxies
and galaxy evolution models (see, e.g., Hacking, Condon, and Houck, 1987; Hacking
and Soifer, 1991; Ashby, Houck, and Hacking, 1992). Next, IR observations in the NIR-
MIR range were performed by the AKARI (Murakami et al., 2007; Matsuhara et al.,
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2006), which performed probably the two most important and deepest IR observations
of the NEP region: AKARI NEP-Wide survey of 5.4 deg2 region (Lee et al., 2009) and
AKARI NEP-Deep survey, which covered 0.6 deg2 area (Wada et al., 2008). Both
of them were observed by numerous optical telescopes providing photometric and
spectroscopic data (e.g., (Jeon et al., 2010; Goto et al., 2017; Hwang et al., 2007; Huang
et al., 2020; Oi et al., 2021). Additional far-infrared follow-up of the AKARI NEP
region was performed by the Herschel satellite (Pilbratt et al., 2010). It observed
two AKARI NEP fields with two different instruments: AKARI NEP-Wide field
was covered by longer-wavelength SPIRE (Griffin et al., 2010) instrument (Pearson
et al., 2017), while AKARI NEP-Deep was observed by PACS (Poglitsch et al., 2010;
Pearson et al., 2019). Moreover, the AKARI NEP field was also covered by GALEX
satellite (Martin et al., 2005) providing observations in near- and far-UV (Burgarella
et al., 2019). Additional long-wavelength observations of the AKARI NEP-Deep were
performed by the JCMT/SCUBA2 (Holland et al., 1999) in the sub-mm range (Geach
et al., 2017; Shim et al., 2020) and by The Westerbork Radio Synthesis Telescope
in the radio wavelengths (White et al., 2010)). After accomplished observations
of AKARI, the deep field NIR-MIR data of the NEP region was collected by two
other major IR space observatories. The first one was the WISE telescope (Wright
et al., 2010). With several hundreds of passages through the NEP, it was able to
create a deep field catalog of 1,5 deg2 area (Jarrett et al., 2011). Second one was the
Spitzer telescope (Werner et al., 2004), which covered larger, 7.04 deg2 area (Nayyeri
et al., 2018). The NEP field was also observed by the specialized CIBER (Bock
et al., 2013) instrument used for studies on the nature of the near-infrared cosmic
background (Zemcov et al., 2014).

This multi-wavelength data collected in the NEP region was used in a large
number of extragalactic studies. These were numerous studies of AGN properties
(see, e.g. Wang et al., 2020; Yang et al., 2020; Chiang et al., 2019; Santos et al., 2021;
Barrufet de Soto et al., 2017, galaxy evolution (see, e.g., Kim et al., 2015; Oi et al., 2017;
Kim et al., 2019; Goto et al., 2019; Barrufet et al., 2020; Kim et al., 2021a) or galaxy
cluster studies (see, e.g., Solarz et al., 2015; Seo et al., 2019; Huang et al., 2021) to name
a few. Besides strictly astrophysical research, the NEP data was used for applied
machine learning studies. These were methods for automatic AGN selection in IR
and multi-wavelength data (Poliszczuk et al., 2019; Poliszczuk et al., 2021; Chen et al.,
2021), star-galaxy separation (Solarz et al., 2012) or deep learning models for galaxy
mergers selection in the optical data (Pearson et al., 2022).

3.2 Multi-wavelength catalog of AKARI NEP-Wide field

As discussed in previous sections, understanding the IR properties of different galaxy
populations is crucial to understanding star-formation history, galaxy evolution, and
AGN feedback processes. For these purposes, the most complete multi-wavelength
catalog in the NEP region is provided by the recently published multi-wavelength
merged catalog of the AKARI NEP-Wide field (Kim et al., 2021b). This catalog is
based on the AKARI NEP-Wide source catalog (Lee et al., 2009; Kim et al., 2012),
cross-matched with optical counterparts provided by the broadband optical follow-
up of SUBARU/HSC (Oi et al., 2021). A final, cross-matched catalog of 91,861 AKARI
sources is supplemented with existing measurements from other instruments making
this data set a broad, panchromatic picture of the NEP field.

The AKARI space telescope (Murakami et al., 2007) was launched in 2006 and per-
formed three main surveys: an all-sky infrared survey in the MIR-FIR range (Ishihara
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et al., 2010; Doi et al., 2015), as well as two deep-sky surveys in the NEP region in the
NIR-MIR range (Matsuhara et al., 2006). The larger, circular area of∼5.4 deg2 centered
around NEP was covered by the AKARI NEP-Wide survey (Lee et al., 2009; Kim et al.,
2012). In contrast, the smaller ∼0.6 deg2 area of the AKARI NEP-Deep survey (Wada
et al., 2008) is located on the side of the NEP center in order to match pre-existing
optical follow-up (Takagi et al., 2012). The AKARI satellite carried two separate
focal-plane instruments. The first one was the Far-Infrared Surveyor (FIS; Kawada
et al., 2007) created for the FIR survey in four bands spanning the 50–180 µm range.
The second was InfraRed Camera (IRC; Onaka et al., 2004), covering the 2–26 µm
range with three different channels: NIR (2–5 µm), MIR-S (5–12 µm), and MIR-L
(12–26 µm).

The NEP field was also observed with the Spitzer telescope. However, the AKARI
satellite has several unique properties, making it better suited to portrait NEP in the
NIR-MIR range. First, a very important property is the unique continuous coverage
of the 2–26 µm range. It allows filling the 8–24 µm gap in the Spitzer photometry,
which is crucial for studying SFG and AGN MIR properties. Moreover, IRC FOV
is almost four times larger than the FOV of the Spitzer/IRAC instrument, which
allowed to significantly increase the mapping speed of the survey (about 100 times
faster than IRAC) and reach a similar survey depth, despite a shorter lifetime of the
AKARI instrument in its cryogenic phase (Matsuhara et al., 2006).

Initial broadband optical follow-up of the AKARI NEP-Wide field was performed
with two telescopes: Canada-France-Hawaii Telescope (CFHT; Hwang et al., 2007)
and Maidanak (Jeon et al., 2010). These catalogs had two main limitations: first, the
depth of both catalogs was insufficient to match optical counterparts to the IR source
of the AKARI catalog. Moreover, these two follow-ups were characterized by different
depths and bandpass transmission curves, making it impossible to homogeneously
analyze the multi-wavelength AKARI NEP-Wide catalog (Goto et al., 2017; Kim et al.,
2021b). In order to solve this issue, a deep uniform optical survey with SUBARU/HSC
instrument (Miyazaki et al., 2012) was proposed (Goto et al., 2017). Observations were
taken in two campaigns. First observations were performed with r band in August
2015 and suffered from bad seeing as well as the dome shutter opening error, giving
shallower observations compared to the rest of the passbands (g, i, z, and Y), which
were used in the second observation campaign in 2018 (Oi et al., 2021). The data
reduction was performed with the official pipeline, hscPipe 6.5.3 (Bosch et al., 2018).
Obtained data were presented in terms of Cmodel AB magnitude system photometry,
which is relatively robust against fluctuations caused by seeing conditions(Huang
et al., 2018). Comparing the final SUBARU/HSC catalog with previous CFHT and
Maidanak data shows that new HSC observations are 1.7 – 2.5 deeper in g, r, i, and
z bands. The new merged catalog is richer in ∼20,000 AKARI sources matched to
optical counterparts. Most of these objects are presumably faint galaxies (Kim et al.,
2021b).

The total number of 111,535 IR AKARI sources were matched with a 3-σ radius
(corresponding to 1".78) with HSC optical counterparts. Out of these objects, catalogs
of final, clean matches (91,861) and spurious/flagged matches (19,674) were selected.
In addition to pipeline flags, magnitude limits were applied to the NIR AKARI
passbands. The bright end limit is occupied by spurious sources as well as flagged
stars (Kim et al., 2012), while the faint end does not go beyond the detection limit.
This new merged catalog is also supplemented with improved photometric redshifts
(Ho et al., 2021), smaller spectroscopic follow-up data (Shim et al., 2013) as well as
multi-wavelength data from X-ray to the sub-mm spectral range described in the
previous section.
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3.3 Training and generalization samples

This section describes important methods of training sample creation and determi-
nation of a generalization sample limit. Both of these results were described and
published in Poliszczuk et al. (2021). The specific way of training sample creation
(see Sec. 3.3.1) allows one to indirectly impose the MIR information into the model
structure during the learning phase. In the first publication Poliszczuk et al. (2019),
research on the extrapolation risk during IR photometric data classification was
performed. It showed difficulties in controlling model performance in the regions
of the generalization sample, which were not represented by the training data. In
order to avoid extrapolation and a consequent reduction of model reliability, we use
the generalization sample limit created by the MCD algorithm (see Sec. 3.3.2). This
method was never used in astronomy before. It allows one to precisely control the
performance of the model and avoid the risk of extrapolation.

3.3.1 Training sample

In the present work, AGN selection is made using optical and NIR broadband pho-
tometry. However, for supervised machine learning algorithms (see Sec. 3), one also
needs a sample with known class labels called training sample in order to train a classi-
fication model and later predict labels on the sample without labels via generalization
procedure. The latter unlabeled sample is referred to as the generalization sample.
Most of class labels were taken from optical spectroscopic follow-up performed in the
AKARI NEP-Wide field (Shim et al., 2013) by MMT/HECTOSPEC (Fabricant et al.,
2005) and WYIN/HYDRA (Barden et al., 1993) instruments, together with small num-
ber of additional spectra taken by Keck/DEIMOS (Faber et al., 2003), GTC/OSIRIS
(Cepa et al., 2000) and SUBARU/FMOS (Kimura et al., 2010) spectrographs, by the
members of AKARI NEP Team.

The main spectroscopic survey described in Shim et al. (2013) observed two cate-
gories of objects. The first group was primary spectroscopic targets, which were se-
lected as objects bright in AKARI MIR passbands (S11<18.5 mag and L15<17.9 mag).
An additional optical limit in the Maidanak R band was imposed (16<R<21−22.5 mag
depending on a spectrograph) to select objects bright enough in optical light for spec-
troscopic observations. The second group was secondary targets of specific classes. In
particular AGN candidates in Shim et al. (2013) were selected according to color-cut
method developed for AKARI NEP-Deep data (Lee et al., 2007). This technique
defines AGN-dominated region as:

S11 < 18.5 magAB,
N2− N4 > 0,
S7− S11 > 0.

(3.1)

These limits allowed to select objects with a high probability of being characterized by
the prominent torus dust emission and characteristic power-law NIR-MIR SED shape.
In the further part of this work, these objects, with spectroscopic class confirmation as
well as at least one emission line with Full Width at Half Maximum (FWHM) larger
than 1000 km/s (Shim et al., 2013) will be referred to as AGN1. It is crucial to note two
important aspects of the training sample construction. First is that stars present in
the NEP field (mostly in the bright end of the NIR distribution) were removed from
the AKARI/HSC merged catalog through procedures described in Kim et al. (2021b),
thus in this work, we are performing two-class galaxy-AGN separation. The second is
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band catalog size labeled data
g 89 835 1 870
r 89 431 ( 88 642) 1 869 ( 1 867)
i 87 385 ( 86 186) 1 864 ( 1 860)
z 89 028 ( 86 023) 1 871 ( 1 859)
Y 86 587 ( 84 874) 1 862 ( 1 856)
N2 61 679 ( 59 845) 1 650 ( 1 637)
N3 74 475 ( 54 152) 1 743 ( 1 598)
N4 66 134 ( 45 841) 1 722 ( 1 547)
S7 5 041 ( 4 168) 998 (918)
S9 9 316 ( 3 536) 1 360 (882)
S11 9 147 ( 3 167) 1 320 (843)
L15 8 688 ( 2 404) 1 070 (729)
L18 10 258 (2 294) 1 131 (704)
L24 2 450 (1 208) 520 (437)

TABLE 3.1: Number of objects detected in particular SUBARU/HSC
and AKARI/IRC passbands. Numbers in brackets show sources with
measurements existing in all previous passbands corresponding to
shorter wavelengths. Catalog size refers to all objects present in clean
sources catalog (Kim et al., 2021b). Labeled data refers to the sub-
sample of objects with existing spectroscopic class (Shim et al., 2013)
or detection of strong X-ray emission detected by Chandra (Krumpe

et al., 2015).

that an optically confirmed AGN training sample was selected using targets obtained
from the MIR color technique. Thus, the MIR properties of these AGNs indirectly
affect the properties and distribution of the sample in optical and NIR bands.

An additional set of class labels was taken from X-ray observations performed
by the Chandra telescope in the AKARI NEP-Deep field (Krumpe et al., 2015). In
this case, objects with high X-ray luminosity defined as log LX >41.5 erg/s in the
0.5-7 keV range were defined as X-ray AGNs. This luminosity limit allows one to
include both Seyfert and quasar objects in this group. This class will be referred to as
XAGN.

Final training (and generalization) data were expected to be detected in all SUB-
ARU/HSC (g, r, i, z, Y) bands as well as all AKARI/IRC NIR bands (N2, N3, N4). It
results in a training sample consisting of 1547 objects: 1348 galaxies and 199 AGNs
(163 AGN1 and 36 XAGN). Table 3.1 shows how the number of objects detected
in particular bands changes while moving from the optical to MIR range. While
this change does not seem to be so crucial in the case of the labeled sample (target
pre-selection for the spectroscopic observations was limited to the bright, prominent
objects), the whole catalog suffers a severe limitation while moving towards MIR
passbands. The number of detections in the L24 band comprises only ∼3% of the
catalog with detection in the g optical band. Another visible tendency is the signifi-
cant decrease in the number of objects moving from NIR to MIR samples. This table
perfectly illustrates the necessity for a more efficient AGN selection mechanism.

To analyze the main properties of the training sample, let us look at Fig. 5.3,
where class distributions are analyzed with respect to the N2–N4 color. The choice of
this particular color property is not accidental. The difference between the object’s
brightness in N2 and N4 passbands can show us two important properties: steepness
of the power-law AGN SED shape in the 3–8µm range as well as the presence of
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1.6µm stellar bump in the case of high redshift SFG. Due to the above reasons and
good AGN-galaxy separation, the color-magnitude plot of N2–N4 color combined
with N4 band is often used for AKARI data visualization (see, e.g., Lee et al., 2007;
Lee et al., 2009. As we see in Fig. 3.1a, N2–N4 gives a good distinction between
the main AGN1 locus and the center of the galaxy distribution. Due to the lack
of stars in the catalog, the stellar locus is empty in this plot. The stellar class is
located in the lower-left corner, i.e., the place for objects characterized by the large
flux in the NIR band and blue N2–N4 color. Comparing Fig. 3.1a to Fig. 3.1b, we
see that the main contamination of the AGN locus in the N2–N4 distribution comes
from the high-redshift SFG, as it was discussed in the previous Chapter. Thermal
dust emission from the torus is further taken use of in the traditional MIR AGN
selection technique applied for the AKARI data (Eq. 3.1). Results of this classification
is presented in Fig. 3.1c. AGN selection conditions were slightly relaxed in this figure,
i.e., the S11 < 18.5 requirement was removed, so the additional small sample of
spectroscopically confirmed AGNs and XAGNs were included in the classification
scheme. The lack of this limit does not strongly affect classification efficiency, and
one can still see a clear separation between the galaxy and AGN classes.

The XAGN sample distribution causes a separate problem. As one can see, it does
not have a well-defined locus, and XAGN sources are scattered all over the space
assigned to both AGN and galaxy classes. The main reason for this behavior is the
difference between X-ray and IR AGN selection. As was discussed in the previous
Chapter, NIR-MIR AGN selection can only identify AGN with a high Eddington ratio
(i.e., L/LEdd ≥ 0.01). Thus AGNs which are fueled by radiatively inefficient accretion
flows (which are also often lacking signs of broad-line region (Trump et al., 2009))
may escape NIR-MIR (as well as optical) selection (Donley et al., 2012).

The final topic that will be addressed in this Section is the accuracy of photomet-
ric redshift estimation. Photometric redshifts used in this work were included in
SUBARU/HSC - AKARI/IRC merged catalog (Ho et al., 2021). They were obtained
via the χ2 template-fitting method Le Phare (Arnouts et al., 1999; Ilbert et al., 2006)
and were based on multiple photometric bands from the UV-IR range. A comparison
between spectroscopic redshift and photometric redshift estimation based on meth-
ods described in Ilbert et al. (2006) is presented in Fig. 3.2. We see a good agreement
between spectroscopic and photometric redshift at lower redshift (z < 1.5) for both
galaxy and AGN classes. The larger redshift range, occupied mainly by the AGN
class, shows a significant bias towards lower redshifts, smearing high-redshift AGNs
all over the redshift range. This discrepancy is caused by the lack of an AGN template
used for photometric redshift estimation (Ho et al., 2021), making analysis of redshift
properties of AGN candidates catalog very challenging.

3.3.2 Generalization sample and MCD limit

In the very nature of supervised learning, a classification model can only recognize
observations that relate to the training sample’s properties. This characteristic leads to
two important consequences. First, we can manipulate the properties of the training
sample in order to emphasize some specific behavior of the classifier. Instance weights
of specific properties or MIR-based target selection of spectroscopic observations used
in the training sample belong to this class of manipulations. The second consequence
is the inability of a classifier to properly extrapolate its predictions beyond the region
in the feature space occupied by the training sample. This second consequence
imposes an important limitation on the generalization sample. Its properties in
the feature space should not be substantially different from the properties of the
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FIGURE 3.1: Training sample properties. Panel A: N2–N4 vs N4 color-
magnitude plot of the training data. Panel B: Plot of the N2–N4 color
against spectroscopic redshift. Here XAGN are missing since they do
not have measured spectra. Panel C: N2–N4 vs S7–S11 color-color plot

used in Lee et al. (2007) for AKARI MIR AGN selection.

training sample. Such a situation is problematic because the classifier does not have
information about the regions outside the training sample and because we cannot
test its performance in those regions. Without training data observations, we cannot
calculate any evaluation metric. Thus both a model and a scientist who trains it
remains blind in those outside regions.

Limits imposed on the astronomical data usually take the form of color and
magnitude cuts. However, while this approach allows one to preserve a simple
form of the selection function, it does not satisfy the general demands of supervised
learning. The main reason is that simple color and magnitude cuts cannot properly
define the limits of the high-dimensional manifold created in the feature space by the
training sample and may leave regions where a classifier would have to extrapolate
in order to make a prediction.

This work was an attempt to fulfill both requirements: to construct an effective
limit for a generalization sample in the high-dimensional space and preserve a
relatively simple, where reconstruction of the selection function remains possible.
To achieve both of these goals, a well-established method of minimum covariance
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FIGURE 3.2: Comparison between the spectroscopic redshift and pho-
tometric redshift estimation from Ho et al. (2021) for labeled galaxy
(blue dots) and AGN (red circles) data. The cone created by dotted
lines refer to zphot = zspec ± 0.15× (1 + zspec). The η describes the
fraction of outliers (or catastrophic errors) defined as objects outside
the cone. Sigma is the normalised median absolute deviation defined
as σ = 1.48 ×median(|∆z|/(1 + z)). Lower plot shows the mean

residuals with standard deviations. Only z < 3 objects are shown.

determinant estimator algorithm (MCD, Rousseeuw and Driessen, 1999) was used.
The MCD method allows one to fit a high-dimensional ellipsoid to the training data
set and limit the shape of the generalization sample to the ranges of this ellipsoid. The
MCD method has a single free parameter α called contamination rate. This parameter
controls the amount of data (in our case, training sample observations) allowed
outside an ellipsoid.

In order to create a shape reflecting the distribution of the training sample, two
separate ellipsoids were fitted to galaxy and AGN classes separately. It was done
to avoid two problems. First, galaxy and AGN classes may have very different
distributions in the high-dimensional space, and an effective fit of a single ellipsoid
might not be possible. Second, a strong imbalance of two classes may lead to a further
diminishing of AGN observations during the α parameter tuning process. Search
for an adequate α parameter value was done via inspection of Mahalanobis distance
distribution. The Mahalanobis distance dM is defined as:

dM(~x) =
√
(~x−~µ)TΣ−1(~x−~µ), (3.2)

where ~x points towards observation location, ~µ is the vector of mean feature values,
and Σ is the covariance matrix. Fig. 3.3 presents Mahalanobis distance histograms
for AGN and galaxy classes. Choice of α value is subjective and depends on the
specific application of the MCD algorithm. There was no need for a large α value,
which corresponds to very conservative limits. The main purpose of MCD limit was
the extrapolation avoidance during the generalization phase. Thus, the α value was
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selected to correspond to the dM range, where histogram discontinuities or where
a large decrease in the number of objects occurs. It was chosen to be α = 0.065
(dM ' 43) and α = 0.05 (dM ' 80) for AGN and galaxy classes respectfully. Two
different ellipsoids with corresponding α values were fitted to AGN and galaxy
classes, and the generalization sample shape was limited to these ellipsoids. Thus
final generalization sample consists of objects which belong to at least one ellipsoid.
These limits were created in the optical-NIR magnitude space, not the final feature
space where predictions were made, to preserve the simple shape of the imposed
cuts.

Application of the MCD limit (together with the detection requirement in optical
HSC and NIR IRC passbands, which limits catalog size to 45 841 sources) gives
us a final generalization sample made of 33 119 objects. Statistical comparison
between training and generalization samples is presented in Tab. 3.2. Here we see
that median values of the generalization sample are shifted towards the faint end of
the distribution. It is caused by the properties of the training sample, where additional
optical brightness conditions were imposed to perform spectroscopic measurements.
At the same time, ranges of distributions in particular bands of generalization sample
remain within training sample boundaries (except in a few cases, such as the faint
end of the g band). Another analysis of generalization sample properties is presented
in Fig. 3.4, 3.5. Fig. 3.4 shows brightness distribution in optical and NIR-MIR IRC
passbands. We see that MCD-limit cuts the faint end of the distribution, especially in
the optical part of the electromagnetic spectrum. Fig 3.5 shows distribution of N2–N4
color. Here we see a very strong reduction of objects characterized by N2–N4 = 0,
which is a part of the color distribution occupied mainly by low-redshift non-active
galaxies.
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FIGURE 3.3: Mahalanobis distance histograms for AGN and galaxy
training samples. Panel a: AGN sample. Panel b: galaxy sample.
Dashed red lines correspond to a particular contamination parameter
value of the MCD algorithm used to limit generalization data set to

the training sample range.
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median MAD min. max.

Training sample
zspec 0.339 0.308 0.001 4.320
zphot 0.387 0.289 0.002 2.394
g 21.075 1.313 16.224 27.109
r 20.126 1.188 15.594 26.264
i 19.610 1.101 15.254 25.214
z 19.296 1.066 15.056 24.781
Y 19.119 1.059 14.850 24.278
N2 18.543 0.859 14.079 20.814
N3 18.692 0.732 14.528 20.638
N4 18.951 0.711 15.007 20.935

Generalization sample
zphot 0.484 0.241 0.005 2.841
g 22.353 1.380 16.425 28.073
r 21.096 1.252 15.529 25.654
i 20.327 1.123 15.065 24.467
z 19.945 1.050 14.779 23.708
Y 19.752 1.015 14.586 23.430
N2 19.158 0.662 14.366 20.899
N3 19.325 0.554 14.829 20.979
N4 19.723 0.539 15.289 20.999

TABLE 3.2: Statistical properties of the training and generalization
samples. Median, median absolute deviation (MAD), minimal and
maximal values for redshift and photometry in broad-band fileters

used in training and generalization.
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FIGURE 3.4: Histograms of the brightness distribution in optical and
NIR passbands in MCD-limited generalization sample (red, filled
histogram) and original SUBARU/HSC-AKARI/IRC merged catalog
(Kim et al., 2021b) (black, dashed line). Panel A: SUBARU/HSC r band.
Panel B: AKARI/IRC N2 band. Panel C: AKARI/IRC S9W band. Panel

D: AKARI/IRC L18W band.
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FIGURE 3.5: Histogram of N2−N4 color distribution for MCD-limited
generalization sample (red) and original SUBARU/HSC-AKARI/IRC

merged catalog (Kim et al., 2021b) (black, dashed line)
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4
Machine learning techniques

4.1 Supervised classification

This section will discuss the concept of supervised learning and present several super-
vised learning algorithms used in this. This section was inspired by the explanation
presented in the following two books Hastie, Tibshirani, and Friedman (2001) and
Bishop (2006). The supervised learning is a branch of machine learning, where a model
is trained on the data with known labels. These labels often referred to as a target,
might be discrete class labels in the case of the classification task or continuous values
in the case of a regression problem. In the supervised setting, labeled data is repre-
sented by two sets of parameters. One set relates to the data labels. This label might
be a one-dimensional label or a vector of labels in the case of more complex learning
tasks. Label (or target) will be denoted by y. Another set of parameters is called a
feature set, and it is common for both labeled and unlabeled data and will be denoted
by x. Thus each object in the labeled data, which will also be referred to as observation
is defined by the pair (xi, yi).

The supervised model tries to learn the connection between features and labels
on the labeled data. Once the model learns this mapping, it can predict labels on
the unlabeled data using a representation of the unlabeled data in the feature space.
This process of prediction on the unlabeled data is known as generalization. We will
refer to the labeled data as training data and to unlabeled data as generalization data.
In the classification problem, the supervised model tries to learn how to assign class
labels to the data based on their properties in the feature space. The basic form of
classification, which is used in this work, is the discrimination between two classes.
This type of classification is known as binary classification and classes are often referred
to as positive and negative with assigned targets y = 1 and y = −1 respectively.

In order to find the most suitable model for a specific learning task, one should
perform a model selection process. First, a machine learning algorithm should be
tested with various hyperparamters combinations of the model. Hyperperparameters
define specific tunable properties of the algorithm. It is also a good practice to test
different types of machine learning algorithms in order to find the best one. The need
for hyperparameter tuning and testing of various learning algorithm types can be
explained from the perspective of bias-variance trade-off. The model’s bias describes
the strength of the assumptions model makes about the prediction. For example,
linear models tend to have a larger bias than more flexible non-linear models. Thus,
too high bias lead to the model rigidity and inability to adapt to the training data.
This phenomenon is known as underfitting. However, reducing the bias of the model
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cannot be treated as a remedy for poor classifier performance. A model which will
be too flexible may learn the distribution of the training data too precisely. In this
case, the model learns not only the real properties of class populations but also
the statistical noise present in the training sample. This phenomenon is known as
overfitting. Overfitted model is characterized by low bias and high variance. The
high variance model is very sensitive to every small change in the training data,
which makes it prone to learning the noise component of the data distribution. Such
a model, while having good results on the training data, will not generalize well.
The model training and later model selection are important steps allowing to find a
trade-off between bias and variance of the final classifier.

4.1.1 Linear models and logistic regression

If the decision boundaries are linear, we refer to the model as a linear classification
method. In the simplest approach a linear decision boundary can be created by fitting
a linear model for the target variable:

fi(x) = θi0 + θT
i1x, (4.1)

where i is the class label, x is the observation and {θi0, θi1} are the model parameters.
The decision hyperplane between the classes 1 and 2 is created by the point for which
f1(x) = f2(x) that is:

{x : (θ10 − θ20) + (θ11 − θ21)
Tx = 0}. (4.2)

In this work I used the logistic regression algorithm as a representation of the
linear classification models family. A linear regression algorithm models the posterior
probability as a linear function of observations. In a binary classification case the
posterior probability is modeled as:

P(k = 1|X = x) =
exp(θ0 + θT

1 x)
1 + exp(θ0 + θT

1 x)
= p(x; θ)

P(k = 2|X = x) =
1

1 + exp(θ0 + θT
1 x)

= 1− p(x; θ),
(4.3)

where θ = (θ0, θ1). In order to preserve linear decision boundaries one can apply a
monotone logit transformation:

log(
p

1− p
) = θ0 + θT

1 x. (4.4)

Thus a separating hyperplane is created by the set of points for which logit transfor-
mation is equal to zero.

A logistic regression model is fit by a maximum likelihood method, using a con-
ditional log-likelihood of class k, given observation x. In terms of machine learning,
we are working on the minimization of the negative log-likelihood, which gives the
cross-entropy error function. Working on a binary classification example, where ki = 1
gives a response target value yi = 1 and ki = 2 gives yi = 0, a log-likelihood for N
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observations is defined as:

l(θ) =
N

∑
i=1

log pki(xi, θ)

=
N

∑
i=1

[yi log p(xi, θ) + (1− yi) log(1− p(xi, θ)]

=
N

∑
i=1

[
yiθ

Txi − log(1 + exp(θTxi)
]

.

(4.5)

Here we assume the vector n-dimensional input vector xi becomes (n+1)-dimensional
and includes 1 to accommodate an intercept parameter θ0. Thus the error function is
defined as

E(θ) = −l(θ). (4.6)

To minimize the error function (and to maximize log-likelihood) we set its derivatives
to zero obtaining n+1 nonlinear equations:

∂E(θ)
∂θ

=
N

∑
i=1

xi [log p(xi, θ)− yi] = 0, (4.7)

The error function is minimized by the Netwon-Raphson iterative optimization
technique (Fletcher, 1987)

θnew := θold −H−1∂θE(θ), (4.8)

where H is a Hessian matrix made of second derivatives of error function:

H :=
∂2E(θ)
∂θ∂θT =

N

∑
i=1

xixT
i p(xi, θ)(1− p(xi, θ)). (4.9)

After the optimization of the model parameters, it is used to make final predictions
on the data. A model can be further modified by adding a penalty term, which is
often based on L1 or L2 norms. Adding the normalization imposes restrictions on the
model during the learning phase and improves its performance. In this case, an error
function gains an additional regularization term R(θ), which form depends on the
regularization strategy:

E(θ) =
N

∑
i=1

[
yiθ

Txi − log(1 + exp(θTxi)
]
− C R(θ). (4.10)

The C parameter controls the strength of regularization and can be tuned. Moreover,
the logistic regression model can be further tuned with the class or instance weights
by introducing constant weights under the sum present in the log-likelihood function.

4.1.2 Support vector machine

Another group of methods for class separation is based on searching for a hyperplane,
which maximizes the margin between classes in training data. A popular algorithm
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that uses this approach is the support vector classifier (SVC). For a non-separable case,
an SVC optimization problem can be defined as

max
θ1,θ0,‖θ1‖=1

M

subject to yi(θ
T
1 xi + θ0) ≥ M(1− ξi), i = 1, N

∀i : ξi ≥ 0,
N

∑
i=1

ξi < const,

(4.11)

where M refers to the margin between class and separating hyperplane (thus margin
between two classes is equal 2M). The ξ = {ξi}i=1,N parameter controls the misclas-
sification rate of the model. A particular point xi is misclassified when ξi > 1. The ξi
is also proportional to the distance of prediction displacement on the wrong side of
the margin. By introducing bounding condition ∑N

i=1 ξi < const, we can control the
total amount of misclassifications on the training data.

Equations 4.11 describes a standard formulation of the support vector classifier
and forms a convex optimization problem (a quadratic programming problem with
linear inequality constraints). It can be solved via the Lagrange multipliers method.
We remove the norm constrain on the θ1 parameter by defining

M =
1
‖θ1‖

, (4.12)

which transforms 4.11 problem into minimization of ‖θ1‖. By additional replacing a
constant, which controls the number of misclassifications by the tunable cost parameter
C, we obtain an equivalent form of 4.13 optimization problem, which is more useful
from the computational point of view:

min
θ1,θ0

1
2
‖θ1‖2 + C

N

∑
i=1

ξi

s.t. ∀i : ξi ≥ 0, yi(θ
T
1 xi + θ0) ≥ 1− ξi.

(4.13)

Now we can construct a Lagrangian primal function

Lp =
1
2
‖θ1‖2 + C

N

∑
i=1

ξi −
N

∑
i=1

λi[yi(θ
T
1 xi + θ0)− (1− ξi)]−

N

∑
i=1

µiξi. (4.14)

After minimizing Lp with respect to θ1, θ and ξi and setting respective derivatives to
zero, we obtain three conditions:

θ1 =
N

∑
i=1

λiyixi,

0 =
N

∑
i=1

λiyi,

λi = C− µi.

(4.15)

By applying these conditions together with positivity constraints on Lagrange multi-
pliers and ξi, we obtain a Lagrangian dual objective function:

Ld =
N

∑
i=1

λi −
1
2

N

∑
i=1

N

∑
j=1

λiλjyiyjxT
i xj, (4.16)
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which gives a lover bound on the objective function presented in Eq.’s 4.13. After
maximizing Ld subject to 0 ≤ λi ≤ C and second condition from 4.15 we obtain three
additional conditions:

λi[yi(θ
T
1 xi + θ0)− (1− ξi)] = 0,

yi(θ
T
1 xi + θ0)− (1− ξi) ≥ 0,

µiξi = 0.

(4.17)

Both sets of constraints, 4.15 and 4.17 form so-called Karush-Kuhn-Tucker (KKT)
conditions. These, together with 4.18 uniquely characterize the solution of the
optimization problem. Moreover, the KKT conditions define an important subsample
of observations characterized by non-zero λi parameter value called support vectors.
Some of these points with ξi = 0 will lie on the margin and would be used to create a
separation hyperplane, while support vectors with ξi > 0 will lie beyond the margin.

The support vector machine (SVM, Cortes and Vapnik, 1995) is an extension of
the support vector classifier (SVC). The support vector classifier is a linear method
that operates in the original feature space. It can become more flexible by adding
artificial dimensions made of combinations of original features. This way, a starts
acting in a non-linear way. In the SVM, these artificial features are introduced via
kernel function k(x, x′) containing original features only in the form of inner products.
This modification is known as kernel trick and does not require knowledge about
the exact mapping between the initial feature space and the new high-dimensional
feature space (see Cortes and Vapnik, 1995 for an in-depth discussion on the kernel
trick properties). The introduction of the kernel function transforms the Lagrangian
dual objective function into

Ld =
N

∑
i=1

λi −
1
2

N

∑
i=1

N

∑
j=1

λiλjyiyjk(xi, xj). (4.18)

In this work, we use radial basis kernel function (RBF), defined as

k(x, x′) = exp(−γ‖x− x′‖2), (4.19)

where γ is a tuning parameter of the model. The SVM model was used in this work
in the traditional version described above as well as weighted version of SVM called
fuzzy SVM (Lin and Wang, 2002). In this case an additional fuzzy membership si is
introduced into the optimization problem:

min
θ1,θ0

1
2
‖θ1‖2 + C

N

∑
i=1

siξi

s.t. ∀i : ξi ≥ 0, yi(θ
T
1 xi + θ0) ≥ 1− ξi.

(4.20)

This way, different observations present in the training data can have different impacts
on the learning process. Such weights may be applied in an instance weights manner,
where each object has a different weight. They can also be applied in the form of class
weights, where smaller class objects have larger weights in order to increase their
importance and shift the decision boundary outwards from the smaller class.

Posterior probability estimation for the SVM is obtained in a similar way to the
logistic regression method. The output of the SVM classifier provides one a distance
of the object from the separating hyperplane. In order to calibrate them and transform
them into probability estimation, this distance is then fitted to the sigmoid function
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similarly to the Eq. 4.3. A detailed description of this procedure can be found in Platt
(1999).

4.1.3 Ensemble methods and decision trees

Another popular family of methods applied to classification problems is based on the
construction of decision trees. Most decision tree algorithms (including ones that are
used in this work) divide the feature space into rectangle fields with assigned labels
by applying recursive binary splitting. Thus each division obtained by the external
node m (without child nodes) in the tree can be identified with the obtained region
Rm. This type of decision tree is referred to as CART (classification and regression
tree) and was described in Breiman et al. (1984).

The response in a particular region Rm is modeled as a majority class label present
in this region in the training set. Let us define Nm as a number of observations in Rm
and pm as a probability of observing the positive class member in Rm, which can be
estimated via proportion of positive class observations in node m:

p̂m =
1

Nm
∑

xi∈Rm

I(yi = 1). (4.21)

In order to define the structure of the tree, we need to set up two mechanisms:
one is the search for an optimal binary partition performed in the node, and the
second is the way to establish an optimal tree depth. A decision tree is built by
creating a splitting node that uses a selected feature with a specific threshold. The
threshold applied to the feature divides the region of the feature space into two
separate sub-regions, above and beyond the threshold value. In a most basic form,
feature and separating threshold are selected in a greedy manner by minimizing
impurity measure in the node. Usually, a Gini index is used for this purpose. For a
two-class problem it can be simplified into a form:

QGiniIndex
m (T) =

K

∑
k 6=k′

p̂mk p̂mk′ = 2p̂m(1− p̂m), (4.22)

where p̂mk is the proportion of the class k in node m.
The creation of a fully grown tree is not always optimal. Tree size is treated as a

hyperparameter of the model, which controls the complexity (and thus the variance)
of the model and can be tuned. A simple approach might be the termination of the
growth of a tree when the accuracy of prediction does not improve with additional
splits. Such a method may not give optimal results because sometimes improvement
of the performance occurs not with every split. Instead, it may take place after several
splits. To avoid this problem and better control the tree size parameter, a method
called cost-complexity pruning is used. Let us denote a fully grown tree as T0 and T
being any pruned version of T0. Also let |T| denote number of terminal nodes in T,
where terminal node refers to a node with no child nodes. Let us define cost-complexity
criterion as

Cα(T) =
|T|

∑
m=1

NmQm(T) + α|T|, (4.23)

where m refers to a region Rm, Nm is the number of observations in that region, Qm
is the node impurity measure, and α is a tuning parameter. The cost-complexity
pruning method searches for a subtree that can most effectively minimize Calpha.



4.1. Supervised classification 35

Tuning parameter α allows one to control the bias-variance trade-off. Control on the
tree size and its general properties can be further developed via the application of
class-based and instance-based weights. This can be done during the procedure of
tree growth. The probability p̂m is obtained by calculating objects from a specific class
in the m region. Thus one can re-weight these objects before they are used for p̂m
estimation. Such modification will affect the impurity measure during tree growth
and, as a consequence, will modify the properties of the classifier. The same approach
to weighting is used for tree ensembles discussed in the following paragraphs.

While the decision trees perform very well on the training data, they are generally
characterized by a high variance and tendency to overfitting (Breiman et al., 1984).
To overcome this problem, the bagging averaging method is often used to reduce
the variance of the model. The bagging method is based on training an ensemble of
models on the bootstrap samples (training sample subsets drawn with replacement)
and averaging model predictions to obtain the final one. Thus if we define a set of B
bootstrap samples and obtain a class vote for observation from each tree, then the
final class prediction would be obtained via majority vote.

The task of the variance reduction of a tree-based model can be further modified
as it was done in random forest algorithm (Breiman, 2001). The variance of an average
result obtained from B identically distributed trees is defined as

σ2
A = ρσ2 +

1− ρ

B
σ2, (4.24)

where σ2 is the variance of a single tree, and ρ is the pairwise correlation. The first
term cannot be reduced by the increase of B. As a result, the correlation between
bagged trees limits their ability to reduce variance. The main idea of the random
forest is to combine the bagging method with the de-correlation of component trees in
order to further reduce the variance. Such de-correlation is done via random selection
of feature subset m before each split in the tree (i.e., this subset of features is used to
obtain the best feature and split point in each node). For the classification tasks, the
default size of the feature subset is b√pc, where p is the total number of input features.
Randomization in the tree construction can be pushed even further as it is done in
the extremely randomized trees algorithm (Geurts, Ernst, and L., 2006), where the final
threshold in the node split is obtained by setting random thresholds for features in
subset m and taking the best threshold as the final one. It is worth noting here that
both ensemble tree structure of both random forest and extremely randomized trees
algorithm allows one to obtain a straightforward way of probabilistic classification.
In most implementations, probability estimation is given by a majority vote among
the single classification trees in the ensemble.

In the traditional formulation of bagging, the expectation of an average of any of
the bootstrap samples is the same because of the tree models identical distribution.
Thus the bias of the bagged models is the same as of the individual component trees
and cannot be lowered. It is also true for random forests and extremely randomized
trees. An improvement in the prediction is made only by variance reduction.

In order to reduce the bias, one would have to build an ensemble out of trees
that are not identically distributed. Such an approach is used in the boosting method.
Boosting algorithms use weak classifiers - models, which are only slightly better than
assigning class labels by random guessing. Such weak learners are then stacked into
an M sequence, where the subsequent models are trying to correct the prediction of
the previous ones. The final prediction of the boosting algorithm can be expressed as
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a weighted combination of component models:

f (x) = sign

(
M

∑
m=1

αm fm(x, βm).

)
(4.25)

For the convenience of this equation, we changed labeling from {0, 1} to {±1}.
Weight αm describes the contribution of fm to the final prediction. During each step,
m training observations are re-weighted, which forces a subsequent classifier fm to
focus on problematic cases. Here βm is a set of parameters describing weak learner
fm. In the case of a decision tree, these would be split variables and split points in
particular nodes. A version of the boosting model that uses decision trees as base
learners is referred to as boosted trees. The forward stagewise boosting procedure is
a very greedy strategy. Thus, usually, boosting algorithms incorporate numerical
optimization via gradient boosting (see Hastie, Tibshirani, and Friedman, 2001 for
the review on boosted trees algorithm). In this work, we used a very popular and
effective XGBoost (Chen and Guestrin, 2016) implementation of gradient boosted
trees algorithm.

In addition, this work incorporates two ensemble methods that use strong clas-
sifiers, i.e., fully developed and fine-tuned models. These input models might be
selected classifiers of any type that showed the best performance. These additional
ensemble methods will be referred to as voting schemes or voters. The first type of
voter will be referred to as hard voter. It takes a majority vote from the input models
and uses it as a final prediction. The second type of voter will be referred to as stacked
classifier. It is a simple logistic regression model which uses probability estimations
from the input models as a feature set and makes a prediction based on the estimated
probability distribution properties. The basic idea of these methods is to further
reduce the variance of the final model and stabilize prediction in the case of the small
training data sample.

4.2 Performance evaluation

The effectiveness of the classification performed by a machine learning model on the
unlabeled data, destined for generalization, is usually estimated via evaluation metrics
calculated on the labeled data. Metrics calculated on the labeled data used to train
the model might show too high values due to the possibility of overfitting. Thus, in
order to obtain reliable metric scores, they should be calculated on the labeled data
that is taken out from the model training process. Such a procedure is referred to
as the training-test split. In such a split, a classifier is trained on one subset of the
labeled data, called the training set, and evaluated on another one, called the test set.
In order to further increase the accuracy of the evaluation and to reduce the effect of
the random division of the labeled data, this procedure is repeated several times. This
multiple-step evaluation is known as the n-fold cross-validation. Here the labeled set is
divided into n subsets, trained on (n− 1) and validated on the last one. This process
is repeated n times with different combinations, and the mean value of all validation
results is taken as a final estimation of the metric score. Cross-validation is especially
important in the case of a small amount of training data, where the risk of overfitting
is higher. It can be mitigated even further one can perform cross-validation many
times, shuffling the data before each iteration of the n-fold split.

Another problem relative to this work is the learning of imbalanced data. Different
sizes of classes in the training sample affect two aspects of the model learning process.
First, it has a major impact on the way in which the model separates classes. Usually,



4.2. Performance evaluation 37

if one class is much smaller than another, the model tends to shift the separation
plane towards a smaller class. It may have benefits due to the reduced contamination
of the smaller class at the expense of reduction of its completeness. Secondly, it affects
metric scores making them often overestimate the efficiency of model performance,
even when the performance of the model in a small class is very poor. Thus, in the
case of imbalanced data, one should choose evaluation metrics that will not be prone
to such effects (see, e.g., Fernández et al., 2018 for the in-depth discussion). In this
work, the main goal was to obtain a reliable catalog of AGN candidates. As was
discussed in Chapter 3, the AGN training sample is much smaller than the galaxy
sample. Thus, the emphasis was made on the proper evaluation of the classifier
performance on the smaller AGN class.

From now on, in this section, we will refer to the AGN class as positive and
the galaxy class as negative. From the astrophysical perspective, the most common
measures which describe catalog properties are its purity and completeness. The
purity of the positive (AGN) class is known in machine learning as precision and is
defined as

Precision =
Tp

Tp + Fp
. (4.26)

It shows what fraction of all objects classified as positive entities, i.e., true positives
(Tp) and false positives (Fp) are the real observations from the positive class (Tp).
Completeness of the AGN catalog is referred to as recall and is defined as

Recall =
Tp

Tp + Fn
. (4.27)

Recall defines the ratio of properly classified observations from a positive class (Tp)
to the whole sample of positive class, true positives, and false negatives. In order
to optimize both precision and recall during model training and to have an efficient
way to compare the performance of various models, one may use more compound
metrics, which are related to precision and recall. To be able to effectively control the
model performance on the positive class, a popular and well established choice is the
F1 score, which is a harmonic mean of precision and reacall:

F1 = 2× Precison× Recall
Precision + Recall

. (4.28)

Another metric tightly related to precision and recall is the precision-recall area under
curve (PR AUC). The precision-recall curve is created by calculating precision and
recall scores for different decision thresholds. Here comes an important limitation
of this score. In order to define various class separating probability-based decision
thresholds, one needs to be able to obtain probability estimations from a model. Thus
it is only suitable for algorithms that allow for probability estimation. Then area under
the precision-recall curve refers to the general effectiveness of the model without
focusing on any specific threshold. The larger area under the PR-curve, the better
the model is. The last metric used in this work is known as balanced accuracy (bACC)
and is less connected to both precision and recall. It was used to highlight a general
performance of the model, not focused specifically on a positive class. Balanced
accuracy is defined as

bACC = 0.5× (Precison + TNR). (4.29)
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The TNR in the equation refers to the true negative rate and is a precision counter-
part for a negative class:

TNR =
Tn

Tn + Fn
. (4.30)

4.3 Outlier detection and high dimensional visualization

4.3.1 Outlier detection with Isolation Forest algorithm

In addition to supervised classification, this work also addresses the problem of
unsupervised outlier detection. Making a simplification, we can define an outlier (or a
novelty) as an observation that does not fit the general trends of the data distribution.
Searching for this type of object may be challenging, specifically in the case of high-
dimensional data representation or large data volumes. This problem is addressed by
the branch of machine learning techniques created for outlier detection.

Most outlier detection algorithms follow the same general principle. First, they
fit the data by constructing a profile of the typical observations and then try to find
observations that do not fit this profile. In this work, we use a fundamentally different
approach applied in the Isolation Forest algorithm (Liu, Ting, and Zhou, 2008). Instead
of building a typical observation profile, it explicitly locates outliers in the data. This
feature makes the Isolation Forest algorithm a very fast and scalable tool often used
in modern machine learning pipelines.

The fundamental property of the Isolation Forest is based on a simple assumption
that outliers are, in general, easier to separate from the rest of the data compared to
typical objects. This property is capitalized in the following way. A forest of fully
grown binary decision trees is created. During the growth of the tree, a node split is
created by a random selection of splitting features and the corresponding threshold.
To obtain an effective outlier detection, the degree of anomaly is related to the tree
depth and relative position of the observation. In particular, a path length h(x) is
defined as the number of splits an object passes before reaching an external node
of the tree. Observations are sorted according to corresponding path lengths, and
objects with the shortest paths have a higher probability of being an outlier. A final
anomaly score derived from h(x) was described in the original paper as follows.
Given the set of N observations, an anomaly score for observation x is defined as

s(x, n) = 2−h(x)/c(n), (4.31)

where h(x) is the average path length obtained from the set of Isolation Trees and
c(n) is the average path length of unsuccessful search defined in Liu, Ting, and Zhou
(2008). Such anomaly score is monotonic to path length. These two measures can
occupy ranges of 0 < s(x, N) ≤ 1 and 0 < h(x) < N − 1 respectively. Within these
conditions authors define detection rules as follows. If an observation x returns
s(x, N) ' 1, then x is identified as outlier. Observations with s(x, N) ≤ 0.5 are
identified as typical object. Finally if the whole sample is characterized by s ' 0.5,
then there are no obvious outliers in the data.

4.3.2 tSNE algorithm

The Isolation Forest outlier detection mechanism, despite its high effectiveness, gives
us limited information about the environmental context of a specific outlier. We do
not know how this object is relative to other objects located possibly in different
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samples. In this work, we apply Isolation Forest in order to identify different sources
of AGN catalog contamination, and in some cases, this type of context is crucial. Thus
additional step of high-dimensional visualization in form of t-distributed stochastic
neighbor embedding or tSNE (Hinton and Roweis, 2002; Maaten and Hinton, 2008).

The tSNE algorithm is a non-linear dimensionality reduction technique that is
usually used for high-dimensional data visualization. There are two main steps in the
tSNE algorithm. First, the joint probability distribution is constructed out of similari-
ties between objects in the high-dimensional feature space. The similarity of objects
in the basic version of the tSNE algorithm is the Euclidean distance between objects
in the feature space. Next, the tSNE algorithm tries to learn low-dimensional embed-
ding that can preserve similarities present in the high-dimensional representation.
The tSNE algorithm does it via gradient descent minimization of Kullback-Leibler
divergence between the high-dimensional representation of the data in the original
feature space and low-dimensional embedding created by tSNE. Such minimal value
corresponds to the objects position in the low-dimensional embedding.
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5
Construction of Machine Learning
Pipeline and Resultant catalogs

5.1 Construction of Machine Learning Pipeline

This section describes the general ML-based pipeline for AGN selection presented
in this work and is further discussed in the following sections. The chart of main
pipeline steps is shown in Fig. 5.1 and run as follows.

First, the data preparation procedures were performed. These included feature
selection with KS-statistic method described in Sec. 5.2 and limiting the generalization
sample using MCD algorithm described in Sec. 3.3.2. Thus training of the model
was performed on the labeled data represented with the selected set of features.
Generalization performed on the MCD-limited unlabeled data was performed using
the same set of features.

During the training procedure, supervised classification models described in
Chapter 4, logistic regression, SVM, extremely randomized trees, random forest, and
boosted trees in the form of XGBoost implementation were created in several settings.
Each model was tested in two main versions: the non-modified model and the model
with class-balanced weights. Both of these versions were further modified based
on the fuzzy logic (instance weights) strategies described in Sec. 5.3. Besides the
non-modified version of the model, these were error-based and distance-based fuzzy
logic models.

First, during training, hyperparameter tuning was performed for most models.
Logistic regression, SVM, and XGBoost models were tuned using randomized grid
searches with 1000 different hyperparameter combinations. This type of greedy
search of hyperparameters combination allows one to find the variant of the model
most suitable for a specific learning task. Tree ensemble methods were not tuned and
left in the default versions present in the Scikit-learn library (Pedregosa et al., 2011)
due to the very small sensitivity of these methods to hyperparameter tuning (Probst,
Boulesteix, and Bischl, 2019). The optimal hyperparameter combination was searched
via maximization of the F1 metric. Each time a specific hyperparameter combination
was chosen, the F1 metric value was estimated via 100 shuffled 5-fold cross-validation
train-test splits to minimize the risk of overfitting on the small data set. The same split
technique was used on the final, best hyperparameter combination to estimate the
rest of the metric scores and their uncertainties. Values or ranges of hyperparameters
which were used to create a parameter grid, are presented in Tab. 5.1. Description
of some of these parameters can be found in Sec. 4.1. The exception are XGBoost
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Parameter Range

logistic regression
C loguniform(1, 10−3)
Penalty [L1, L2]

SVM
C loguniform(1, 10−3)
γ loguniform(1, 10−3)

XGBoost
learning rate [0.01, 0.02, 0.03, 0.05, 0.08, 0.1]
γ [0.5, 1, 1.5, 2, 5]
Min child weight [1, 5, 10]
Training subsample ratio [0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
Max tree depth [2, 3, 4, 5, 6, 10]
L2 regularization weight [1, 2, 4]
L1 regularization weight [0, 1, 2]

TABLE 5.1: Grid of hyperparameter values used in grid search during
model training. Some logistic regression and SVM parameters were

sampled from a log-uniform distribution with fixed range.

parameters, some of which are connected to the specific numerical optimization. Full
description of XGBoost hyperparameters can be found at XGBoost documentation
webpage 1. In the case of all tree-based algorithms, we used 500 trees to build an
ensemble. In this case if the number of trees turned out to be too large, it will not
cause an overfitting. Instead additional trees will simply not improve the model
performance. Python codes used for the training are available on the GitHub page 2.

Next, a trained model with the best hyperparameter combination was used to
make predictions on the labeled and generalization data sets. Due to the small
amount of labeled data, a separate test set that would be held out during training and
used only for predictions by the final model was not created. Instead, an approximate
version of testing model predictions was performed. For this purpose, a model
with fixed chosen hyperparameter combinations was run through additional 5-fold
cross-validation. Predictions combined from five folds were used to estimate the
model prediction of the labeled data. One needs to keep in mind when analyzing
visualization of model predictions on the labeled data that this type of procedure
slightly underestimates the model’s performance. After prediction on the labeled data
was finished, a model with fixed hyperparameters was fitted to the whole training
data and used for prediction on the generalization sample to form an AGN candidates
catalog. In addition to these methods, two voting classifiers were created out of the
best models (see Sec. 5.4). The hard voting classifier, which used a majority vote
out of predictions from the set of models, did not need to be trained. The stacked
classifier, which used probability estimations of the best models, was trained in the
same way as other models using probabilities as features.

Once the best model was selected, the obtained AGN catalog was analyzed with
outlier detection methods described in Sec. 5.5. One method using the Isolation Forest

1https://xgboost.readthedocs.io/en/stable/parameter.html
2https://github.com/ArtemPoliszczuk/NEPWide_AGN

https://xgboost.readthedocs.io/en/stable/parameter.html
https://github.com/ArtemPoliszczuk/NEPWide_AGN
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model was applied to select improperly estimated photometric redshifts. The second
method, consisting of the Isolation Forest model combined with tSNE visualization,
was used to find contaminants in the AGN candidates catalog.

5.2 Feature selection

Original representation of the data often is not optimal for ML applications. There
are two main reasons. First, a very large number of features may result in a curse of
dimensionality, (i.e., large sparsity of the data occurring in the high-dimensional space),
reducing the effectiveness of the model performance. Second, a non-representative
feature set may introduce significant noise to the data, leading to overfitting. To
overcome this problem, different methods of feature engineering are used. A common
approach consists of two steps: feature creation, where artificial features are created
from the original ones via, e.g., feature ratios, multiplication, or difference, and feature
selection, where the best subset from all of these features is chosen.

Feature selection methods can be divided into two main approaches. The first
one is a general, problem-agnostic approach focused on feature space dimensionality
reduction. This approach is exemplified by many popular approaches, such as PCA,
which tends to reduce noise in the data representation without any reference to a
defined ML problem. The second approach used in this work tends to find features
most suitable for a specific prediction problem. In order to find a feature set, which
will allow for effectively selecting AGNs in the data, a Kolomogorov-Smirnov statistic
(KS-statistic) was used. The KS-statistic, in this case, is defined as the biggest distance
between the empirical cumulative distribution function between AGN and galaxy
training samples. The KS-statistic can be treated as a measure of the difference
between the two distributions. A thus larger value of the KS-statistic calculated for
a particular feature corresponds to the better usability of this feature for the AGN-
galaxy separation. The KS-statistic was calculated for HSC optical bands (g, r, i, z, Y),
AKARI NIR bands (N2, N3, N4) and all possible colors made of these eight filters.
Fig. 5.2 shows KS-statistic values for the subset of best features. In order to avoid an
increase in the data dimensionality, the number of final features was limited to the
number of initial optical and NIR bands. This resulted in a feature set made of eight
colors, using all available passband information. One can also observe evident high
information contribution of the NIR colors to the AGN selection.

The KS-statistic has several pros and cons as a feature selection method. On the
one hand, its simplicity is its main asset. It does not require a large amount of data,
and it is prone to overfitting, as opposed to more complex, model-dependent wrapper
methods (see, e.g., Jović, Brkić, and Bogunović, 2015). It can also capture differences
in both position and shape of two distributions. On the other hand, this feature
selection method focuses on single features and cannot capture interrelationships
between them.

5.3 Fuzzy logic instance weights

In this work we used two types of instance weights (or fuzzy membership): distance-
and error-based. In both cases instance weight si of i-th observation was normalized
to the range [0, 1] (where larger value relates to a higher importance of an observation)
and calculated via equation:

si = 1− ui

umax + δ
, (5.1)
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FIGURE 5.2: Results of the main feature selection via Kolomogorov-
Smirnov statistic method used in this work. Only a subset of features

with the highest KS score is shown.

where ui is a quantity characteristic for a specific type of instance weight calculated
for i-th observation in the training set, umax is a maximal ui value in the sample and δ
is a a small value used to avoid division by zero. Because the importance of particular
observations in the training sample is affected only by the relative difference between
fuzzy memberships, the presence of δ has no impact on the training process and
serves only numerical safety purposes. In this work δ parameter was set to 10−4.

The idea of fuzzy membership based on distance from the class center as well
as the definition of si as in Eq. 5.1 was in-depth described in Lin and Wang (2002),
where it was applied to the SVM algorithm. However, instance weights might be also
applied to other types of learning algorithms (see Sec. 4.1). In the case of distance
weights, ui is a Euclidean distance from the center of a class, defined in the feature
space, and is used as a form of instance weight. Here the purpose of such a weight
is to minimize the impact of outliers on the training process. In order to properly
construct such weights, they were calculated separately for AGN and galaxy classes.
This approach is dictated by the different distribution of classes in the feature space
and the class imbalance, where the latter causes a systematic underestimation of
the smaller class importance. Histograms of a distance-based fuzzy membership
distribution for both classes are shown in Fig. 5.3a. Here we see that a large number
of outliers characterizes the AGN class. Thus distance-based fuzzy memberships
should provide us with a more conservative classification characterized by a higher
purity and lower completeness trade-off.

The error-based fuzzy membership approach follows the same principles but
focuses on the impact of measurement uncertainty. This approach was first discussed
in our preliminary work Poliszczuk et al. (2019) and further developed together with
distance-based weights in Poliszczuk et al. (2021). In this approach, ui is defined
as a sum of absolute values of measurement uncertainties calculated for optical
and NIR passbands. Here a specific systematic bias was allowed. Mainly, optical
bands are characterized by a smaller measurement uncertainty due to the higher
accuracy of the measurement and specificity of SUBARU/HSC pipeline, which tends
to cause magnitude error underestimation. Thus the accuracy of measurement in
AKARI passbands dominates the final outcome of si. We avoided rescaling and
unifying measurement errors for a practical reason: NIR passbands have the main
informational contribution to the AGN selection. Thus, they should be treated as
more important. Histograms of an error-based fuzzy membership distribution for
both classes are shown in Fig. 5.3a. Again, we see a larger impact of instance weights
on the AGN class.
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FIGURE 5.3: Histograms of different types of fuzzy memberships.
Panel a: Distance-based fuzzy membership. Panel b: Error-based fuzzy

membership.

Further comparison between two fuzzy-weight strategies is presented in Fig. 5.4.
In particular, Fig. 5.4a shows significant tendencies created by distance-based fuzzy
memberships. Specifically, one can observe an importance decrease of high-redshift
SFG, characterized by red N2–N4 color, as well as the lower impact of XAGN as well
as other AGNs characterized by blue colors. On the other hand, error-based fuzzy
membership shows a general, strongly scattered tendency to decrease the importance
of red N2–N4 objects. The relation between distance-based fuzzy membership and
redshift distribution of the training sample is shown in Fig. 5.4c, and no significant
dependency can be observed. Analogous relation for error-based fuzzy membership
is shown in Fig.5.4d. Here, one can see a weak correlation, which is caused by the
fact that more distant objects are dimmer in general.

5.4 Performance evaluation

5.4.1 Impact of class-balanced weights on model performance

The result of different models training described in Sec. 3.3.2 is evaluated via com-
parison of several metrics: F1 metric, precision, recall, area under the precision-recall
curve (PR AUC), and balanced accuracy (bACC). All of these metrics were described
in detail in Sec. 4.2.

General analysis of model performance is presented in Fig. 5.5. Here we see metric
values for various non-balanced and class-balanced models. Since the class balance
is considered a more fundamental change in the model than a more subtle instance
weighting (fuzzy logic), in this first step of model evaluation analysis, instance
weighted models were not used. There are three main goals at this stage of the
analysis: find a subset of the best models to create voting classifiers, analyze the
impact of the class balance on the model performance and find, if possible, the best
model. Fig. 5.5a shows set of all classifiers together with so-called dummy classifier.
The dummy classifier assigns class labels at random, where the sizes of predicted class
samples correspond to the fraction of classes in the training data. The performance
of this basic model serves as the lowest boundary in our analysis, i.e., if the model
was able to learn the classification task in the training process, it should show higher
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metric scores than the dummy classifier. Based on the comparison with the dummy
model, Fig. 5.5a shows that all of the presented models can learn the classification task
effectively. The lack of PR AUC score for the hard voting classifier comes from the
fact that construction of the precision-recall curve requires the usage of classification
probabilities, which are not present in the case of the majority vote created by the
hard voting classifier.

Fig. 5.5b shows same results but zoomed in and without dummy classifier. Here
we see several interesting tendencies. First, there is present a split between two types
of impact that the class balance can have on the classifier performance. Moreover,
this split, prominent in precision to recall ratio, is not dependent on the general class
of the algorithm. One class of the behavior represented by logistic regression, SVM,
and XGBoost (i.e., linear, non-linear, and boosted tree methods) shows a significant
increase in the recall with a simultaneous drop in the precision when the class
balance is applied. This impact of class-balance weights can be interpreted intuitively.
In a non-balanced case, the separation between class regions is pushed towards a
smaller class (i.e., AGNs or Positive class). Thus, a smaller class label is assigned
to objects in a very close neighborhood of the smaller class training sample. This
results in prediction, which promotes classification as a positive class object only
for very typical observations, which lie close to the class center, producing a high
precision and low recall catalog. Application of the class weight moves classification
boundaries in the feature space away from the smaller class region, resulting in the
recall increase followed by the higher contamination of the positive class catalog (i.e.,
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lower precision). The rest of the models, i.e., extremely randomized trees and random
forest, does not show any significant impact of class weight on the model performance.
This result cannot be explained by the properties of the tree ensemble models and
might be problem-specific since class weighting is known to boost ensemble tree
model performance (see, e.g., Chen, 2004).

Both voting classifiers, i.e., a hard voting classifier and a stacked classifier, were
created from the subset of best classifiers. Groups of models for this subset were
selected by the analysis of the non-balanced and class-balanced models without in-
stance weighting. In other words, if, for example, some specific class-balanced model
was chosen as an input for a voting classifier, then all instance weight realizations: no
instance weight, distance-based weights, and error-based weights were used. It was
done because class weights are considered a more fundamental weighting method,
while instance weights are more subtle and play the role of the final tuning. Models
selection for voting classifiers was done based on metric values comparison pre-
sented in Fig. 5.5. In order to reject some of the classifiers, models with significantly
lower values of any of the metrics were chosen. We removed non-balanced logistic
regression due to the very low precision, class-balanced regression due to the very
low recall, and non-balanced SVM due to the low PR AUC value. Class-balanced
SVM and XGBoost were left in the final set to obtain diversity in the performance of
particular models despite low precision values. Hard voting classifier and stacked
classifier show tendencies in the metric values similar to non-balanced. This depar-
ture from the class-balanced behavior comes from the fact that, in some cases of
instance weight strategies bring class-balanced models closer to the non-balanced
cases (this phenomenon will be discussed later in this Chapter).

The hard voting classifier was chosen as the best final model. This decision has
several reasons. At this stage, the comparison of the model performance must expand
beyond the analysis of the F1 score, which was the main metric during the training
process. The small amount of the training data makes it difficult to estimate metric
values precisely, and conclusions from obtained scores should be drawn with caution.
This uncertainty, as well known contamination from the high-redshift SFG, led to the
shift towards models with higher precision and lower completeness during the analy-
sis of the precision-recall trade-off. The best results were shown by the non-balanced
fuzzy-distance XGBoost and the hard voting classifier, where the differences between
metric values were situated within the uncertainty limit (exact values of metrics and
corresponding uncertainties for all models can be found in the Appendix ??, Tab. ??).
Again, the hard voting classifier was chosen out of these two models due to the
limited control of the classifier performance caused by the small amount of the la-
beled data. The hard voting classifier, due to its ensemble nature, allows us to reduce
the variance of the model further and avoid the risk of overfitting. However, the
simplicity and effectiveness of this model were obtained at the expense of the lack of
classification probability estimation. As a result, the final model was characterized by
the 0.73 precision and 0.64 recall values, which correspond to the estimation of purity
and completeness of the AGN catalog respectfully. The generalization performed
on the unlabeled data gave us the catalog of 465 AGN candidates, which constitutes
1.4% of the whole generalization sample. More information on values of evaluation
metrics for different models can be found in Appendix B in Tab. B.1 and B.2.

5.4.2 Impact of the fuzzy logic on model performance

Before we dive into the analysis of the properties of the final classifier and obtained
AGN catalog, let us investigate the impact of different fuzzy logic strategies. Fig. 5.6
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FIGURE 5.6: Visualization of the evaluation metric values for differ-
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shows metric values for different fuzzy logic strategies. Fig. 5.6a and Fig. 5.6b show
values of precision and recall respectfully. Since both of these metrics are the basis for
more complex scores of F1, PR AUC, and partially bACC we will start our analysis
from them. Application of the fuzzy logic, in general, does not affect the precision
of the model, and similar values are preserved for all cases of instance weighting.
Two exceptions are the class-balanced logistic regression and class-balanced SVM,
which show significant differences between fuzzy strategies and the opposite impact
of fuzzy membership on the non-balanced and class-balanced cases. To a much
smaller extent, this tendency is visible also in the case of the XGBoost. Thus we can
observe the separation between models into two different categories of behavior,
which overlapped with general differences between models present in Fig. 5.5 and
discussed above. This separation is present not only in the comparison of non-
balanced and class-balanced cases but it is also preserved in different fuzzy logic
strategies. Comparison of the recall metric values shown in Fig. 5.6b gives us a very
different picture. Here we see that fuzzy logic impacts the non-balanced algorithms,
leaving class-balanced models relatively intact. Moreover, the distance-based fuzzy
logic application gives better results than the application of error-based fuzzy logic or
lack of instance weights. Tendencies of the precision and recall translate into behavior
observed in the F1 (Fig. 5.6c) and bACC (Fig. 5.6e) scores. The PR AUC score, shown
in Fig. 5.6d, often exhibits different tendencies, implying a significant difference one
would obtain if PR AUC score was used instead of F1 during the hyperparameter
tuning procedure.

A general tendency one can observe during the analysis of metric values is the
model performance improvement with distance-based fuzzy logic and a relatively
subtle difference between error-based fuzzy models and models with no instance
weights. A significant increase in the recall value for non-balanced models with
distance-based fuzzy logic with no significant change in precision and lack of such
tendency in the class-balanced models has an intuitive explanation. The distance-
based fuzzy logic reduces the importance of outliers in the training process with a
simultaneous increase of the typical objects’ importance. Thus the importance of
the training AGNs lying in the galaxy locus becomes lower. This change does not
significantly affect the completeness of the catalog because galaxies predominantly
occupy these regions of the feature space. At the same time purity of the catalog
increase because the probability of selection of AGN candidate far away from the
center of the AGN class become lower. An increase in the typical objects’ importance
increases the class separation boundaries outwards class center. Thus AGN catalog
completeness will increase in the region occupied mainly by AGNs in the training set.
Additionally, one may observe a decrease in the contamination of the AGN catalog
in the region occupied mainly by AGNs due to the decrease in the high-redshift
SFG importance caused by their low distance-based weights. To summarize, we can
see a clear tendency in the AGN catalog completeness (recall) growth and opposite
mechanisms that may increase or reduce AGN catalog purity (precision). As a result,
we have a distance-based fuzzy logic model with a higher recall and similar precision
compared to the initial model with no instance weights. We see that fuzzy logic has
the most impact on the non-balanced models, where the class sizes are not even,
and decision boundaries are pushed towards smaller classes. Here distance-based
weight can gain their accumulative impact on the classification. However, in the case
of class-balanced models, the decision boundary is already pushed away from the
smaller class by the class weights. The main impact distance weights can have on
the class-balanced models is the reduction of the importance for outliers lying in the
other class locus.
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FIGURE 5.7: The N2–N4 color distribution presents the impact of
different fuzzy memberships (instance weights) on the prediction
performed on labeled data. The positive class refers to the AGN class,
and the negative class refers to the galaxy class. True Positive objects
are properly classified AGNs. False Positive objects are misclassified
galaxies, i.e., contamination of the AGN catalog. False Negative objects
are the AGNs misclassified as galaxies. Panel A: Non-balanced logistic
regression. Panel B: Class-balanced logistic regression. Panel C: Non-

balanced SVM Panel D: Class-balanced SVM

The error-based fuzzy logic does not have, in general, a significant impact on the
classification performance in both class-balanced and non-balanced models. Despite
physical motivation lying behind error-based fuzzy logic, it can cause only a minor
change in the classifier’s performance. This phenomenon is most probably, caused
by the low correlation between a specific problem and measurement uncertainty, i.e.,
observations that should be treated as the most important due to their position in the
feature space may not be characterized by the highest accuracy of the measurement.
Thus this type of fuzzy logic may cause two contradictory behaviors. On the one
hand, objects that were measured poorly and, as a consequence, were shifted into
a different part of the feature space would not be a major issue because error-based
weights reduce their impact on the classification. On the other hand, poorly measured
objects that are crucial for the classification and are located within a proper feature
space volume would not be able to give a model enough information.
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Now let us analyze how does the the fuzzy logic impact the N2–N4 color pre-
diction distribution presented in Figures 5.7 and 5.8. In all the presented cases,
we can see the hierarchical nature of the class and instance weights, i.e., the class
weights are more fundamental and have a major impact on the color distribution,
while instance weights should be treated as a fine-tuning technique. In the case of
logistic regression, SVM, and XGBoost, the application of class-weights has several
common implications, all of which are connected to the shift of the decision boundary
towards the blue N2–N4 color. First, we see that class weights are causing a shift of
the true positive (properly selected AGNs) towards the blue N2–N4 color. As was
shown previously, the blue N2–N4 color range is mainly occupied by galaxies. Thus
increasing weights of the smaller class observation shifts the separation between
classes outwards from the smaller (AGN) class. Moreover, an increase of the AGN
importance results in the treatment of AGN class locus (i.e., red N2–N4 color range)
as occupied almost exclusively by AGNs with the decrease of the high-redshift SFG
impact on classification. Consequently, in class-balanced models, one can observe a
significant increase of the AGN catalog contamination in the red N2–N4 color range,
together with a decrease in the number of False Negatives (i.e., AGNs classified as
galaxies). The only models where we cannot observe a significant impact of class
weights are the random forest and extremely randomized trees, as it was previously
discussed. The fuzzy logic impact analysis does not show any significant changes
in the N2–N4 color distribution. However, when making conclusions about the
minor impact of fuzzy weights, one must keep in mind that N2–N4 color, despite its
usefulness, is not a fully representative feature, and more significant changes might
occur in the high dimensional feature space.

5.4.3 Final model and AGN candidates catalog

Now let us focus on the final model performance, i.e., the hard voting classifier. A
familiar N4 vs N2–N4 magnitude-color plot for prediction on the labeled data as well
as obtained AGN candidates catalog is shown in Fig. 5.9. We can observe tendencies
present here in the constituent models described previously. One of such prominent
tendencies is that AGNs are predominantly selected in the red part of the N2–N4
color. Two factors cause this phenomenon. Firstly we used a higher precision score
as an important property of the classifier when comparing models via precision to
score ratio. Thus the final model has a lowered tendency to select AGN candidates in
the regions of the feature space dominated by galaxies (e.g. blue part of the N2–N4
color distribution). The training sample AGN observations located in the blue N2–N4
color are mainly X-ray selected AGNs. As discussed in the previous parts of this
work, X-ray-selected AGNs are often hard to recover using IR or optical selection.
The main reason for this difficulty comes from the fact that IR (and optical) AGN
selection probes only the high value end of the L/LEdd ratio distribution, while the
X-ray selection covers most of the distribution range. The main contamination of
the catalog comes from the SFG located at relatively high redshifts (see Fig. 3.1b)
characterized by a predominantly red N2–N4 color. A closer look at the redshift
distribution of different prediction subsamples presented in Fig. 5.10 shows us three
interesting characteristics of the classification model. First, we see a significant
difference between the True Positive (properly selected AGNs) and False Negative
(AGNs wrongly classified as Galaxies) redshift distributions. It shows us that the
main compound of the AGN distribution that escapes our selection comes from
the low redshift universe. Another important observation pertains to the redshift
properties of the False Positive observations (i.e., galaxies classified as AGNs). We
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FIGURE 5.8: The N2–N4 color distribution presents the impact of
different fuzzy memberships (instance weights) on the prediction per-
formed on labeled data. The positive class refers to the AGN class,
and the negative class refers to the galaxy class. True Positive objects
are properly classified AGNs. False Positive objects are misclassified
galaxies, i.e., contamination of the AGN catalog. False Negative ob-
jects are the AGNs misclassified as galaxies. Panel A: Non-balanced
random forest. Panel B: Class-balanced random forest. Panel C: Non-
balanced extremely randomized trees. Panel D: Class-balanced ex-
tremely randomized trees. Panel E: Non-balanced XGBoost. Panel F:

Class-balanced XGBoost.
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FIGURE 5.9: Color-magnitude plot of N2–N4 vs. N4, together with
density histograms of corresponding color and magnitude showing
predictions of the final model on labeled and generalization sets. True
Positive (TP, red crosses) refers to properly classified AGNs in the
labeled dataset. False Positive (FP, blue dots) refers to galaxies incor-
rectly classified as AGNs. False Negative (FN, black squares) refers to
AGNs incorrectly classified as galaxies. AGN candidates, denoted by
yellow rhombs, refer to observations from the generalization sample
classified as AGNs. Colors on normalized histograms correspond to

colors on the color-magnitude plot.

see that contamination comes not only from SFG at higher redshifts but also from
low-redshift galaxies characterized most probably by the significant dust component.
Finally, a comparison between the spectroscopic redshift of True Positives and the
photometric redshift of AGN candidates’ distributions shows us similar properties of
these two samples. Small shift of the AGN candidates redshift distribution towards
smaller redshift values is most likely caused by the systematic underestimation of
the AGN photometric redshifts above ∼1.5. Thus, the real redshift distribution of the
AGN candidates sample probably covers a much wider range. Another sign of the
presence of high-redshift AGNs in the AGN candidates catalog are also present in
Fig. 5.9 if we compare it to Fig. 3.1b. Here we can observe a drop of the N2–N4 color
value at the highest redshifts. In addition, high-redshift AGNs, in general, appear to
be dimmer. Combining these two facts, we will see a subset of objects characterized
by high N4 values and N2–N4 ∈ (0, 0.5). The training data sparsely represent this
region occupied by AGN candidates. Their absence in the training sample comes
mainly from the conditions the training object had to fulfill to be observed by a
spectrograph. Objects characterized by such properties are possible candidates for
high-redshift AGNs. Statistical properties of the final AGN candidates catalog are
presented in Tab. 5.2.
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band median MAD min. max.
zphot 1.264 0.376 0.005 2.841
g 22.613 1.139 18.768 27.586
r 22.061 0.963 18.764 25.544
i 21.569 0.815 18.532 24.347
z 21.292 0.725 18.165 23.708
Y 21.137 0.674 18.283 23.430
N2 19.974 0.415 17.341 20.846
N3 19.687 0.416 17.289 20.648
N4 19.515 0.405 17.041 20.546

TABLE 5.2: Statistical properties of the final catalog of AGN candidates.
Median, median absolute deviation (MAD), and minimal and maximal

limits are shown.

5.4.4 Extrapolation experiment

One of the prominent features of the classification performed by the hard voting
model was the difficulty of AGN selection in the region of the feature space charac-
terized by the blue N2–N4 color. Nature of these objects and difficulties of selection
using optical, NIR and MIR passbands was already discussed. In order to test if
modern ML techniques, which operate in complex, high-dimensional spaces, can
overcome this problem, a supplementary experiment was performed. We will refer
to this experiment as the extrapolation experiment and previous classification will be
referred to as the main classification. In order to increase amount of information ac-
cessible to the model, we added measurements from MIR passbands: S7, S9W, S11,
L15 and L18W (we did not use L24 due to very small number of detections in this
passband).

A training sample was modified in order to create a model focused on the prob-
lematic cases from the main classification. The observations classified by the hard
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FIGURE 5.11: Results of the feature selection via Kolomogorov-
Smirnov statistic method used in the extrapolation experiment. Only

a subset of features with the highest KS score is shown.

voter during main classification as false negatives (i.e. wrongly classified AGNs)
were used as the new AGN training sample. The galaxy training sample remained
unchanged. This modification together with limits imposed by the requirement of
MIR detection gave us a final training sample made of 705 galaxies and 39 AGNs.
The galaxy training sample was not modified into subsample of the false positives
observations in order to do not further reduce training sample size. The new gener-
alization sample was made out of the main classification generalization sample, by
adding a simple requirement of the MIR detection. We did not apply a new MCD
limit on the unlabeled data in order to be able to compare generalization results from
the main classification and the extrapolation experiment. This way we obtained a
generalization sample made of 2207 observations.

Feature selection was based on the same method as previously. The KS-statistic
was used to choose best features for this specific classification task. Values of the KS-
statistic are shown in Fig. 5.11. A subjective decision was made to select ten features
with the highers KS values as the final feature set. Because some of filters were
present only in features with low KS-statistic value, previously applied requirement
of using all filters in the final feature set was omitted. It is worth noting that many of
the selected features in the extrapolation experiment are made of MIR filters.

Performance evaluation of the extrapolation experiment is shown in the visual
form in Fig. 5.12 with detailed values presented in Appendix B in Tab. B.3 and B.4.
Here one can see that only some of the models were able to learn the classification task.
Both, non-balanced random forest and SVM showed metric results with uncertainties
within the range of dummy classifier performance, or even more catastrophic results
in the case of non-balanced and class-balanced extremely randomized trees. Two
of the remaining models, class-balanced random forest and non-balanced logistic
regression, were able to obtain a significant increase in the precision value, but could
not overcome problems with low F1 and recall values. Due to this issue, a small
subset of the best models: class-balanced SVM, logistic regression and XGBoost,
were used to build an additional hard voting classifier. Due to the higher risk of
overfitting caused by a small amount of data, the stacked classifier was not used in
the extrapolation experiment. It is worth to note that in the extrapolation experiment
all of the best models are using class weights. It is an opposite tendency to what
we were observing in the main classification. Comparison between training sample
AGN to galaxy class ratios in the main classification and extrapolation experiment
show us a change from ∼ 15% to ∼ 5%. Thus it is probable that class weights in this
classification task become an important part of the model in the case of a very strong
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class imbalance (i.e. when one the classes constitutes only few percent of the other).
Due to a very strong contamination of AGN catalogs produced by all of the

remaining models, a high precision score became a main criterion of the best model
selection. The highest precision value was obtained by the class-balanced XGBoost
and the class-balanced random forest. Out of these two models, the XGBoost was
characterized by a much better results in the F1 score, recall and balanced accuracy.
Thus, the class-balanced XGBoost, characterized by the 0.25±0.11 precision and
0.37±0.16 recall, was chosen as the final classifier.

Initial generalization performed by the final model gave us catalog of 354 AGN
candidates. The main idea of the extrapolation experiment was to overcome the
problem of AGN selection in the blue N2–N4 color range. We did not impose the N2–
N4 < 0 condition on the generalization set right at the beginning of the extrapolation
experiment construction, due to the possibility of a very precision in the red N2–N4
color range once MIR information was added to the optical and NIR data. Fig.5.13
shows us, however, a presence of a strong contamination of the AGN catalog in
the red color range. Thus, the only useful part of the sample produced during
generalization procedure, that would be supplementary to the main classification
catalog, were objects characterized by the N2–N4 < 0 condition. This way we
obtained catalog of 198 objects (∼9% of the extrapolation experiment generalization
sample). Beside a high contamination of the AGN catalog in the red N2–N4 color
range, we still can observe the same problem with loss of AGNs in the blue part of
this color. These are, again, mainly X-ray selected AGNs located at low redshifts (see
Fig. 5.14). Comparision between Fig. 5.13 and Fig. 3.1a gives us some idea about the
capabilities of this classification model - it can recover some of AGNs located in the
galaxy locus, i.e. probably objects with significant host component at the expense
of a very significant AGN catalog contamination. However, even with a very low
AGN catalog purity, classifier created in the extrapolation experiment cannot recover
X-ray selected AGNs. It proves once again a fundamental difference between X-ray
and optical-IR selection of AGNs. Due to a very high level of contamination of AGN
catalog (i.e. low precision), its low completeness (i.e. low recall) and mentioned above
inability to recover XAGNs, the extrapolation experiment is treated in this work only
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FIGURE 5.13: Color-magnitude plot of N2–N4 vs N4, togheter with
density histograms of corresponding color and magnitude showing
predictions of the extrapolation experiment model on labeled and
generalization sets. True Postive (TP, red crosses) refers to properly
classified AGNs in the labeled dataset. False Positive (FP, blue dots)
refers to galaxies incorrectly classified as AGNs. False Negative (FN,
black squares) refers to AGNs incorrectly classified as galaxies. AGN
candidates, denoted by purple rhombs refer to observations from
the generalization sample classified as AGNs. Colors on histograms

correspond to colors on the color-magnitude plot.

as a way to determine limits of the ML-based AGN selection. Thus AGN candidates
selected during this experiment were not included into the final AGN catalog.

5.4.5 Comparison with MIR-based AGN selection

Let us compare new ML-based method for AGN selection with the original MIR-based
technique. We assume some common properties between two selection methods due
to the training sample construction, used in this work. The AGN target preselection
for the main spectroscopic follow-up (Shim et al., 2013) which were included into
the training sample were based on the AKARI MIR selection technique used in Lee
et al. (2007). These AGN objects constitute a majority of AGNs present in the training
data (additional AGNs come from X-ray selected sample and few spectroscopic
observations coming from other follow-ups).

In the original MIR method, the color cut AGN selection was performed with an
additional S11 < 18.5mag limit imposed on the sample. This limit was created in
order to fit a method to characteristics of the AKARI NEP-Deep catalog. In the case
of data used in the present work, only a very small number of objects overpass this
limit. These are two X-ray AGNs and four type-I AGNs in the training sample and
nineteen AGN candidates in the final catalog. Due the small number of these objects,
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FIGURE 5.14: Histogram of redshift distribution with respect to the
prediction results of the extrapolation experiment model on the labeled
and generalization sets. True Postive (TP, red color) refers to properly
classified AGNs in the labeled dataset. False Positive (FP, blue color)
refers to galaxies incorrectly classified as AGNs. False Negative (FN,
black color) refers to AGNs incorrectly classified as galaxies. AGN
candidates, denoted by the purple color refer to observations from the

generalization sample classified as AGNs.

fact that this work is performed on the AKARI NEP-Wide catalog (and not on the
AKARI NEP-Deep) and in order to have a more straightforward comparison between
two selection methods, we decided to omit the S11 limit.

To make a comparison between an ML-based method and MIR-based color selec-
tion, training sample and obtained catalog of AGN candidates were limited to objects
detected in S7 and S11 passbands. This additional condition prune training and AGN
candidates catalog samples to 815 (out of 1547 initial training observations) and 113
(out of 465 initial AGN candidates) objects respectively. In the case of extrapolation
experiment, we did not further modify the data, since S7 and S11 detection conditions
were already imposed during creation of the training and generalization samples.

Figure 5.15 shows visual comparison between MIR-based AGN selection method
and ML-based methods from the main classification (Fig. 5.15a) and the extrapolation
experiment (Fig. 5.15b). The MIR color-cut method is based on the power-law shape of
the AGN SED in the NIR and MIR range. Such SED produces red NIR and MIR colors
placing AGN locus in the N2–N4 > 0 and S7–S11 > 0 square on the color-color plot.
Figure 5.15a compares MIR-based color method with the prediction on the training
data and generalization performed by the final model from the main classification.
We see a significant similarity between the two methods. The vast majority of AGN
candidates selected in the main classification occupy upper right square (red N2–N4
and S7–S11 colors), which is used by the MIR-based method to select AGN candidates.
Analysis of the classification performed on the labeled data shows us confirmation of
tendencies already discussed in Sec. 5.4.3. First, we see an inevitable contamination
of the IR-selected AGN catalog by the SFG component presented here as a False
Positive sample. This contamination, present in our ML-based method, is also clearly
visible in the MIR-based AGN selection. Second, visualization of the MIR-based AGN
selection confirms a fundamental discrepancy between X-ray and IR AGN selection.
Blue N2–N4 color which characterize most of the XAGN sample strongly separate
False Negative population from the AGN locus. Figure 5.15b shows us results of the
extrapolation experiment on the same color-color plot. We see here that classification
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FIGURE 5.15: Near-IR and mid-IR color-color plot used for the MIR-
based AGN selection (Lee et al., 2007). Selection criteria of this method
are demarcated by the upper right square, marked by the black lines.
Points present on the plots refer to predictions of the ML-based model
performed on the labaled and generalizatio data. True Postive (TP,
red crosses) refers to properly classified AGNs in the labeled dataset.
False Positive (FP, blue dots) refers to galaxies incorrectly classified as
AGNs. False Negative (FN, black squares) refers to AGNs incorrectly
classified as galaxies. AGN candidates, denoted by yellow (main
classification) and purple (extrapolation experiment) rhombs refer to
observations from the generalization sample classified as AGNs. Panel

A: Main classification Panel B: Extrapolation experiment

model is able to perform AGN selection outside of the NIR-MIR square used in the
traditional color-cut method. Even when reaching outside of the red color region,
model is unable to recover XAGN sample. Thus one can conclude that ML-based
approach cannot overcome fundamental problems of the IR AGN selection and bring
X-ray and IR selection methods together using only optical and IR data.

Table 5.3 shows comparison of evaluation metrics between the MIR color-cut
method and ML-based method created during the main classification. Both methods
have very similar F1 score and balanced accuracy values. The ML-based model
shows higher precision and lower recall compared to color-cut MIR method. This
difference may be partially caused by the nature of final model selection were we used
higher precision as a more important property of the model. In general metric values
show good consistency between the two methods with ML-based model being more
conservative approach with output AGN catalog characterized by higher purity and
lower completeness. At the same time ML-based method shows to be more universal
due to the lack of MIR detection condition: only 24% of AGN candidates present in
our catalog were in S7 and S11 MIR passbands. Let us now analyze of the precision-
recall trade-off shown by the final ML-based model in the main classification and in
the case where additional MIR detection condition was imposed. Additional MIR
detection condition does not have a strong impact on the purity of AGN catalog -
precision increase from 0.73 to 0.77. At the same time we see a significant increase in
the completeness of the AGN catalog when consider data with MIR detection - recall
increase from 0.64 to 0.74. Thus incorporation of the MIR information does not help
to significantly reduce the contamination from the SFG sample. It helps however to
increase completeness of the AGN catalog. Such behavior can be explained as follows.
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Method F1 Precision Recall bACC{
N2− N4 > 0
S7− S11 > 0

0.76 0.73 0.80 0.84

hard voter 0.75 0.77 0.74 0.86

TABLE 5.3: Performance comparison of final model of the main classi-
fication with the MIR-based color-cut method described in Lee et al.

(2007). Only objects detected in S7 and S11 passbands were used.

The AGNs which were detected in optical and NIR passbands but were lacking
measurements in MIR passbands may be AGNs with low AGN activity and/or small
dust component. In both cases these objects are very hard to recover using only
optical and NIR information due to their similarities to galaxies in this spectral range.

5.5 Outlier detection

The AGN catalog obtained in this work may be used in astrophysics for various pur-
poses, such as the base for creating the target sample for spectroscopic observations
or AGN studies in general. However, in many cases, statistical analysis of such a
catalog may be very sensitive to biases and contamination present in the data. Reduc-
tion of these issues is particularly important in galaxy evolution and observational
cosmology studies, such as the ones discussed in Sec. 2.3.

This section addresses some catalog issues that might be effectively removed
using outlier detection machine learning techniques. In particular, we study two
applications of such methods. One of them is the possibility of removing catastrophic
photometric redshift estimation errors from the AGN candidates catalog. Many
currently existing photometric catalogs suffer from large photometric redshift errors,
which make them not applicable for many cosmological studies, where any type of
clustering properties are used. Thus removing objects with non-congruent photomet-
ric redshifts is crucial for this catalog to be useful. The second method application
of outlier detection focuses on removing contaminants from the AGN candidates
catalog. Here, a combination of outlier detection and high-dimensional visualiza-
tion is used to identify suspicious objects and join them with specific contamination
sources such as high-redshift SFG, low-redshift dusty galaxies, or low-activity AGNs.
The presence of these objects in the AGN catalog makes it unreliable for any AGN
population studies. Thus this type of catalog cleaning is also highly important.

5.5.1 Redshift-based outlier detection

The first type of outlier detection performed in this work was redshift-based outlier
detection with Isolation Forest. This method’s main purpose was to detect AGN
candidates present in our catalog with improperly estimated photometric redshifts.
The idea of procedure was created as follows. First, a proper redshift limit was
chosen to reduce the probability of a catastrophic redshift estimation error. Next, an
Isolation Forest model was fitted to the training data in the feature space created out
of features used in the main classification together with spectroscopic redshift. After
the model was fitted to the data, it was used to predict both labeled data and the AGN
candidates catalog. During prediction feature set was modified: now, it contains
photometric redshift from Ho et al. (2021) instead of spectroscopic redshift. During
the fitting procedure, a specific value of the spectroscopic redshift value is matched to
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FIGURE 5.16: Comparison between spectroscopic redshift and pho-
tometric redshift estimation from Ho et al. (2021), showing results of
Isolation Forest outlier detection. Cones determined by dotted lines
as well as η and σ parameters were calculated in the same way as de-
scribed in Fig. 3.2. Red circles and blue dots refer to objects identified
by the Isolation Forest model as inlier and outlier, respectively. Panel
A: Prediction of Isolation Forest model trained on the combined galaxy
and AGN data. Panel B: Prediction of Isolation Forest model trained

on the AGN data only.

the position of the observation in the high-dimensional color space. At the next step,
a model fitted to the real spectroscopic redshift values will see a photometric redshift
value, which strongly differs from the spectroscopic one as a significant shift of the
observation position in the feature space and will classify such entity as an outlier.
This way, it is possible to detect doubtful cases of a photometric redshift estimation
and obtain a clean AGN catalog for specific applications in observational cosmology
and environmental studies.

The first important step in constructing this outlier detection mechanism is the
selection of a uniform redshift upper limit for both model fitting and prediction. Since
only a photometric redshift is available for both AGN candidates and labeled data,
it was used to create a redshift limit. To find the most optimal value, we used two
criteria: on the one hand, we want to preserve the largest number of AGN candidates
in the limited catalog. On the other hand, we want to avoid redshift ranges with
significant bias present in photometric redshift estimations. To find a redshift limit,
which does not limit AGN candidates catalog size in a way that makes a limited
catalog unusable for a reasonable statistical analysis, quartiles of the photometric
redshift distribution were calculated. The first quartile, which contains 25% of the
whole AGN candidates catalog, is set at zphot = 1.033. The second and third quartiles
(50% and 75% of the catalog) are set at zphot = 1.264 and zphot = 1.644 respectively.
Analysis of these values together with redshift properties of the labeled data shown in
Fig. 3.2 gives us a clue why we should choose a second quartile as a reasonable upper
redshift limit. When looking at residual plot (lower part of Fig. 3.2) we can observe
a strong change at zspec ' 1.5. At zspec ≤ 1.5, we can observe small residual values
with a slight overestimation bias. Once we move towards a higher redshift range
zspec > 1.5, we see a significant bias toward photometric redshift underestimation.

The main reason for this behavior comes not only from the difficulty of accurate
photometric redshift estimation at larger distances and estimation of AGN redshift
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FIGURE 5.17: Histogram comparing photometric redshift distribution
of the whole AGN candidates catalog obtained in the main classifi-
cation and sub-sample of this catalog limited by the redshift-based

Isolation Forest model.

in particular but also from the specific purposes of the particular redshift estimation
described in Ho et al. (2021). This work aimed to develop an efficient way of the
photometric redshift estimation for galaxies present in the AKARI NEP-Wide field.
Since the galaxy sample is located at lower redshifts than the AGN sample, the
approach was optimized towards a lower redshift range. Moreover, the authors of
this work showed that the introduction of AGN templates reduces the effectiveness
of galaxy sample redshift estimation. Thus, as a result, AGN templates were not
used during the final photometric redshift estimation. From the perspective of this
work, we can see that photometric redshifts for high-redshift AGNs may be invalid
due to two reasons: the inability of the redshift estimator to work with high-redshift
objects and to work with AGNs in particular. Thus we should not reach far beyond
the range of the galaxy redshift distribution. AGN redshift estimation seems to be
accurate enough within the galaxy redshift range with a small number of catastrophic
estimation errors. The additional argument comes from purely statistical properties.
Using data from both galaxies and AGNs to fit the Isolation Forest model will be
more likely to classify high-redshift objects as outliers due to their small number in
the sample. In addition, the large span of the redshift range will make it more difficult
to properly localize the positions of outliers in the high-dimensional feature space.

In order to test the properties of the outlier detection, we fit the Isolation Forest
model to data sets limited to the first three quartiles and made predictions on these
datasets. To analyze the properties of each dataset, we see how training AGNs which
were selected by the model as inliers fit into the redshift cones described in Fig. 3.2.
We see a strong drop in the redshift estimation accuracy with the increase of the
redshift limit. Such drop occurs in both cases: when we use both galaxies and AGNs
as training data to fit the model and when we use training AGNs only. In the case
of combined training data we obtain ηQ1 = 13.2%, ηQ2 = 12.8% and ηQ3 = 21.3%
for the first, second and third quartile respectively. In the case of the model fitted
to AGN data only, we obtain ηQ1 = 29.6%, ηQ2 = 41.2% and ηQ3 = 47.0% for the
first three quartiles. Here we can see a significantly better performance of the outlier
detection model trained on the combined galaxy and AGN data at all redshift ranges.
The model’s poor performance trained on the solely AGN data probably comes
from the high sparsity of the data located in the high-dimensional feature space.
In other words, a small amount of the training data with large distances between
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band median MAD min. max.
zphot 1.034 0.263 0.062 1.264
g 22.138 1.079 19.061 25.826
r 21.557 0.895 18.764 24.516
i 21.106 0.703 18.695 23.569
z 20.832 0.593 18.165 22.723
Y 20.719 0.556 18.283 22.417
N2 19.879 0.451 17.341 20.829
N3 19.690 0.469 17.289 20.648
N4 19.516 0.443 17.299 20.355

TABLE 5.4: Statistical properties of the AGN candidates catalog limited
to objects selected as inliers by the redshift-based Isolation Forest
model. Median, median absolute deviation (MAD), and minimal and

maximal limits are shown.

points in the high-dimensional space makes it difficult for the model to find the
positions of real outliers. When analyzing the performance of the model trained on
the combined galaxy and AGN data, we see that it can stabilize the contamination
level of the photometric redshift catalog to a certain redshift range. The percentage of
the catastrophic errors for models operating in the first and second quartile ranges is
very similar. Due to these observations, the second quartile (zphot = 1.264) was chosen
as an upper redshift limit for the final outlier detection model, and the combination
of the galaxy and AGN samples was used as a training data.

Figure 5.16 shows results of the outlier detection performed on the second quartile
limited data using combined AGN and galaxy data (Fig. 5.16a) and AGN-only data
(Fig. 5.16b). We can see here tendencies that were described when analyzing the effect
of the redshift limit on the model performance. The model trained on the combined
AGN and galaxy data detects two kinds of outliers. The first kind is the objects located
at higher redshifts in general. These observations were selected as outliers because
most galaxies are located at much lower redshifts. The AGN sample, shifted towards
higher redshifts, is too small to change the model’s behavior. The second type of
outliers is the most problematic high-redshift AGNs, which have wrong photometric
redshift estimations. The model trained on the combined AGN and galaxy data is
very good at detecting such objects. Almost all of these problematic observations with
catastrophic redshift errors were found and removed from the catalog. The model
trained on the solely AGN data shows different tendencies. Here we do not see a
systematic rejection of high-redshift objects. Instead, the model can operate on the
whole redshift range defined by the second quartile. This flexibility, however, comes
together with much higher contamination of the final catalog. We see that model is
unable to detect most of the outliers showing both over- and under-estimation of the
photometric redshift.

Using the final model of the second quartile limited Isolation Forest trained on
combined AGN and galaxy data, an outlier detection was performed on the AGN
candidates catalog. As a result, a catalog of 210 inlier objects was obtained. A compar-
ison of photometric redshift distribution for the original AGN candidates catalog and
selected inliers is shown in Fig. 5.17. One can see a similarity of the two distributions.
The Isolation Forest catalog cleaning introduced no major change in the redshift
distribution within a second quartile range. Properties of the AGN candidates catalog
with removed catastrophic photometric redshift errors are presented in Tab. 5.4.
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5.5.2 Class-based outlier detection

The second type of outlier detection tested in this work addresses the problem of
AGN candidates catalog contamination and creates a ground for search for unusual
objects. This class-based problem is more subtle than previously described redshift-
based outlier detection. Multiple types of outliers that we want to detect, together
with less straightforward differences between them, make it necessary to modify their
detection method. We will refer to this outlier detection problem as class-based outlier
detection, while the method described in the previous section will be referred to as
redshift-based outlier detection.

The class-based outlier detection was created as follows. First, two separate
Isolation Forest models were created. One was fitted to the training galaxy sample
(we will refer to it as Galaxy Isolation Forest), and the second one was fitted to the AGN
training sample (we will refer to it as AGN Isolation Forest). We used the same feature
set as in the main classification in both cases. In the case of this outlier detection,
we are interested in two types of objects. One of them are outliers detected by the
AGN Isolation Forest. These might be possible AGNs that are not typical for the
training sample AGN population, e.g., high-redshift AGNs or type-II AGNs. Outliers
detected by the AGN Isolation Forest might also be contaminants of the AGN catalog,
e.g., SFG, which may not fit the AGN population in the color feature space. The
second type of objects are the Galaxy Isolation Forest inliers. Such inliers found in
the AGN catalog may be different contaminants such as SFG, low activity AGNs or
dusty galaxies.

To analyze the work of the Isolation Forest models, we will use previously men-
tioned sub-classes present in the training data, i.e., AGNs made of AGN1 (163 objects)
and XAGN (34 objects) subsamples and galaxies together with a high-redshift SFG
subsample (HzSFG, 17 objects). The HzSFG group was made of galaxies character-
ized by N2–N4 > 0 color and zspec ≥ 1. Here we used only observations where
spectroscopic redshift was measured using at least two emission lines.

Now let us analyze Isolation Forest models predictions on the labeled data. Fig-
ure 5.18b and 5.18a shows us N4 vs N2–N4 magnitude-color plot for predictions of
Isolation Forest models on the AGN and Galaxy labeled data respectively. Let us first
analyze how Isolation Forest models interpret the distribution of the AGN labeled
data. Observations that the AGN Isolation Forest treats as outliers are mainly objects
located in the galaxy locus. The same applies to observations selected as inliers by
the Galaxy Isolation Forest model. It is worth noticing that samples of outliers and
inliers have only a small intersection of a few objects. Thus these two Isolation Forest
models are sensitive to different types of AGN objects. In the case of labeled galaxies
samples and HzSFG observations, we can see that the vast majority of HzSFG can be
classified as outliers by the AGN Isolation Forest. Figure 5.18c shows us the same
color-magnitude plot with the location of AGN candidates selected as outliers by
the AGN Isolation Forest or inliers by the Galaxy Isolation Forest. The location of
these two subsamples is very different. Outliers detected by the AGN Isolation Forest,
which constitute the sample of 21 objects, occupy the same region as HzSFG from
the labeled sample. Inliers detected by the Galaxy Isolation Forest are located at the
region that contains many training galaxies and is underrepresented by the training
AGNs. As discussed in previous sections, these objects may be low activity AGN
or dusty galaxies, but they might also be high-redshift AGNs. Thus by removing
these inliers from the AGN candidates catalog, we reduce contamination of the final
catalog at the expense of possible exclusion of high-redshift AGNs.

Analysis of the color-magnitude plot may not be enough to properly study the
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nature of outliers and inliers detected by different Isolation Forest models. In order to
deepen this study, we add the next step into the outlier detection method in the form
of tSNE algorithm visualization. We use the tSNE algorithm to obtain a meaningful
two-dimensional representation of the high-dimensional feature space and to more
accurately visualize the relative distances and connections of different groups of
objects. The main tuning parameter present in the tSNE algorithm is the perplexity
parameter, which defines the most important scale to be kept in the visualization. In
other words, high perplexity value gives us more information about subtle, small-
scale connections between observations, while low perplexity emphasizes the general,
large-scale properties of the data. In order to find the most appropriate perplexity
value, we tested how this parameter affects the distribution of different classes of
objects in the training data. We tested a set of perplexity parameter values: 30, 50, 80,
and 150. It turned out that, while the general shape of a galaxy and AGN distribution
remains unchanged in the two-dimensional tSNE visualization, the HzSFG sample
is particularly sensitive to the perplexity parameter value. Since this class of objects
is a significant source of AGN catalog contamination, it was important to have a
well-localized cluster of HzSFG in the tSNE visualization. Such strong clustering was
obtained with a perplexity parameter value equal to 80, and this value was used in
further analysis.

Figure 5.19a shows us two-dimensional visualization of the training data distri-
bution. We will refer to artificial tSNE dimensions as tSNE1 and tSNE2. Similar to
the color-magnitude plot analyzed previously, here we see a very clear separation
between the two classes. One large region is strongly dominated by galaxies with
a small contribution from type-I AGNs and X-ray AGNs. AGNs predominantly
occupy the second large region. In the case of AGN-dominated regions, we see to
main contamination regions. One of them is the region located in tSNE1∈ [0, 20]
and tSNE2∈ [−10, 0] range. These are mainly low-redshift galaxies similar to AGN’s
appearance. The second contamination region is located in tSNE1∈ [20, 40] and
tSNE2∈ [0, 10] range and is predominantly occupied by HzSFG. Figure 5.19b shows
the distribution of the AGN candidates catalog with respect to the training data. Here
we can see a very good agreement between AGN candidates catalog location and
the location of the AGN training data. Except for two observations, all of the AGN
candidates are located precisely in the AGN-dominated region. The placement of
AGN candidates selected as outliers or inliers by the AGN and Galaxy Isolation Forest
models are shown in Fig. 5.19c. Here we can see that both groups are located in the
zones of AGN region contamination. The AGN candidates, identified as inliers by the
Galaxy Isolation forest, are located in the first contamination region occupied by the
low redshift galaxies, which may also contain low-activity AGNs. On the other hand,
the AGN candidates which are identified as outliers by the AGN Isolation Forest
are located in the HzSFG region. Thus we have coherent results from two separate
methods, Isolation Forest outlier detection, and tSNE visualization. Combining both
of them to better understand the nature of AGN candidates catalog outliers, we see
that such a combined method allows us to detect and reject two possible sources of
contamination. One of them is low-redshift galaxies and possible AGNs with strong
host component. The second one is the most problematic group of HzSFG. Properties
of the limited AGN candidates catalog cleaned from these contaminants (390 objects)
as well as the purest version of this catalog where both galaxy contamination and
catastrophic photometric redshift errors were removed (157 objects) are presented in
Tab. 5.5.
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median MAD min. max.

Class-based clean catalog
zphot 1.356 0.353 0.059 2.841
g 22.674 1.077 18.768 26.024
r 22.128 0.904 18.888 24.529
i 21.661 0.76 18.532 23.819
z 21.376 0.677 18.515 23.428
Y 21.205 0.631 18.468 23.097
N2 19.974 0.413 17.858 20.846
N3 19.67 0.416 17.53 20.648
N4 19.487 0.402 17.041 20.546

Class- and redshift-based clean catalog
zphot 1.057 0.241 0.062 1.264
g 22.285 1.216 19.379 25.826
r 21.734 0.969 19.162 24.516
i 21.212 0.755 19.272 23.569
z 20.923 0.631 18.799 22.723
Y 20.748 0.583 18.784 22.417
N2 19.875 0.45 18.061 20.829
N3 19.665 0.473 17.854 20.648
N4 19.436 0.431 17.692 20.325

TABLE 5.5: Statistical properties of AGN candidates catalog cleaned
of class contamination and class and redshift contamination. Median,
median absolute deviation (MAD), minimal and maximal values for
redshift and photometry in broad-band filters used in training and

generalization.

5.6 Results

The main results of the work presented in this thesis can be divided into two parts. The
methodological result of this research is the construction of the compound machine
learning pipeline for the photometric AGN selection from the multiwavelength
catalogs. This pipeline has three components, all of which showed to be very effective
for a specific task. The first component of the pipeline is related to data preparation.
Here, besides traditional machine learning elements such as feature selection, two
additional methods crucial for the procedure were applied. One of them was the
construction of the AGN training sample, which was based on the mid-IR target
preselection and allowed to indirectly provide information about the mid-IR selection
into the ML model structure during training. The second method was the MCD limit
of the generalization sample. It allowed the selection of AGN candidates exactly in
the feature space region defined by the training sample.

These two elements anchored the effectiveness of the second component, i.e., the
supervised classification model. By testing various types of classification models with
various weighting strategies, including those based on fuzzy logic, it was possible
to select a sample of the best classifiers and create a final majority voting classifier.
A comparison of the properties of this final best classifier with a simple color-color
mid-IR method on the sub-sample of training data with existing mid-IR measurement
shows prominent similarities between the two methods. It indicates that the model
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was able to learn mid-IR selection properties via the training sample and adapt them
to the optical and near-IR data. Thus, it makes it possible to recreate the mid-IR-based
AGN selection for a sample with no mid-IR data, which was not possible before.

The third component of the ML pipeline was based on the outlier detection
methods. These methods were applied to the AGN candidates catalogs created in
the previous steps in order to increase their purity. In this case, both redshift-based
and class-based methods showed very good results. Class-based methods were able
to detect two major sources of contamination present in the AGN catalog. One class
of outliers were objects located in-between galaxy and AGN classes, which might
be low-activity AGN or low-redshift dusty galaxies. The second type of objects
were high-redshift SFG candidates, which are buried inside the AGN locus and
comprise the most problematic source of contamination. A combination of Isolation
Forest outlier detection with the tSNE visualization allowed us to identify specific
properties of high-redshift SFGs, which made it possible to detect a set of objects
with similar properties in the AGN candidates catalog. The Isolation Forest outlier
detection method is also shown to be very effective in the identification of errors
in the input catalogs, in particular incorrect photometric redshift error estimations.
The combination of these methods makes the whole pipeline a very effective tool for
AGN selection. It can be easily adapted for other types of catalogs and data. The fact
that all the elements of this pipeline can be modified or retrained and adapted to suit
other astrophysical needs opens a lot of possibilities for its application.

The second, physical, result of this work is the AKARI-NEP AGN catalog itself.
The main catalog consists of 465 AGN candidates; its properties are summarized in
Tab. 5.2. It is characterized by the 73% purity and 64% completeness. Examination
of the MIR properties of the subsample of AGN candidates with the MIR detection
shows that objects from this catalog exhibit very typical properties of MIR-bright
AGN. The part of the AGN training sample that contributed to the creation of the
AGN candidates catalog consisted mostly of type-I AGN. Thus we can make a
reasonable assumption that a majority of objects present in the result catalog are
type-I AGNs. As shown by Poliszczuk et al. (2021), spectral energy distributions
(SEDs) of these AGNs obtained making use of the CIGALE fitter (Boquien et al., 2019)
mostly confirm that they have high AGN fraction.

In addition to the main AGN candidates catalog, three clean subsample catalogs
were created. One of them is a catalog with removed catastrophic redshift estimation
errors. It consists of 210 objects; its properties are summarised in Tab. 5.4. Due to the
specific method that was used for photometric redshift estimation in the multiwave-
length AKARI NEP-Wide catalog, the high-redshift end of AGNs distribution has
significant contamination. This sub-catalog without inaccurate redshift estimations is
created for clustering and environmental studies in the low-redshift universe. The
second sub-catalog of AGN candidates was cleaned out of class-contaminants. It
consists of 390 objects, and its properties are shown in Tab. 5.5. This catalog is well
suited for target selection for follow-up spectroscopic observations. Such observa-
tions are indeed now ongoing, and further are being planned. Moreover, objects
identified as contaminants might also comprise an interesting sample of objects per
se. One interesting subclass of contaminants are high-redshift SFG candidates, and
the second one is possible low-redshift galaxies hosting low-activity AGNs. The final
sub-catalog of AGNs was obtained by a combination of catalog cleaning procedures
presented above. It consists of 157 objects. Its properties are shown in Tab. 5.5. This
catalog is the purest obtained sample with reduced class- and redshift-contamination.
As was mentioned in Sec. 2, IR AGN selection probes a high end of the Eddington
ratio distribution. This cleanest sample can be used for further studies of this AGN
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population with multiwavelength data available for the North Ecliptic Pole field.
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FIGURE 5.18: Magnitude-color plot of N2–N4 vs N4 showing results
of class-based Isolation Forest outlier detection. Panel A: Results of
outlier detection performed by Isolation Forest models on the labeled
galaxy observations. Grey dots show the general distribution of la-
beled galaxies data, and black dots show positions of high-redshift
SFG (HzSFG). Orange crosses refer to objects identified as outliers
by the Galaxy Isolation Forest. Red circles show HzSFG identified as
outliers by the Galaxy Isolation Forest Black triangles show HzSFG
identified as outliers by the AGN Isolation Forest. Panel B: Results of
outlier detection performed by Isolation Forest models on the labeled
galaxy data. Grey dots show the general distribution of labeled galaxy
observations. Black crosses, and red circles show XAGNs identified as
inliers by Galaxy Isolation Forest and outliers by AGN Isolation For-
est, respectively. Green triangles and orange stars show type-I AGNs
identified as inliers by Galaxy Isolation Forest and outliers by AGN
Isolation Forest, respectively. Panel C: Results of outlier detection per-
formed by the Isolation Forest models on the AGN candidates catalog.
Grey dots and red crosses show positions of galaxy and AGN training
data. Green triangles refer to objects identified as inliers by Galaxy
Isolation Forest. Black circles refer to objects identified as outliers by

AGN Isolation Forest.
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FIGURE 5.19: Two-dimensional tSNE visualization of the training
data, AGN candidates catalog, and results of Isolation Forest outlier
detection. Panel A: The tSNE visualization of the training data consist-
ing of galaxies (blue dots), high-redshift SFG (green triangles), type-I
AGNs (red crosses) and XAGNs (black squares). Panel B: The tSNE
visualization of training galaxy (blue dots) and AGN (red dots) data
compared to the placement of AGN candidates (yellow rhombs). Panel
C: The tSNE visualization of training galaxy (blue dots) and AGN (red
dots) data compared to the placement of AGN candidates selected as
inliers (green triangles) and outliers (black squares) by Galaxy and

AGN Isolation Forest models respectively.
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6
Summary

In the present work, several significant results were achieved. Let us summarize
obtained conclusions and mark out possible topics for future studies.

First, the MCD limit imposed on the generalization sample showed to be a very
effective technique to avoid extrapolation. Analysis of prediction results on the
training and generalization samples based on the placement of AGN candidates and
AGN training data in the NIR and MIR color distributions gives no indicators of
significant extrapolation during generalization. The MCD limit imposed on the gener-
alization set seems to efficiently bring generalization close to the model performance
on the training set. Analysis of the impact of the MCD limit on the properties of
the unlabeled data sample shows it affects strongest the optical passbands, cutting
out the faint end of the distribution. This effect is caused by the requirements of
target selection for spectroscopic measurements, which were imposed on the training
sample. However, we also see a significant reduction of objects characterized by the
N2–N4 = 0 color. Removal of these objects by the MCD algorithm suggests they
were not well represented in the training set and were able to cause difficulties during
generalization. It is especially important because the N2–N4 = 0 region was recog-
nized during the analysis of outlier detection methods as a problematic area with
possible significant contamination from low-redshift galaxies or low-activity AGN.
The model’s good performance presented in this work shows the usefulness of the
MCD-based generalization sample limit technique in astronomy. It can be effectively
applied to various cases where the training sample might not be representative for
the unlabeled data. These are in particular situations when a supervised model is
trained on data with spectroscopic classes or redshifts, as well as situations where a
model is trained on simulated data. Moreover, due to the relative simplicity of the
model, it should be possible to recover the selection function created by the MCD
limit. This problem should be studied to increase this method’s usability further.

Next, studies of class weights and fuzzy logic on different types of machine
learning algorithms showed several important results. First, one can observe that
the impact a specific weight has on a model is model-dependent, with some models
being susceptible to weight application and others showing no significant change.
Second, class weight showed a more significant change in model performance than
fuzzy weights. In general application of class-based weights shifts the separation
boundary outwards from the smaller class (in this case, AGN class), increasing recall
of the model and decreasing its precision. This tendency was shown by most models
except tree ensemble algorithms, which seem to be a case-specific behavior. Fuzzy
logic (or instance weights) had a less direct impact on the classification caused by
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the superposition of different effects. In general, the biggest change in the model
performance comes from the distance-based fuzzy logic. This type of fuzzy logic
works the most effectively in models without class weights. In such a case, the
decision boundary lies close to a smaller class, and distance-based fuzzy weight can
produce a cumulative effect causing an increase in AGN catalog completeness. Class-
weighted models have decision boundaries pushed away from the AGN class, and
distance-based weights act predominantly to reduce the impact of outliers lying in
the galaxy locus. Interestingly, this increase in AGN catalog completeness for models
without class balance does not decrease catalog purity, as observed in the application
of class-based weights. This result occurs due to the opposite tendencies in distance-
based weighting application, causing the increase of purity in one region of feature
space and its decrease in another. The error-based fuzzy logic, despite its physical
motivation, does not have a significant impact on the classification performance in
both class-balanced and non-balanced models. Thus, fuzzy logic should be applied
as a fine-tuning of the model after the result of class weights is established.

A comparison between the MIR-based color AGN selection and ML-based selec-
tion confirms the genuineness of the main aim of this work. It is possible to create
an ML-based AGN selection that mimics the properties of the MIR-based method
using only optical and NIR broadband photometry. Its effectiveness is caused by two
crucial tools applied at the beginning of the model training. First, the AGN training
data set was based on the spectroscopic sample, which used MIR-selected AGN as
targets. Thus information about MIR-based AGN selection was imprinted in the
structure of the training sample and passed into the model construction. The model
effectively used this information and recovered the AGN sample from the data due
to the specific power-law shape of the AGN SED present not only in the MIR part of
the spectrum but also at longer NIR wavelengths. This information was translated
into the AGN properties in AKARI NIR color space. It also shows how effective is the
combination of data coming from the combined deep optical ground observations
and AKARI NIR measurements. The second tool, crucial for this aim, was the use of
the MCD algorithm to limit the distribution of unlabeled data to the training sample
shape. This property gave an opportunity to effectively train the model and apply it
safely to the generalization data.

The extrapolation experiment, which was trying to push classifier effectiveness
even further and overcome the limitations of the MIR selection, showed unsatisfying
results. It could not recover objects located within the galaxy class in the NIR and color
space. These were predominantly X-ray-selected AGNs. The inability to recover X-ray
AGN sample with both ML-based and MIR-based techniques confirms fundamental
differences between X-ray-based and IR-based selection methods. However, the lack
of success of the ML-based method may be partially caused by the small size of the
AGN training data used in the extrapolation experiment. This problem may be solved
in the future by training the model on the additional template-based AGN sample.
Combining information from such data with an additional MCD-limit, which takes
into account the properties of the artificial data, may work similarly to the MIR case
and translate some of the X-ray information into the model.

Finally, studies on outlier detection methods showed very promising results. It
turned out that it is possible to detect most of the catastrophic photometric redshift
errors with the Isolation Forest algorithm as long as they are located near the center of
the spectroscopic redshift distribution of the training data. Such an approach allows
one to create a catalog suitable for further clustering studies and its application to
observational cosmology tasks. The class-based outlier detection was performed by
combining the Isolation Forest method with tSNE algorithm visualization. Such a



Chapter 6. Summary 75

combination showed that the Isolation Forest algorithm trained on AGN data detects
outliers with properties similar to high-redshift star-forming galaxies (SFG). This
result is particularly important since high-redshift SFGs are the primary contaminant
of the MIR-selected AGN catalogs. On the other hand, the Isolation Forest trained
on the galaxy data tends to find inliers within AGN observations that are located
in a problematic N2–N4 ' 0 region. These might be low-redshift dusty galaxies
as well as low-activity AGNs. On the other hand, the sample place in the color
distribution might be occupied by a specific class of high-redshift AGNs which are
poorly represented in the training data. Removal of these outliers allows one to obtain
an AGN candidates catalog with high purity suitable for various evolutionary and
environmental studies.

To summarize, in this work, an effective complex machine learning procedure for
AGN selection was developed. It allows one to overcome instrumental limitations
of MIR telescopes and significantly increase the size of the AGN catalog compared
to the obtained with traditional MIR-based AGN selection techniques. In addition,
once the AGN catalog is obtained, one can use developed outlier detection methods
to find an adequate trade-off between catalog purity and completeness. It can be
done by controlling contamination of various catalog properties, such as the accuracy
of redshift estimation or the presence of wrongly classified objects. As with most
machine learning methods, this compound technique can be modified and applied to
various tasks. Some of these modifications might be retraining the classifier to operate
on different classes of objects or mimicking different properties of objects (than MIR-
based AGN selection) from outside of the available spectral range. Another type
of modification might be the creation of fuzzy logic weights suitable for a specific
task. Finally, the flexibility of the created outlier detection method allows one to
construct more complex and subtle ways to control the properties of the obtained
catalog. Techniques presented in this work will be very useful for the application
in modern panchromatic big data astronomy as well as data-simulation combined
observational cosmology.
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A
Appendix: Software

This work was using several Python packages. The creation of machine learning
pipeline as well as analysis of obtained results was done wtih SciPy Virtanen et al.,
2020, NumPy Harris et al., 2020, Pandas McKinney, 2010; team, 2020, Scikit-learn
Pedregosa et al., 2011, and XGBoost Chen and Guestrin, 2016 packages. Visualization
of the results was done with Matplotlib Hunter, 2007 and Seaborn Waskom and team,
2020 packages. Most codes, training data, AGN catalog as well as additional SED
fitting performed by the members of the NEP team can be found on the GitHub page:
https://github.com/ArtemPoliszczuk/NEPWide_AGN

https://github.com/ArtemPoliszczuk/NEPWide_AGN
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B
Appendix: Metric values

This appendix presents detailed metric results obtained during training. Tab. B.1 and
B.2 contain results of the main training process. Tab. B.3 and B.4 show results from
the second iteration experiment.
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Classifier F1 Precision Recall PR AUC bACC

dummy classifier 0.12 0.12 0.12 0.20 0.50

Logistic regression:
non-balanced normal 0.61±0.06 0.75±0.09 0.52±0.07 0.65±0.08 0.75±0.04
class-balanced normal 0.60±0.05 0.49±0.06 0.78±0.07 0.66±0.07 0.83±0.03

non-balanced fuzzy error 0.61±0.05 0.75±0.07 0.52±0.07 0.66±0.07 0.75±0.03
class-balanced fuzzy error 0.59±0.05 0.48±0.06 0.78±0.07 0.64±0.08 0.83±0.03

non-balanced fuzzy distance 0.64±0.05 0.72±0.07 0.57±0.06 0.65±0.07 0.77±0.03
class-balanced fuzzy distance 0.60±0.06 0.49±0.06 0.78±0.07 0.65±0.08 0.83±0.03

SVM:
non-balanced normal 0.65±0.06 0.75±0.06 0.58±0.08 0.61±0.08 0.77±0.04
class-balanced normal 0.67±0.05 0.63±0.07 0.73±0.06 0.65±0.07 0.83±0.03

non-balanced fuzzy error 0.63±0.06 0.74±0.07 0.56±0.08 0.61±0.08 0.76±0.04
class-balanced fuzzy error 0.68±0.05 0.64±0.06 0.74±0.07 0.65±0.08 0.84±0.03

non-balanced fuzzy distance 0.67±0.05 0.75±0.07 0.60±0.07 0.62±0.08 0.79±0.03
class-balanced fuzzy distance 0.66±0.05 0.60±0.06 0.73±0.05 0.64±0.07 0.83±0.03

Random forest:
non-balanced normal 0.66±0.06 0.72±0.08 0.61±0.07 0.65±0.09 0.79±0.03
class-balanced normal 0.64±0.06 0.74±0.07 0.57±0.08 0.65±0.08 0.77±0.04

non-balanced fuzzy error 0.66±0.05 0.72±0.06 0.62±0.07 0.65±0.07 0.79±0.03
class-balanced fuzzy error 0.64±0.06 0.74±0.08 0.57±0.07 0.66±0.08 0.77±0.04

non-balanced fuzzy distance 0.66±0.05 0.73±0.07 0.61±0.07 0.65±0.08 0.79±0.03
class-balanced fuzzy distance 0.64±0.06 0.74±0.09 0.57±0.06 0.65±0.08 0.77±0.03

Extremely randomized trees:
non-balanced normal 0.66±0.05 0.74±0.07 0.60±0.07 0.67±0.07 0.78±0.03
class-balanced normal 0.65±0.06 0.74±0.07 0.59±0.08 0.66±0.08 0.78±0.04

non-balanced fuzzy error 0.64±0.07 0.73±0.08 0.59±0.08 0.66±0.08 0.78±0.04
class-balanced fuzzy error 0.64±0.06 0.73±0.07 0.58±0.07 0.65±0.08 0.78±0.04

non-balanced fuzzy distance 0.66±0.06 0.75±0.07 0.60±0.07 0.66±0.08 0.79±0.04
class-balanced fuzzy distance 0.65±0.06 0.73±0.08 0.59±0.07 0.65±0.08 0.78±0.03

TABLE B.1: Metrics for the main classificatoin. Part 1/2.
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Classifier F1 Precision Recall PR AUC bACC

XGBoost:
non-balanced normal 0.67±0.06 0.74±0.07 0.62±0.08 0.68±0.08 0.79±0.04
class-balanced normal 0.68±0.06 0.66±0.08 0.69±0.06 0.67±0.08 0.82±0.03

non-balanced fuzzy error 0.66±0.06 0.74±0.08 0.60±0.06 0.67±0.07 0.78±0.03
class-balanced fuzzy error 0.68±0.06 0.66±0.07 0.70±0.08 0.67±0.08 0.82±0.04

non-balanced fuzzy distance 0.68±0.06 0.74±0.07 0.64±0.08 0.68±0.08 0.80±0.04
class-balanced fuzzy distance 0.68±0.05 0.65±0.07 0.72±0.06 0.66±0.08 0.83±0.03

Voting schemes:
stacked classifier 0.66±0.05 0.73±0.08 0.61±0.07 0.68±0.08 0.79±0.03
hard voter 0.68 0.73 0.64 — 0.80

TABLE B.2: Metrics for the main classification. Part 2/2.
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Classifier F1 Precision Recall PR AUC bACC

dummy classifier 0.04 0.04 0.05 0.06 0.50

Logistic regression:
non-balanced normal 0.05±0.09 0.18±0.36 0.03±0.06 0.20±0.11 0.51±0.03
class-balanced normal 0.24±0.07 0.14±0.05 0.73±0.18 0.20±0.10 0.75±0.09

non-balanced fuzzy error 0.09±0.09 0.17±0.21 0.07±0.08 0.19±0.10 0.52±0.04
class-balanced fuzzy error 0.17±0.05 0.10±0.03 0.80±0.16 0.17±0.09 0.71±0.07

non-balanced fuzzy distance 0.07±0.12 0.19±0.32 0.05±0.08 0.17±0.09 0.52±0.04
class-balanced fuzzy distance 0.27±0.09 0.17±0.07 0.68±0.19 0.20±0.10 0.74±0.09

SVM:
non-balanced normal 0.02±0.06 0.07±0.23 0.01±0.04 0.11±0.07 0.50±0.02
class-balanced normal 0.25±0.08 0.16±0.06 0.67±0.16 0.17±0.09 0.73±0.08

non-balanced fuzzy error 0.06±0.11 0.11±0.19 0.05±0.09 0.14±0.08 0.52±0.05
class-balanced fuzzy error 0.20±0.08 0.12±0.05 0.55±0.18 0.20±0.13 0.67±0.09

non-balanced fuzzy distance 0.00±0.02 0.00±0.02 0.00±0.01 0.08±0.05 0.49±0.006
class-balanced fuzzy distance 0.24±0.07 0.16±0.05 0.55±0.15 0.15±0.07 0.69±0.07

Random forest:
non-balanced normal 0.01±0.05 0.02±0.08 0.01±0.04 0.18±0.09 0.50±0.02
class-balanced normal 0.08±0.14 0.23±0.39 0.05±0.09 0.23±0.15 0.52±0.05

non-balanced fuzzy error 0.02±0.07 0.03±0.12 0.01±0.07 0.20±0.11 0.50±0.04
class-balanced fuzzy error 0.08±0.13 0.23±0.36 0.05±0.08 0.24±0.12 0.52±0.04

non-balanced fuzzy distance 0.00±0.03 0.01±0.07 0.00±0.02 0.18±0.10 0.50±0.01
class-balanced fuzzy distance 0.11±0.13 0.32±0.40 0.07±0.09 0.25±0.12 0.53±0.04

Extremely randomized trees:
non-balanced normal 0.0±0.0 0.0±0.0 0.0±0.0 0.23±0.12 0.499±0.002
class-balanced normal 0.0±0.02 0.0±0.05 0.0±0.01 0.24±0.13 0.50±0.01

non-balanced fuzzy error 0.0±0.0 0.0±0.0 0.0±0.0 0.24±0.11 0.498±0.003
class-balanced fuzzy error 0.0±0.0 0.0±0.0 0.0±0.0 0.24±0.14 0.499±0.002

non-balanced fuzzy distance 0.0±0.0 0.0±0.0 0.0±0.0 0.24±0.13 0.499±0.002
class-balanced fuzzy distance 0.0±0.0 0.0±0.0 0.0±0.0 0.22±0.11 0.499±0.002

TABLE B.3: Metrics for the extrapolation experiment. Part1/2.
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Classifier F1 Precision Recall PR AUC bACC

XGBoost:
non-balanced normal 0.06±0.11 0.16±0.31 0.04±0.08 0.20±0.11 0.52±0.04
class-balanced normal 0.26±0.11 0.23±0.11 0.33±0.15 0.23±0.11 0.63±0.07

non-balanced fuzzy error 0.07±0.11 0.15±0.25 0.05±0.08 0.17±0.09 0.52±0.04
class-balanced fuzzy error 0.23±0.11 0.18±0.10 0.34±0.16 0.20±0.10 0.63±0.08

non-balanced fuzzy distance 0.08±0.12 0.26±0.41 0.048±0.08 0.26±0.12 0.52±0.04
class-balanced fuzzy distance 0.29±0.12 0.25±0.11 0.37±0.16 0.24±0.11 0.65±0.08

Voting Schemes:
hard voter 0.26 0.16 0.59 — 0.71

TABLE B.4: Metrics for the extrapolation experiment. Part 2/2.
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