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Abstract
Quantum corrections and the singularity problem in cosmology

Artur MIROSZEWSKI

I am assuming that the study of gravitational systems containing classical singular-
ities can contribute to obtaining a consistent theory of quantum gravity. Black holes
and the early universe are examples of such systems. The dissertation describes the
results of research on quantum gravitational field effects in cosmological models.
The presented approach is a part of the canonical quantum gravity programme and
is based on geometrodynamics.

The doctoral thesis begins with the presentation of the results of research on a
fundamental issue in quantum gravity - the Problem of Time. The method of clas-
sical phase space reduction by selection of internal clocks and its influence on the
equivalence of the obtained quantum descriptions of gravitational systems is ana-
lyzed.

Later on, the issue of using generalized coherent states in quantum cosmology
is raised. The big bounce as a singularity avoidance scenario in a homogeneous
and isotropic universe model is being discussed. The construction of the extended
semiclassical analysis is presented. It is able to capture the effects and quantum
corrections to classical trajectories in a wider range.

Moreover, studies that go beyond the analysis of the homogeneous and isotropic
universe are described. Quantum tensor perturbations are introduced into the quan-
tum cosmological background, leading to the emission of gravitational waves in
the big bounce scenario. The influence of both classical and quantum cosmological
parameters on the observational perspectives of primordial gravitational waves is
considered. These parameters were adjusted to the current state of knowledge and
observations.

HTTP://WWW.NCBJ.GOV.PL
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Streszczenie
Quantum corrections and the singularity problem in cosmology

Artur MIROSZEWSKI

Wychodzę z założenia, że badanie grawitacyjnych układów zawierających klasy-
czne osobliwości może przyczynić się do otrzymania spójnej teorii grawitacji kwan-
towej. Czarne dziury oraz wczesny wszechświat to przykłady takich układów.
Niniejsza rozprawa opisuje wyniki badań kwantowych efektów pola grawitacyjnego
w modelach kosmologicznych. Przedstawione podejście jest częścią programu kanon-
icznej grawitacji kwantowej i opiera się na opisie geometrodynamicznym.

Pracę doktorską rozpoczyna się od przedstawienia wyników badań fundamen-
talnego zagadnienia w kwantowej grawitacji - Problemu Czasu. Analizowany jest
sposób redukcji klasycznej przestrzeni fazowej poprzez wybór wewnętrznego ze-
gara i jego wpływ na równoważność otrzymanych kwantowych opisów układów
grawitacyjnych.

W dalszej części poruszona jest kwestia wykorzystania uogólnionych stanów
koherentnych w kwantowej kosmologii. Dyskutowane jest wielkie odbicie, jako sce-
nariusz uniknięcia osobliwości w modelu jednorodnego i izotropowego wszechświata.
Prezentowana jest konstrukcja rozszerzonej analizy semiklasycznej, która jest w stanie
w szerszym zakresie uchwycić efekty i poprawki kwantowe do klasycznych trajek-
torii.

Ponadto opisane są badania wykraczające poza analizę wszechświata jednorod-
nego i izotropowego. Kwantowe zaburzenia tensorowe zostają wprowadzone na
kwantowe tło kosmologiczne, prowadząc do emisji fal grawitacyjnych w scenar-
iuszu wielkiego odbicia. Rozważany jest wpływ zarówno klasycznych jak i kwan-
towych parametrów kosmologicznych na perspektywy obserwacyjne pierwotnych
fal grawitacyjnych. Parametry te dostosowano do obecnego stanu wiedzy i ob-
serwacji.

HTTP://WWW.NCBJ.GOV.PL
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Introduction

Both General Relativity and quantum theory have been studied for over a hundred
years by physicists, mathematicians and philosophers. Each of these theories has
been extremely successful in explaining the observed world and predicting effects
that were then confirmed experimentally. However, the issue of combining both of
these theories into one consistent quantum-gravitational description is still in the
early stages of development. Such a description should be used with success both
on the largest cosmological scales and in systems where quantum effects dominate
the gravitational interaction. From the perspective of finding quantum gravity, the
systems with non-negligible significance of both quantum and gravitational effects
are crucial. The present cosmological data indicate that the Universe emerged from
a state of extremely dense matter and gravitational fields. Such spacetime event
in which the geodesics become incomplete is called the cosmological singularity.
The works by Hawking and Penrose [1] suggest that the classical singularities are a
generic feature of General Relativity. However, the singularities are believed to indi-
cate a breakdown in the used theory and the need for a more complete description.
The considerations presented in the dissertation are in line with the thriving research
on the theory of quantum cosmology. One of the main results of this discipline is to
replace the big-bang scenario with nonsingular Universe dynamics by introducing
quantum effects to the description. By considering only highly symmetric space-
times quantum cosmology obtains a technically simpler framework than quantum
gravity. Note however that it also comes with severe interpretational problems, like
the Problem of Time [2, 3] or the interpretation of the Universal wavefunction [4, 5].
Use of quantum cosmological framework for an open challenges in this field is the
subject of the thesis.

The thesis is composed of 6 chapters:
Chapter 1 sets up the stage for the research results shown in the following chap-

ters. Two separate theoretical concepts, on which the rest of the thesis relies heavily,
are introduced: canonical description of homogeneous and isotropic cosmological
models filled with perfect fluid and generalized coherent states. In the final part
of the chapter those two issues are merged with one another for the derivation of
quantum big bounce scenario.

Chapter 2 focues on the Problem of Time. In the initial part of the chapter the
essence of this problem is discussed. Later the analysis of internal clock transforma-
tions and their impact on quantum observables is performed.

Chapters 3 and 4 introduce a new, extended semiclassical analysis of quantum
systems. The formalism is based on generalized coherent states. Chapter 3 intro-
duces the formalism to standard quantum mechanical systems, while Chapter 4 ap-
plies it to quantum cosmological model.

Chapter 5 extends the analysis of quantum effects in cosmology by introducing
tensor perturbations to the model. The emission of primordial gravitational waves
propagating on quantum, bouncing spacetime is analysed and the observational
conclusions are drawn.
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Chapter 6 sums up results presented in the thesis and discusses future research
directions.

The thesis is based on the following articles:
Chapter 2

Przemysław Małkiewicz and Artur Miroszewski, Internal clock formulation of quantum
mechanics, Phys. Rev. D 96, 046003 (2017)

Chapter 3
Artur Miroszewski, Quantum dynamics in Weyl-Heisenberg coherent states, arXiv:2009.00056
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Przemysław Małkiewicz, Artur Miroszewski, and Hervé Bergeron, Quantum phase
space trajectories with application to quantum cosmology, Phys. Rev. D 98, 026030 (2018)

Chapter 5
Przemysław Małkiewicz and Artur Miroszewski, Dynamics of primordial fields in quan-
tum cosmological spacetimes, arXiv:2011.03487;
Artur Miroszewski, Quantum Big Bounce Scenario and Primordial Gravitational Waves,
Acta Phys. Pol. B Proc. Suppl. 13, 279 (2020)

The publication written during the time of PhD studies but not included in the thesis:

• Krzysztof Giergiel, Artur Miroszewski, and Krzysztof Sacha, Time Crystal Plat-
form: From Quasicrystal Structures in Time to Systems with Exotic Interactions,
Phys. Rev. Lett. 120, 140401 (2018)
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1
Theory

1.1 Relativistic perfect fluid FRW cosmology

The thesis utilises heavily a hamiltonian formulation of General Relativity and its ap-
plication to Friedmann-Lemaître-Robertson-Walker model filled with a linear barotropic
fluid. This section is dedicated to careful introduction of such model and will serve
as a starting ground, especially for chapters 4 and 5. The discussion is close in spirit
to the section 2 of the paper [6]. It will start with general remarks about Arnowitt-
Deser-Misner formalism, then the introduction of fluid matter degrees of freedom
will be presented. This will serve as key ingredient of the deparametrization of the
classical model. We will finish the discussion by introducing tensor perturbations
to the model. Both scalar and vector perturbations will be omitted as they undergo
independent dynamics. Note however that we expect that their analysis will be anal-
ogous to the one presented here1.
The hamiltonian description of the discussed system will be obtained by applying
variational principle to the sum of Einstein-Hilbert action and the action of relativis-
tic perfect fluid [7, 8],

S = SEH + S f =
∫
M

d4x
√

g
[

1
2κ

R + p
]

, (1.1)

where gαβ is the metric on full spacetime manifoldM, g is the absolute value of its
determinant, κ = 8πG, R is a scalar curvature of the spacetime and p is the pressure
of a perfect fluid.

ADM formalism and the gravitational sector

For spacetimes which admit a foliationM = Σ×R, where Σ is a three-dimensional
spacelike hypersurface and R is a time manifold, one can rewrite a line element in
the following form

ds2 = −N2dt2 + qij(Nidt + dxi)(N jdt + dxj). (1.2)

Symbols N and Ni denote, respectively, lapse and shift functions, while qij is an
induced three-metric on the Σ hypersurface.
According to [9] using the above split one can obtain the hamiltonian for General

1This expectation is based on the ongoing studies on scalar perturbations by Przemysław
Małkiewicz and Jaime Martin de Cabo
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Relativistic system as a sum of first-class constraints

C =
∫

Σ
NC + NiCi. (1.3)

All four constraints C, Ci are composed of gravitational and matter part

C = Cg + Cm, Ci = Cg,i + Cm,i. (1.4)

Gravitational parts read

Cg = −√q
[

1
2κ

(3)R + 2κq−1
(

1
2

π2 − πijπ
ij
)]

, Cg,i = −2Djπ
j
i , (1.5)

where q is the determinant of the induced metric qij, (3)R and D are the scalar cur-
vature and covariant derivative on Σ. The components of canonically conjugate mo-
mentum are

πij =
√

g
(
Γ0

kl − gklΓ0
mngmn) gkigl j, (1.6)

where Γ0
ab are components of Christoffel symbols associated with the spacetime met-

ric gαβ. Observe that for the Friedmann-Lemaître-Robertson-Walker flat metric

ds2 = −N2dt2 + a2δijdxidxj (1.7)

the induced metric is qij = a2δij and the shift functions Ni vanish identically in the
comoving coordinates. Moreover three constraints Ci and the Ricci scalar (3)R vanish
on the flat and homogeneous spatial sections.

Relativistic perfect fluid in hamiltonian theory

The relativistic hydrodynamics from the variational principle perspective was first
introduced by Bernard Schutz in [7, 8]. The description, using six velocity poten-
tials draws from the formalism of non-relativistic fluid dynamics by Seliger and
Whitham [10]. Out of the scalar potentials only two: µ and s, have a clear individual
meaning as a specific enthalpy and a specific entropy, respectively. The inclusion of
perfect fluid into cosmological spacetimes starts with basic thermodynamical con-
siderations. In the coming paragraphs we will be rather using densities and specific
thermodynamical functions than absolute expressions. Therefore we introduce u -
specific internal energy, s - specific entropy, ρ0 - rest mass density, ρ - energy density
and T - temperature. The total energy density is composed of the rest mass density
and specific internal energy as ρ = ρ0(1 + u). From the first law of thermodynamics
one obtains the amount of energy per rest mass unit, added to the fluid in a quasi-
static process

du + pd
(

1
ρ0

)
= Tds. (1.8)

The specific enthalpy can be defined in terms of energy density and pressure in the
following way

µ =
ρ + p

ρ0
(1.9)

From the action (1.1) one sees that we are ultimately interested in the pressure p of
perfect fluid in terms of basic Schutz potentials. As a matter ingredient of the model
we use a perfect fluid with the linear equation of state p = wρ. The dimensionless,
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constant parameter w in the equation of state is defined in the range − 1
3 < w < 1,

where a few of notable examples are: w = 0 non-relativistic dust, w = 1
3 radiation,

w = 1 stiff matter. The lower bound on w is chosen to be −1/3 as for w ≤ −1/3 the
classical model is not singular, the upper bound describes a fluid in which acoustic
waves propagate with speed of light. One can check by using (1.8) and the above
equation of state that it is possible to relate internal energy and rest mass density
with the specific entropy

du + pd
(

1
ρ0

)
= (1 + u)︸ ︷︷ ︸

T

d [ln(1 + u)− w ln ρ0]︸ ︷︷ ︸
s−s0

, (1.10)

where s0 is an arbitrary integration constant. Using this result and the definition of
enthalpy one can rewrite rest mass density and internal energy in terms of specific
enthalpy and specific entropy

ρ0 =

(
µ

1 + w

) 1
w

e−
s−s0

w , (1.11a)

1 + u =
µ

1 + w
. (1.11b)

The fluid part of the action (1.1) now reads

∫
M

d4x
√

gp =
∫
M

d4x
√

gwe−
s−s0

w

(
µ

1 + w

) 1+w
w

, (1.12)

where the form of the Friedmann-Lemaître-Robertson-Walker flat metric (1.7) was
assumed.
Keeping in mind that ultimately we would like to introduce the tensor perturbations
to the model, one has to check how do they couple to the objects introduced ear-
lier. The analysis will be restricted to the first order perturbation theory2, therefore
one can use the fact, that scalar, vector and tensor perturbations about Friedmann-
Lemaître-Robertson-Walker at first order do not couple to each other (it is, so called,
scalar-vector-tensor decomposition theorem [11, 12]). The potentials introduced
by Bernard Shutz are scalars (and their canonical momenta are densitized scalars),
therefore we know that the fluid variables will not couple to tensor perturbations,
but only to the background gravitational degrees of freedom. Now, following Schutz
[7, 8] we introduce four-velocity in terms of six scalar potentials

Uν =
1
µ
(∂νφ + α∂νβ + θ∂νs). (1.13)

For homogeneous models the spatial derivatives of the potentials vanish. The fluid
is assumed to be irrotational which makes α and β vanish. Using that and the nor-
malization condition for the four velocity UνUν = −1 one obtains

µ =
1
N

(φ̇ + θṡ) . (1.14)

2By first order we mean that the dynamical laws will be of first order in canonically conjugate
variables of perturbations, therefore one expects that the hamiltonian will be of second order.
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Performing the canonical analysis the conjugate momenta for potentials are

pφ =
√

qwe−
s−s0

w (1 + w)−
1
w N−

1
w (φ̇ + θṡ)

1
w , (1.15a)

ps = θpφ. (1.15b)

The fluid hamiltonian in terms of potential variables is

Cm =
√

q−wes−s0 p1+w
φ . (1.16)

For convenience we set the constant s0 to zero.
Now, using the canonical transformation

T = −pse−s p−(1+w)
φ , pT = p1+w

φ es, φ̄ = φ− (1 + w)
ps

pφ
, pφ̄ = pφ, (1.17)

one obtains a form of the above hamiltonian which is linear in the momentum pT

Cm =
pT√
qw . (1.18)

This result is a convenient starting ground for the deparametrization procedure.

Deparametrization

From (1.3) it follows that C has to vanish. One can satisfy this constraint by solving
the equation

Cg + Cm = Cg +
pT√
qw = 0⇒ pT = −√qwCg, (1.19)

Now, upon removing pT from the phase-space one obtains the reduced hamiltonian

H =
∫

Σ
d3x
√

qwCg. (1.20)

Variable T now serves as an internal clock and H generates the dynamics with re-
spect to it. The Poisson bracket for the gravitational variables in the deparametrized
system is

{qab(x), πcd(x′)} = δc
(aδd

b)δ
3(x− x′), (1.21)

where the round bracket indicates symmetrization with respect to suitable indices,
Ω(ab) = 1

2 [Ωab + Ωba]. The procedure of deparametrization and its importance in
the context of finding the clock in which the dynamics occurs is further discussed in
Chapter 2 Section 2.2.

Perturbative expansion

Now we will consider tensor perturbations about Friedmann-Lemaître-Robertson-
Walker flat metric. Effectively this is equivalent to assuming that qij = a2(δij + hij),
where perturbations are transverse and traceless, ∂ihij = 0 = Tr(hij).
Therefore the metric becomes

ds2 = −N2dt2 + a2(δij + hij(x))dxidxj. (1.22)

We assume that the spatial hypersurfaces have toroidal topology Σ = T3 and the
coordinate volume equals

∫
Σ d3x = V0. The physical volume reads V = a3V0.
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For the canonically conjugate background variables we use

q = γa
3−3w

2 , p =
3(1− w)γ

8g
a

3+3w
2

ȧ
Na

, {q, p} = 1, (1.23)

where g = 16πG
V0

and γ = 4
√

6
3(1−w)

. The canonically conjugate pair for perturbations is
resolved into the Fourier coefficients

ȟij(~k) = V−1
0

∫
Σ

d3x hij(x)e−i~k~x, (1.24)

π̌ij(~k) =
∫

Σ
d3x πij(x)e−i~k~x. (1.25)

Furthermore the perturbations are projected into the basis with two distinct polar-
ization modes

ȟ± = ȟab Aab
± , π̌± = π̌ab A±ab, {ȟ±(k), π̌±(l)} = δk,−lδ±,pm (1.26)

where the projection operators are defined in terms of vectors ~v and ~w, which form
an orthonormal frame with k−1~k,

Aab
+ =

1√
2

(
vawb + wavb

)
, Aab
− =

1√
2

(
vavb − wawb

)
. (1.27)

The reduced hamiltonian expanded to second order in tensor perturbations reads

H = H(0) + ∑
~k

H(2)
~k

, (1.28a)

H(0) = gp2, (1.28b)

H(2)
~k

= −g
(

q
γ

)−2

|π̌±(~k)|2 −
k2

4g

(
q
γ

) 6w+2
3−3w

|ȟ±(~k)|2. (1.28c)

Observe that the above reduced hamiltonian lacks the terms which are first order
in perturbation variables. The first order constraints consist only of trace and di-
vergences of perturbation variables hij, πij, therefore they vanish naturally. Other
way to see this result is to remember that the assumption of the dynamics driven by
variational principle is for the first order perturbation of action (1.1) to vanish.

Let’s take a moment to discuss a physical significance of a background hamil-
tonian (1.28b). Seemingly, it is mathematically equivalent to one-dimensional free
particle. It is not the case, as can be seen by analysing the cosmological interpreta-
tion. For the fluids with equation of state parameter in the range − 1

3 < w < 1 the
q ∝ a

3−3w
2 variable is proportional to the positive power of scale factor a. Therefore

the value q = 0 corresponds to vanishing of the scale factor which takes place at the
big-bang singularity. Furthermore we assume that the physically viable universes
are the ones with a > 0. There exist two separate branches of solutions: expanding
and contracting branch (see Fig. 1.1). On the classical level, trajectories from differ-
ent branches are not connected and represent different phase space trajectories. As
we are living in an expanding branch, the contracting universe solutions are thrown
away.

In the following section we will focus on the coherent states and the quantization
methods based on them. As we will see, the covariant quantization of phase space
leads to addition of a repulsive potential in the (1.28b) hamiltonian and removal of
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FIGURE 1.1: A phase space portrait of the universes evolution in
(q, p) variables. The upper set of lines represent expanding solutions,
while the lower set of lines belong to the contracting family of solu-
tions. The q = 0 set of phase space points represent big-bang singu-

larity.

big-bang singularity. We will arrive to big bounce model, which assigns and identi-
fies smoothly a distinct contracting solution to each expanding trajectory.

1.2 Coherent States

First, let us introduce the notational convention used in the thesis. The original co-
herent states which are created by the action of displacement operator on harmonic
oscillator vacuum state are referred to as "standard", "canonical" or "Schrödinger"
coherent states. The more general class of coherent states which are created by the
action of unitary irreducible representation of a symmetry group on an arbitrary
vector |φ0〉 (called fiducial vector) will be referred to as "generalized" coherent states
or just coherent states. This choice is motivated by the fact that most of the modern
coherent states literature [13–16], including this thesis, relies on the generalization
of the original idea.

Schrödinger coherent states

The beginnings of coherent states date back to 19263 and the paper by Erwin Schrödinger
[18]. In the paper he introduces very specific states which, remarkably, seem to be-
have classically. The construction of those states relies on the quantum harmonic
oscillator annihilation â and creation â† operators. The canonical pair of operators
satisfy the basic commutation relation

[â, â†] = 1. (1.29)

Moreover the harmonic oscillator vacuum state |0〉 is introduced, which is a normal-
ized state with the property of vanishing under the action of annihilation operator

â|0〉 = 0. (1.30)

3although the name itself was introduced much later by Roy J. Glauber [17]
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The Schrödinger coherent states are generated by unitary transformations of the
fiducial vector |0〉 of the form

|z〉 = ezâ†−z̄â|0〉, (1.31)

where z is an complex number and a bar over it denotes complex conjugation.
The above definition determines the states up to a global phase. We list some of the
most important properties of Schrödiger coherent states

• The states |z〉 saturate the Heisenberg inequality

〈z|â† â|z〉 = |z|2 = |〈z|â|z〉|2 ⇒ σâ|z σâ† |z =
1
2

, (1.32)

where σÔ|z =
√
〈z|Ô2|z〉 − 〈z|Ô|z〉2.

• The states |z〉 are eigenvectors of the annihilation operator, with eigenvalue z:

â|z〉 = z|z〉, z ∈ C. (1.33)

• The states |z〉 possess the property of stability, i.e. they do not leave their family
under the dynamics generated by harmonic oscillator hamiltonian,

e−iĤHOt|z〉 ∝ |e−iωtz〉, (1.34)

where HHO = h̄ω(â† â + 1
2 ).

• Coherent states {|z〉} constitute an overcomplete family of vectors in the Hilbert
space of states of the harmonic oscillator. This property is encoded in the fol-
lowing resolution of the identity:∫

C

d<(z)d=(z)
π

|z〉〈z| = 1, (1.35)

where <(z) and =(z) are real and imaginary part of z, respectively.

At this stage coherent states were already recognized as a useful tool in quantum
mechanics. One of their possible application is to represent a probability distribution
on the z label space.

It was later realised that it was sufficient to have only the last of the listed above
properties maintained fully to generalize the concept of coherent states.

Generalized coherent states

Generalized coherent states form a huge class of different families of states in Hilbert
space H, which all share two basic properties, introduced in [19] as the part of
Continuous-Representation Theory. Those minimum requirements are

• Continuity:

The coherent state |~l〉 is a strongly continuous function of the label~l, where~l is
an element of an appropriate label space L endowed with a notion of topology.
The continuity of the states means that for every convergent label set

~l →~l′ ⇒ || |~l′〉 − |~l〉 || → 0, (1.36)
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where || |ψ〉 || ≡
√
〈ψ|ψ〉 defines a vector norm.

• Completeness: There exists a positive measure dµ(~l) on L such that the unit
operator 1 admits the resolution of identity∫

L
dµ(~l) |~l〉〈~l| = 1. (1.37)

The completeness property is often called overcompleteness. Observe that from con-
tinuity relation it follows that coherent states {~l} do not form an orthogonal set, but
yet they do resolve identity, therefore

|~l′〉 =
∫
L

dµ(~l) |~l〉〈~l|~l′〉, (1.38)

one can express any coherent state as a linear combination of the remaining coherent
states [14].

Introducing position Q̂ =
√

h̄
2ω (â + â†) and momentum P̂ = i

√
h̄ω
2 (â† − â) self-

adjoint operators one might take the unitary operator in (1.31) and write it in the
following form

UW ≡ ei/h̄(pQ̂−qP̂), (1.39)

where we exchange the complex variable z =
√

ω/2h̄q + i1/
√

2h̄ωp with the pair
(q, p) ∈ R2. The above operator is called the Weyl operator and the coherent states
created with it

|z〉 = |q, p〉 = UW(q, p)|0〉 (1.40)

have the following resolution of identity∫ dqdp
2πh̄
|q, p〉〈q, p| = 1, (1.41)

which agrees with the formula (1.35). It follows that

〈q, p|Q̂|q, p〉 = q, (1.42a)

〈q, p|P̂|q, p〉 = p, (1.42b)

which provides a physical interpretation for the labels q and p. From their con-
struction and the above parametrization one can infer that the states |q, p〉 generate
a canonical phase space continuous representation. The Weyl operator serves as a
translation operator in a phase space

U†
W(q, p)Q̂UW(q, p) = Q̂ + q1, (1.43a)

U†
W(q, p)P̂UW(q, p) = P̂ + p1, (1.43b)

and is a unique (up to the phase) irreducible unitary representation of a Weyl-Heisenberg
symmetry group.
Observe that the requirements of continuity and (over)completeness do not specify
the coherent states fiducial vector and one does not have to always assume that the
state on which we act with Weyl operator is a harmonic oscillator vacuum state. In
fact we can generalize the fiducial vector to be any state |φ0〉which belongs to Hilbert
space H. This construction does not spoil the minimum requirements, but the triv-
ial phase space representation is maintained only for "physically centered" fiducial
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states 〈φ0|Q̂|φ0〉 = 0, 〈φ0|P̂|φ0〉 = 0. For other fiducial states the phase space is
additionally translated by their expectation values of position and momentum.

The second source of generalization is the relation of the operator generating
coherent states and the symmetry group. With the case of Weyl operator we arrived
to a representation of the phase space translation group on the Hilbert space H.
Other choices of symmetry groups are possible, like spin SU(2), SU(1,1) [20] or affine
group [21]. From the point of view of the Friedmann-Lemaître-Robertson-Walker
flat model we are interested mostly in the affine group, therefore we introduce affine
coherent states below.

The affine group transformations of real line is made of transformations of the
form x → x′ = ax + b, where a > 0 and b ∈ R. After suitable identifications one
finds the two generators of the group: position Q̂ and dilation D̂ = 1

2 (Q̂P̂+ P̂Q̂). The
affine coherent states are defined as being generated by the action of the irreducible
unitary representation of the affine group

UA(q, p)|φ0〉 = ei/h̄ pQ̂e−i/h̄ ln(q)D̂|φ0〉 = |q, p〉 (1.44)

on the half-plane phase space (q, p) ∈ R+ ×R. The "physical centering" conditions
for those states are 〈φ0|Q̂|φ0〉 = 1, 〈φ0|D̂|φ0〉 = 0 and the position representation of
affine coherent states is

〈x|q, p〉 = eipx 1√
q

φ0

(
x
q

)
. (1.45)

With the concept of generalized coherent states we arrive their second important
application, they allow to construct a group representative in a Hilbert space.

Coherent states quantization methods

The last application we would like to introduce here is the use of coherent states
in quantization procedures. We define a quantization procedure as a map from the
smooth functions f defined on classical phase space χ to the elements of operator
algebra A on a Hilbert spaceH

C(χ) 3 f 7→ Â f ∈ A(H). (1.46)

We postulate that such map has to satisfy the following minimal properties

1. Linearity:

Âα f+βg = αÂ f + βÂg, α, β ∈ C

2. Identity:

f = 1 7→ Â f = 1

3. Self-Adjointness:

f : real and bounded f rom below 7→ Â f : sel f − adjoint

4. Classical limit:
To the classical Poisson bracket corresponds, at least at the order h̄, the quan-
tum commutator, multiplied by ih̄. With f j 7→ Â f j , for j = 1, 2, 3 we have

{ f1, f2} = f3 7→ [Â f1 , Â f2 ] = ih̄Â f3 + o(h̄)
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The conditions above are inspired by Van Hove Canonical Quantization Rules [22].
A remarkable property of coherent states which motivates the use of coherent state
quantization methods is the diagonal representation of operators (also called P-
representation [23, 24])

F̂ =
∫

dµ(q, p) f (q, p)|q, p〉〈q, p|. (1.47)

Observe that the integral map f 7→ F̂ defined above satisfies all the minimal proper-
ties of a quantization map. Moreover, it is often called phase-space covariant map,
as the |q, p〉 states family is chosen to be generated by the action of the appropriate
representation of the phase space symmetry group. In the case of trivial phase space
χ = R2 the Weyl-Heisenberg symmetry group is chosen, for half-plane phase space
χ = R+ ×R the affine group is a right choice.

Let us focus for a moment on the quantization map performed with the use of
affine coherent states - affine quantization. The map takes smooth functions defined
on half-plane phase space (q, p) ∈ R+ ×R to the Hilbert space defined on half-line
H = L2(R+, dx). The explicit form of the quantization map is

Â f =
∫

R+×R

dqdp
2π〈Q̂−1〉 f (q, p)|q, p〉〈q, p|, (1.48)

〈Q̂nP̂m〉 =
∫

R+
dx φ∗0(x)xn

(
(−ih̄)m ∂dm

dxm

)
φ∗0(x)

where the fiducial vector φ0 ∈ L2(R+, dx) ∩ L2(R+, dx/x).
The general rule for quantizing functions of position q is to replace respective powers
of position with

Âqn =
〈Q̂−n−1〉
〈Q̂−1〉 Q̂n (1.49)

Observe that to every power n of classical position corresponds a different position
operator with different weights 〈Q̂

−n−1〉
〈Q̂−1〉 .

The momentum becomes quantized in the straightforward manner

Âp =
1

〈Q̂−1〉 P̂ (1.50)

For the commutation relation to have a classical limit (property 4. above) one has to
assume that 〈Q̂

−2〉
〈Q̂−1〉2 = 1 + o(h̄).

Another phase space function which will be explicitly quantized here is momentum
squared

Âp2 =
1

〈Q̂−1〉 P̂
2 +

h̄2K
〈Q̂−1〉

1
Q̂2

, (1.51)

where K = 1
h̄2 〈P̂2〉 is a strictly positive constant. The repulsive potential ∝ 1

Q̂2

prohibits the quantum motion from taking place on the negative position values,
therefore it ensures that the state does not leave the Hilbert space L2(R+, dx). The
value of K does strictly depend on the fiducial state used and for the values in range
3
4 ≤ K < ∞ the Âp2 operator is essentially self-adjoint.
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FIGURE 1.2: A schematic phase space portrait of the universes semi-
classical evolution in the affine quantized model. The trajectories

never arrive to the point of classical singularity q = 0.

Applications to quantum cosmology

Now, for simplicity, we pick such fiducial vector |φ0〉 that it satisfies the physical
centering conditions (1.42a) and (1.42b). Then the background hamiltonian (1.28b)
for flat Friedmann-Lemaître-Robertson-Walker universe is affine quantized in the
following way

H(0) = gp2 7→ Ĥ(0) = g

(
P̂2 +

h̄2K
Q̂2

)
. (1.52)

Observe that from affine quantization of the background degrees of freedom (q, p)
one arrives to the quantum model in which the classical singularity at the point
q = 0 in never reached. Fig. 1.2 represents a schematic, semiclassical trajectories for
the quantized background gravitational degrees of freedom. The two distinct and
separate branches of classical solutions (see Fig. 1.1), the expanding and contracting
universe are now smoothly sewn together. This feature is called quantum big bounce
singularity avoidance scenario. The perturbation variables present in (1.28c) for each
mode live in the phase space R2, therefore employing affine quantization would
be wrong. One is justified to canonically quantize them, effectively by replacing
π̌± 7→ π̂± and ȟ± 7→ ĥ±.

The above result is the basis for investigation presented in the doctoral disser-
tation. The assumption of a smooth transition from a collapsing to an expanding
universe through a quantum regime opens up a rich field for scientific considera-
tions. Among them, we will focus on the issue of the uniqueness of evolution in a
deep quantum regime, the transition between quantum and classical descriptions,
and on the possible observational effects of the big bounce scenario.
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2
Time and clock in quantum
gravitational systems

2.1 The status of time in classical and quantum theories

One of the biggest challenges in constructing a theory of quantum gravity is to con-
nect the notions of time in General Relativity and Quantum Mechanics/Quantum
Field Theory. A wide range of obstacles that interfere with achieving such task are
collectively called the Problem of Time. Considering the multifacetedness and com-
plexity of the Problem of Time this section does not aspire to give a comprehensive
introduction to the topic. We pick certain crucial issues in order to prepare the reader
for the discussed article and consequently we rely heavily on two excellent reviews
[2, 3].

The differences between the notions of time in both theories are of fundamental
nature.

In General Relativity, or more generally, in theories which are covariant with re-
spect to the action of the group Di f f (M) of diffeomorphisms of the spacetime man-
ifoldM (Di f f (M) theories), ’time’ is frequently considered as merely a coordinate
onM. Perceiving Di f f (M) as a group of active point transformations onM with
compact support 1, one can utilise the Einstein ’hole’ argument to reach conclusion
of ’time’ being merely a coordinate. For example, take scalar field φ onM, its value
at a particular point is φ(x), x ∈ M. Performing a transformation from Di f f (M)
group on some compact spacetime region transforms the equations of General Rel-
ativity covariantly, therefore φ(x) has no invariant meaning and individual points x
onM do not have any fundamental ontological significance. Observe that for space-
timesM for which 3 + 1 space-time split is possible, it is guaranteed that different
foliations which are connected by Di f f (M) lead to physically equivalent descrip-
tion. There is no analogous statement on the fundamental level in Quantum Gravity.
Moreover, while the invariance of causality under such transformations in General
Relativity is given, it is problematic in theories involving quantum effects in gravity.
Assume that one is able to consistently construct a ’metric’ operator which serves
an analogous purpose as a metric in classical theory. Such object would naturally be
subject to quantum fluctuations and the causal relations would appear to be depen-
dent on the underlying a quantum state.

The contents of this chapter are published in: Przemysław Małkiewicz and Artur Miroszewski,
Internal clock formulation of quantum mechanics, Phys. Rev. D 96, 046003 (2017)

1the transformation becomes identity outside compact region
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In Quantum Mechanics2 time is the Newtonian time. It is an external, absolute
parameter with respect to which change in physical system is manifested. It labels
the events according to evolution generated by Schrödinger equation

ih̄
dψτ

dτ
= Ĥψτ. (2.1)

The chronology is given externally to the system and the ’time-space foliation’ is not
to be changed by any analogue of the Di f f (M) transformations from the previous
paragraph. In fact, Quantum Mechanics is subject to Galilean transformations [25]
which do not change spatial sections.

The issue which should not be avoided is whether one is able to construct a phys-
ical clock which would provide a precise measure of time. In principle, a physical
system which serves as a clock should evolve monotonically. Furthermore, it should
not interact significantly with the observed subsystems; otherwise, the observed dy-
namics will be difficult to understand. For example, in the context of astronomy, the
“astronomical time”, given by the Earth’s rotation, can serve as an example of the
imperfect clock. Around the turn of the 20th century it was finally replaced by the
so-called ephemeris time which involves the motions of the Moon, the Earth and the
Sun. This switch enabled us to predict more accurately positions of celestial bodies
and especially of the Moon [26], however the switch was only an improvement of
old, imperfect clock.

This issue is also manifested in Quantum Mechanics. The "no perfect clock" theo-
rem by Unruh and Wald [27] states that for hamiltonians bounded from below there
does not exist any operator T̂ with an infinite sequence of states |T0〉, |T1〉, |T2〉 . . .
having following properties

1. each |Tn〉 is an eigenstate of the projection operator onto the spectral interval
centered around the value Tn, with T0 < T1 < T2 < . . . ,

2. for each n there exists an m > n and a τ > 0 such that the amplitude to go
from |Tn〉 to |Tm〉 in time τ is non vanishing,

3. for each m and for all τ > 0, the amplitude to go in time τ from |Tm〉 to any
|Tn〉 with n < m vanishes.

Therefore for bounded from below hamiltonians it is impossible to create a quantum
clock which only "goes forward".
Moreover, if one would like to create a canonical pair, with the relation of type

[T̂, Ĥ] = ih̄, (2.2)

there is a following obstruction: self-adjoint operators satisfying exponentiable rep-
resentations of (2.2) necessarily have spectra equal to the whole real line, which con-
tradicts the assumption of bounded hamiltonian. Note however that recently there
are approaches which drop the necessity of self-adjointness in exchange for con-
structing the mentioned canonical pair using the Positive Operator-Valued Measure
(POVM) [28–30].

2the discussion effectively fully applies to Quantum Field Theory
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2.2 Internal time approach

One of the most frequent approaches to address the above issues is the internal time
approach. Generally, the idea assumes that events in M can be identified, not by
spacetime coordinates, but by internal variables of the gravitational field or other
physical fields of a theory. It can be implemented both in the theory where one
quantizes the theory first and then identifies a time variable or the converse.

The former is called Dirac approach [31]. It assumes imposing the hamiltonian
and momentum constraints (introduced below) only after the quantum theory is
constructed. The quantum constraints select a space of physically allowed states.
Time in this approach is identified only after quantum constraints are solved.

The idea of internal time will be introduced below in the second approach. It
is called reduced phase space approach. The general procedure is to identify non-
dynamical degrees of freedom and remove them from kinematical phase space be-
fore quantization. During the phase space reduction time variable is chosen.

In the Arnowit-Deser-Misner approach to general relativity [9] one arrives to
hamiltonian and momentum constraints

C(x; g, p, φ, πφ) = 0,
Ca(x; g, p, φ, πφ) = 0

(2.3)

where g and p are, respectively, the three-metric and the extrinsic curvature of a
spacelike hypersurface Σ 7→ M, x is now a point on such hypersurface x ∈ Σ, φ
and π represent canonical pairs of any additional fields of the theory. For simplicity,
we will consider minisuperspace models for which momentum constraints vanish
identically and therefore we will focus solely on the hamiltonian constraint. The
hamiltonian constraint plays two roles in this formalism: (i) generating the dynamics

d
dt

O(x; g, p, φ, πφ) = {O(x; g, p, φ, πφ), C(x; g, p, φ, πφ)} (2.4)

and (ii) constraining the phase space of physically admissible states as was stated in
(2.3).
One can expect to find a canonical transformation

g, p, φ, π → t, pt, Ψ, πΨ (2.5)

which decomposes the canonical variables into the clock t and other fields and such
that the hamiltonian constraint takes the form

C(x; t, pt, Ψ, πΨ) = pt(x) + H(x; t, Ψ, πΨ) = 0. (2.6)

Now, solving the above constraint one arrives to the deparametrized classical the-
ory in which dynamics relative to the clock variable t is generated by the reduced
hamiltonian H. This procedure involves identifying the odd-dimensional constraint
surface C = 0 embedded in higher-dimensional (kinematical) phase space with a
contact manifold made of lower-dimensional (reduced) phase space and a time man-
ifold, where the function t is chosen on the constraint surface for the role of time.
This construction is depicted in Fig. 2.1.

Performing some quantization procedure one naturally arrives to the Schrödinger
equation

ih̄
dψt

dt
= Ĥψt. (2.7)
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t = const

C=0 (q,p,t)=R3

m
otion
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⇔

FIGURE 2.1: The constraint surface C = 0 embedded in an ex-
tended phase space can be identified with a contact manifold made
of a lower-dimensional reduced phase space by choosing an internal

clock.

Observe that apart from the form similar to (2.1) the above equation has a completely
different physical meaning. Now the time variable t is not an absolute, external pa-
rameter in the Schrödinger equation, but an evolution variable which is constructed
from the internal and physical degrees of freedom of the theory, the internal clock.
The obtained dynamics is described relative to the physical clock obtained by canon-
ical transformation (2.5) and it takes place entirely within the system. This construc-
tion is schematically depicted in Fig. 2.2. Although the procedure presented above
seems to overcome most of the problems presented in section 2.1, it suffers from its
own problems. The one which should be mentioned in the context of the discussed
article is Multiple Choice Problem. Generally, it states that one can perform different
canonical transformations of the form (2.5) arriving at the clocks based on different
physical degrees of freedom. While the evolution in various classical descriptions is
equivalent, it might not be the case for the quantized descriptions.

2.3 Classical mechanics and clocks

The main goal of the discussed article [32] is to generalise the standard formula-
tion of quantum mechanics to the formulation in which time variable is an internal
degree of freedom of the system and in which one can switch between different in-
ternal clocks. Such theory will be much closer in spirit to the internal time approach
discussed in the last section.

The first step for obtaining such generalization is to recall the basic framework
and review time in classical canonical non relativistic mechanics. For simplicity,
from this point on the phase space of the theory will be assumed to be two dimen-
sional (q, p) ∈ R2 and it will be equipped with the symplectic form ω = dqdp and
the hamiltonian H(q, p). The generalisation of this discussion to higher dimensional
theories is straightforward. The dynamics in such theory is obtained from hamilton
equations

dq
dt

= −ω−1(q, H),
dp
dt

= −ω−1(p, H), (2.8)

where the Poisson bracket is the minus inverse of the symplectic form {·, ·} =
−ω−1(·, ·).
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t3

t1

FIGURE 2.2: The evolution of a given subsystem is always expressed
in relation to another subsystem that is represented in the figure by a
clock. Time is only an auxiliary parameter, which is used to formally
isolate a given subsystem from the rest of the system, which can be

then neglected.

The simplest way to include time as an internal variable is to extend the phase space
manifold to contact manifold, this also naturally extends symplectic form to contact
form

(q, p) ∈ R2 → (q, p, t) ∈ R3,
ω = dqdp→ ωC = dqdp− dtdH(q, p).

(2.9)

Contact form is defined in the higher-dimensional kinematical phase space. The
standard description in specific clock can be recovered by performing phase space
reduction ωC|t = ω (see Fig. 2.1). The Poisson bracket definition in an extended
scheme becomes generalized

{·, ·} = −ωC|t−1(·, ·). (2.10)

Recall that the transformation between internal clocks in (2.5) was a canonical
transformation in kinematical phase space. Canonical transformations in classical
mechanics

R3 3 (q, p, t) 7→ (q̄, p̄, t) ∈ R3,
ωC = dqdp− dtdH(q, p) 7→ ω̄C = dq̄dp̄− dtdH̄(q̄, p̄),

(2.11)

keep the form of symplectic structure and leave clock unchanged. In order to allow
for switching between clocks more general, pseudocanonical transformations are
introduced

R3 3 (q, p, t) 7→ (q̄, p̄, t̄) ∈ R3,
ωC = dqdp− dtdH(q, p) 7→ ω̄C = dq̄dp̄− dt̄dH̄(q̄, p̄).

(2.12)

As it was shown in the paper [32], demanding that all constants of motion CJ exhibit
the same formal dependence on the basic variables in any clock

C̄J(q̄, p̄) = CJ(q̄, p̄) (2.13)
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t̄ = t t̄ = 2t + 0.3 t̄ = t + qp t̄ = t− 3qp
3p2+1

p

q

t

FIGURE 2.3: The two curves represent the motion of a particle in a
contact manifold (phase space × time manifold). The planes repre-
sent constant time surfaces which fix an abstract (from the point of
view of classical mechanics) notion of simultaneity between states
of a particle belonging to different solutions (represented here by
curves). The second picture from the left illustrates a time transfor-
mation which merely changes time units and the zero-time point. The
third and fourth pictures from the left illustrate time transformations
which change simultaneity between states of a particle belonging to

different curves.

leads to the theory physically equivalent to standard classical mechanics, but with
the possibility to choose in which clock the dynamics is described. The equivalence
is based on the preservation of the constants of motion CJ (of which one is Hamilto-
nian) in all clocks. Transformations which satisfy the above condition are called as
special pseudocanonical.
Special pseudocanonical transformations can be seen as passive transformations
which alter the foliation of the canonical theory, leaving the dynamical content un-
changed. This view is presented in Fig. 2.3.

2.4 Quantum mechanics and internal clocks

The above formalism will be now promoted to quantum mechanics. In order to so,
one has to perform a careful quantization procedure, by which we understand a
linear map from functions on phase space to linear operator in the Hilbert space H.
The most general form of this procedure can be represented in the integral form [16,
33]

f (q, p, t) 7→ Â f :=
∫

t=const
dqdp f (q, p, t)M(q, p), (2.14)

where the integration over functions on phase space is to be performed over a mea-
sure defined by family of bounded operators which resolve the identity∫

t=const
dqdpM(q, p) = 1. (2.15)

If we would quantize a classical theory in a new clock t̄, we would have to inte-
grate over different phase space determined by a new clock t̄ = const. This quantiza-
tion procedure maps classical theories based on different clocks to the same Hilbert
space H. The key question arises, how to relate two quantum theories in different
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clocks? The well grounded assumption (already used for classical theory) would
be to connect them by constants of motion, which, from the definition, are to be
quantized in a unique way, irrespective of internal clock used. This imposes a set
of conditions which effectively lead to the conclusion that in order to consistently
relate theories in different internal clocks one has to fix

M(·, ·) ≡ M̄(·, ·). (2.16)

If follows that observables that have formally the same dependence on the respective
contact coordinates are promoted to unique families of operators enumerated by the
values of the respective clocks

f (q, p, t) 7→ F̂t ⇒ f (q̄, p̄, t̄) 7→ F̂t̄. (2.17)

The physical content of the state |ψ〉 ∈ H in quantum mechanics is extracted by
projecting it on the eigenstates |φ f 〉 of the observable of interest F̂. If the observ-
able represents a constant of motion (Dirac observable [34]) then, referring to the
discussion above, the state |ψ〉 has a unique physical interpretation, irrespectively of
which clock is used. On the other hand, if F̂ is dynamical then, in general, one can-
not give a single state |ψ〉 the same physical interpretation in two formalisms based
on different clocks.

Being a Dirac observable, the hamiltonian is promoted to unique quantum oper-
ator in all clocks. Therefore, there is an unique Schrödinger equation governing the
evolution of quantum states

ih̄
∂

∂τ
|ψ〉 = Ĥ|ψ〉, (2.18)

where τ = t or τ = t̄. Hence the evolution of |ψ〉 is, up to parametrization, unam-
biguous. One effectively arrives to the same picture as on Fig. 2.3, where irrespec-
tively of time foliation the evolution of the state of the system is unambiguous (in
this case the space in which the motion takes place is the Hilbert space H instead of
phase space).

Summarising, internal clock formulation of quantum mechanics has following
properties:

i Given a physical system, all the respective canonical formalisms based on all
possible internal clocks and related by pseudocanonical transformations may
be quantized in a uniform manner. All the respective quantum theories may
be placed in the same Hilbert spaceH.

ii Any nondynamical information about any state |ψ〉 ∈ H is provided by means
of spectral decomposition induced by a nondynamical operator and is com-
pletely independent of the choice of internal clock.

iii Unitary evolution of any initial state

R 3 τ 7→ |ψ(τ)〉 ∈ H (2.19)

is completely independent of the choice of internal clock.

iv Any dynamical information about any state |ψ〉 ∈ H is provided by means of
spectral decomposition of |ψ〉 induced by a dynamical operator and depends
crucially on the choice of internal clock.



22 Chapter 2. Time and clock in quantum gravitational systems

v Interpretation of the evolution of any initial state in terms of spectral decompo-
sition of |ψ〉 induced by a self-adjoint dynamical F̂,

R 3 τ 7→ 〈φ f |ψ(τ)〉 = ψ( f , τ) ∈ L2(sp(F̂), d f ), (2.20)

depends crucially on the choice of internal clock.

2.5 Example: Free particle

Although the following example is elementary, it demonstrates fully the aspects of
both classical and quantum mechanical formulation in internal clocks. Let’s take a
classical free particle in one dimension

ωC = dqdp− dtdH, H =
p2

2
, (2.21)

where (q, p) ∈ R2 and t ∈ R. We restrict form of clock transformation

t̄ = t + D(q, p), (2.22)

where D(q, p) is called a delay function, and identify two constants of motion

C1(q, p, t) = p,
C2(q, p, t) = q− pt.

(2.23)

The relations (2.22) and (2.23) define algebraic relations for admissible special pseu-
docanonical transformations, which can be expressed in the following form

p̄ = p,
q̄ = q− pD(q, p),
t̄ = t + D(q, p).

(2.24)

It is easy to check that although the contact form remains the same before and after
the transformation, the symplectic form is modified

−ω−1
C |t̄(q̄, p̄) = −ω−1

C |t̄(q− pD(q, p), p) 6= −ω̄−1|t̄(q̄, p̄) = 1 (2.25)

The additional physical condition one must make is to assume that the new clock is
monotonic

dt̄
dt

= 1 + p
∂D
∂q

, (2.26)

which implies that the flow of the evolution is neither stopped nor inverted.
Upon canonical quantization one obtains

q = q̄− p̄D(q̄, p̄) 7→ Sym
[
Q̂− P̂D(Q̂, P̂)

]
, p = p̄ 7→ P̂. (2.27)

Since the momentum operator P̂ is a Dirac observable, we refer to the property (ii)
and conclude that a momentum representation of some state |ψ〉 ∈ H has a unique
physical interpretation in all clocks. From the property (i), we know that, in particu-
lar, the position operators: Q̂ in old clock t and Sym

[
Q̂− P̂D(Q̂, P̂)

]
in new t̄ clock

both act on the same Hilbert space H. On the other hand, we expect from property
(iv) that the wavefunctions associated to position operators ψ(q) = 〈q|ψ〉 will differ
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FIGURE 2.4: Probability distribution Pψ = |〈q|ψ〉|2 of position eigen-
values for the state |ψ〉 [defined in (2.29)] in the old clock t (on the left)
and in the new clock t̄ = t + qp (on the right). On the right: the prob-
ability for specific eigenvalues is marked with dots. The spectrum is
discrete, the probability of measuring a specific position is marked
with a dot, the straight dashed lines connecting the dots do not have

any physical meaning.

in clocks t and t̄.
By constraining the delay function even further

D(q̄, p̄) = q̄ f ( p̄), (2.28)

one can show [32] that even such fundamental property of the dynamical operator as
a discreteness or continuity of the spectrum can change under clock transformation.
This case is demonstrated in Fig. 2.4 for a probability distribution

Pψ = |〈p|ψ〉|2, 〈p|ψ〉 = (πσ)−1/4e−
1

2σ (p−p0)
2
e−ix0 p. (2.29)

Each case of the inequivalence in interpretation of the state |ψ〉 due to different in-
ternal clock is called clock effect.

2.6 Quantum mechanics in classical, laboratory frame

The inequivalence of the quantum dynamics in different clocks prompts the follow-
ing question. If clock effect can alter the interpretation of dynamics for different
observers, then why do we agree on quantum mechanical experiments? We propose
a following explanation, based on split into two systems: quantum experiment sys-
tem and the classical laboratory frame. Continuing the example, let’s introduce two
free one-dimensional particles P1 and P2 and make two key assumptions

1. Particle P1 is quantum, and the canonical description presented at the begin-
ning of previous section forms the underlying classical limit, whereas the par-
ticle P2 is described classically.

2. Particles P1 and P2 do not interact, therefore their hamiltonians are conserved
separately.

Introducing a clock transformation that depends on the states of the particle P2

t 7→ t̄ = t + D(q2, p2) (2.30)
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we conclude that, from the point of view of particle P1 the delay function

D(q2(t), p2(t)) = ∆(t) (2.31)

is an external, time-dependent parameter, and the transformation (2.30) is canonical.
Inclusion of the ∆(t) function in the new clock, does not modify the constant time
surfaces but merely relabels them. There exists an unitary transformation

U = e−
i∆
2 P̂2

, (2.32)

where P̂ is the momentum of the quantum particle P1, which corresponds to (2.30).
In fact, as the quantum hamiltonian reads Ĥ = 1

2 P̂2, U coincides with just a shift
in time by −∆. Therefore, observers associated with different clocks must inter-
pret a given state of the system in the same way except assign different moments,
shifted by ∆. Answering the question at the beginning of this section. Given a quan-
tum system, clock transformations that involve only external and classical degrees
of freedom merely change the units of time in its quantum description. Therefore,
under special circumstances, from quantum mechanics in internal clocks quantum
mechanics in a absolute time can be obtained.

2.7 A brief summary

Motivated by General Relativity, we were able to introduce a quantum mechanical
framework in which the dynamics can be given in different internal clocks. The con-
struction is based on classical contact manifold. The change of internal clock in clas-
sical theory can be performed by applying special pseudocanonical transformation,
which generalizes standard canonical transformations. The classical framework is
promoted to quantum in a consistent manner. The consequence of the description
of evolution in terms of internal degrees of freedom is the clock effect - ambiguity
in the interpretation of dynamical observables in different clocks. The ambiguity
vanishes when one restricts the framework to observers connected with classical de-
grees of freedom (i. e. the classical environment). This indicates that the proposed
framework includes and extends a standard quantum formalism.

In today’s universe we are surrounded by classical (or close to classical) environ-
ment which disambiguates any disagreement in its evolution. On the other hand, if
one assumes that the universe underwent a period when all its internal degrees of
freedom where far from classical (for example in the very early universe), then we
must conclude that the unique dynamical interpretation of that period is not avail-
able. For more research on clocks in the early universe see, for example [35–37].
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3
Quantum dynamics in
Weyl-Heisenberg coherent states

3.1 Introduction

In Chapter 1 coherent states and phase space covariant quantization maps were in-
troduced. Later topic in the field of coherent states is just one of their possible ap-
plications. They are used in the field of atomic optics [17, 23], superfluidity [38],
superradiance [39, 40], quantum electrodynamics [41–43], solitons [44–46], statisti-
cal physics [47, 48], scattering processes [49] and many other, for review see, for ex-
ample [14] or [15]. Recently, coherent states have been used to obtain semiclassical
dynamics of quantum gravitational systems [50–52]. The, so called, lower symbol
methods [15] originating from the reduced action functional [53] naturally lead to
“quantum corrected" phase space trajectories of the system. With all advantages of
such simple, “corrected" description one has to always remember that it is rather
qualitative than quantitative result. It is worth emphasizing that this semiclassical
method is completely independent from the coherent state based solutions of the
time-dependent Schrödinger equation in the field of computational chemistry [54].

The following two chapters describe papers which were focused on finding a
consistent formalism which connects standard coherent state semiclassical approxi-
mation with exact quantum mechanics. This chapter deals with the Weyl-Heisenberg
family of coherent states, while Chapter 4 focuses on affine coherent states with pos-
sible application to quantum cosmology.

The above picture is very attractive for establishing a bridge between classical
and quantum calculations. Indeed, if we ignore the quantum stochastic origin of the
picture, we recover a classical-like formalism. The presented construction is valid
only for finite dimensional Hilbert spaces, though, the idea of using expectation
values is obviously attractive for the infinite dimensional spaces as well. The desired
extension can be established if one finds a way to truncate the principally infinite
sequence of expectation values needed to specify a quantum state belonging to an
infinite dimensional Hilbert space. Herein a suitable framework is proposed.

The contents of this chapter are published in: Artur Miroszewski, Quantum dynamics in Weyl-
Heisenberg coherent states, arXiv:2009.00056
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3.2 Weyl-Heisenberg coherent states and the standard semi-
classical approach

Continuing considerations from the introductory section 1.2 we remind the construc-
tion of (generalised) Weyl-Heisenberg coherent state

|q, p〉 ≡ |q, p; φ0〉 ≡ UW(q, p)|φ0〉 ≡ D(q, p)|φ0〉, (3.1)

where D(q, p) is frequently referred to as displacement operator, which satisfies the
following properties:

• D̂−1(q, p) = D̂†(q, p) = D̂(−q,−p),

• f̂ (1̂, Q̂, P̂)D̂(q, p) = D̂(q, p) f̂ (1̂, q1̂+ Q̂, p1̂+ P̂).

The reference state |φ0〉 is chosen from the L2(dx, R) Hilbert space. The physical
interpretation of the labels (q, p) stems from the following expectation values

Q̌ ≡ 〈q, p; φ0|Q̂|q, p; φ0〉 = q + 〈φ0|Q̂|φ0〉 ≡ q + 〈Q̂〉, (3.2a)

P̌ ≡ 〈q, p; φ0|P̂|q, p; φ0〉 = p + 〈φ0|P̂|φ0〉 ≡ p + 〈P̂〉. (3.2b)

where Ǒ is called a lower symbol of operator Ô and a shorthand notation for an
expectation value in a fiducial vector was introduced.

It is customary to choose such fiducial vector in which 〈Q̂〉 = 0 and 〈P̂〉 = 0
is fulfilled, this choice is called physical centering. Then (q, p) labels can be seen
as position and momentum respectively. Having a physical interpretation of the
(q, p) variables on a physically centered fiducial vector, they will be referred to as
’classical’ degrees of freedom, while any other variables (connected to the shape of
reference quantum state) will be called ’quantum’. The motivation for those names
is clear, for a fiducial wavefunction being an infinitesimaly narrow wave packet all
’quantum’ degrees of freedom vanish.

In Chapter 1 section 1.2 coherent states were presented as a fundamental tool in
phase space covariant quantization procedures. Now we would like to look at them
from the opposite point of view, as a tool in semiclassical analysis of the dynamics of
quantum systems. The usual procedure to obtain semiclassical dynamics for labels
(q, p) it to start from the restricted quantum mechanical action [53]

SR =
∫

dt〈q(t), p(t); φ0|i
d
dt
− Ĥ(Q̂, P̂)|q(t), p(t); φ0〉. (3.3)

and assume that labels (q(t), p(t)) are the only available dynamical degrees of free-
dom. This method is often referred to as a lower symbol method [15]. The laws of
motion derived from the variational principle for the labels are the following

q̇ =
∂Ȟ
∂p

, (3.4a)

ṗ = −∂Ȟ
∂q

, (3.4b)

where Ȟ = 〈q, p|Ĥ|q, p〉 is a lower symbol hamiltonian. Because of the form similar
to the hamilton equations in classical mechanics the above formulae are referred to
as a hamilton-like equations. They describe motion of ’classical’ position and mo-
mentum which is driven by a quantum corrected lower symbol hamiltonian Ȟ. In
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general the lower symbol hamiltonian and its classical analogue H do not coincide
Ȟ(q, p) = H(q, p)+O(h̄) 6= H(q, p) and the dynamics generated by Ȟ gives a quan-
tum corrected trajectories of the semiclassical particle. The presented dynamical law
corresponds to a transport of the given reference state. The transport is performed
in such way that the reference states mean position and momentum follows, respec-
tively, the evolution of the labels q(t) and p(t), while the shape of the wavefunc-
tion does not change. In most cases such transport is just an approximation of true
quantum motion. The fundamental question of the described paper is whether it is
possible to extend the dynamical laws (3.4a) and (3.4b) in such way that one is able
to control and verify the degree of accuracy of the corrected trajectories (q(t), p(t)).

3.3 Extended formalism for coherent states dynamics

phase space

fiducial space

q
p

semi-classical

FIGURE 3.1: A schematic depiction of a dynamical trajectory of a
quantum system in coherent state. The horizontal grid represents
a semiclassical phase space for fixed fiducial vector |φ0〉. A trajec-
tory plotted with a solid line represents unitary evolution driven by a
full quantum mechanical action, while the dashed line trajectory rep-
resents motion obtained by a standard coherent state semiclassical
approach. Although both motions begin in the same point of semi-
classical phase space and fiducial space, they quickly diverge from
one another. In order to correct that, possibility of motion in fiducial

space has to be introduced.

In order to account for the possible evolution of the fiducial vectors shape we
assume that not only the labels (q(t), p(t)) but also the underlying reference state
|φ0〉(t) is dynamical. The schematic illustration of this idea is presented in Fig. 3.1.

For each instance of time the coherent state with evolving fiducial vector satis-
fies the defining properties (1.36) and (1.37) of generalized coherent state as long as
|φ0〉 ∈ H. Therefore the proposed extension of reference state degrees of freedom to
be dynamical does not, pointwise, stop states |q(t), p(t); φ0(t)〉 from being a member
of some family of coherent states.
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The quantum mechanical action in the extended formalism is not restricted to
any fixed reference state and can be written as

S =
∫

dt
[

q̇p− 〈 ˙̂Q〉〈P̂〉+ 〈i d
dt
〉 − 〈Ĥ

(
q− 〈Q̂〉+ Q̂, p− 〈P̂〉+ P̂

)
〉
]

. (3.5)

Terms 〈 ˙̂Q〉〈P̂〉 and 〈i d
dt 〉, which are absent in standard coherent state semiclassical ap-

proximation, are responsible for the evolution of fiducial state (’quantum’) degrees
of freedom. Phase space of such setup is described with the following symplectic
form

ω = dq ∧ dp− d〈Q̂〉 ∧ d〈P̂〉+ i d|φ0〉 ∧ d〈φ0|. (3.6)

Reference state lives now on the whole Hilbert spaceH, instead of being just a fixed
single vector on it. From counting degrees of freedom it is clear that the introduc-
tion of labels (q, p) resulted in redundancy in the system. One has to introduce
constraints to the analysis. Motivated by the physical centering conditions and the
goal of connecting the extended analysis with standard coherent state semiclassical
description we choose to set 〈Q̂〉 = 0 and 〈P̂〉 = 0 constraints for the evolution.

The resulting formalism unambiguously distinguishes the ’classical’ variables
which form quantum corrected trajectories from ’quantum’ degrees of freedom which
describe the evolution of the shape of the underlying reference state.

The total hamiltonian 〈HT〉which drives the evolution in the extended formalism
is

〈ĤT〉 = 〈Ĥ
(
q + Q̂, p + P̂

)
〉+ α〈Q̂〉+ β〈P̂〉, (3.7)

where α and β are Lagrange multipliers introduced to explicitly keep reference state
on the constraints surface. The dynamics is obtained with the use of the following
compound bracket

d
dt
〈φ|Ô(q, p)|φ〉 = J〈Ô(q, p)〉, ĤTK ≈ {〈Ô(q, p)〉, 〈ĤT〉}qp − i〈[Ô(q, p), ĤT]〉, (3.8)

where the weak equality sign "≈” is translated as "equal on the constraint sur-
face”. The first term in the above expression contains a standard Poisson Bracket
{ f , g}xy = (∂ f /∂x)(∂g/∂y)− (∂ f /∂y)(∂g/∂x) and the last term contains a commu-
tator.
The constraints on the reference state are of second class and the explicit algebraic
expression for Lagrange multipliers can be obtained from dynamical stability condi-
tion (the condition that constraints are preserved in time).

The presented formalism of dynamical evolution in coherent states with evolving
fiducial vector is equivalent to standard Quantum Mechanics and provides exact re-
sults. It works for a wide range of hamiltonians and can be easily extended to higher
dimensions by replacing labels (q, p) by vectors (~q,~p) and changing the dimension
of the space of admissible fiducial vectors.

3.4 Decomposition of the total hamiltonian

At this stage the formalism is completely defined and one is able to explore the
approach. In this section we will assume to work with standard form of the non-
relativistic quantum systems, with hamiltonians consisting of standard kinetic en-
ergy term and some unspecified potential.
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The lower symbol hamiltonian can be decomposed into the following sum of
expressions

〈q, p; φ0|Ĥ(Q̂, P̂)|q, p; φ0〉 = 〈Ĥ(q + Q̂, p + P̂)〉 ≈

≈ 1
2m

p2 + V(q)︸ ︷︷ ︸
HC

+ 〈 1
2m

P̂2 + V(Q̂)〉︸ ︷︷ ︸
〈ĤQ〉

+ 〈VI(q, Q̂)〉︸ ︷︷ ︸
〈HI〉

. (3.9)

Throughout the chapter HC is related to as a classical hamiltonian, 〈ĤQ〉 as a quan-
tum hamiltonian and 〈HI〉 as an interaction hamiltonian with an interaction poten-
tial 〈VI〉. Only the constraints (which weakly vanish in the expression above) and
interaction hamiltonian mix ‘classical’ and ‘quantum’ degrees of freedom.
Using the newly introduced notation one can write the extended analogue of hamilton-
like equations (3.4a) and (3.4b) in a convenient way,

q̇ ≈ ∂HC(q, p)
∂p

≈ p
m

(3.10a)

ṗ ≈ −∂V(q)
∂q

− ∂〈VI(q, Q̂)〉
∂q

(3.10b)

d
dt
〈 f (Q̂, P̂)〉 ≈ −i〈[ f (Q̂, P̂), ĤQ]〉 − i〈[ f (Q̂, P̂), ĤI + αQ̂ + βP̂]〉 (3.10c)

The equations (3.10a) and (3.10b) describe evolution of ‘classical’ variables (q, p).
The interaction term in the those equations pushes the evolution of (q(t), p(t)) from
its classical trajectory, correcting it by accounting for quantum effects. The same
result is obtained in standard approach. Note however that the equation (3.10c) de-
scribes evolution of any function of basic operators Q̂ and P̂ and therefore 〈VI(q, Q̂)〉
in (3.10b) is now dynamical. It is worth noting that the motion in ’quantum’ de-
grees of freedom is not only generated by a quantum hamiltonian HQ but also by
the interaction term and constraints.

Having defined the decomposition (3.9) and obtained equations of motion (3.10a-
3.10c) it is straightforward now to give an interpretation of HC, 〈HQ〉, 〈HI〉 quanti-
ties. The first quantity, HC, is a classical hamiltonian of a given system, it involves
only the ’classical’ variables q and p and generates classical motion of the system.
The second quantity, i.e. the expectation value of a quantum hamiltonian in the
fiducial vector 〈HQ〉, is a quantum analogue of HC, generating motion for ‘quan-
tum’ degrees of freedom which are hidden from the classical point of view. The
third quantity, 〈HI〉, describes a coupling between classical and quantum degrees
of freedom and its vanishing is proposed as one of the requirements for the quan-
tum system to be in a classical state. Due to this coupling there is an "energy" flow
between the HC and 〈HQ〉 which can strongly influence the systems evolution.

Given above, one is in a position to propose a criterion for the quantum system
to be in a classical state. First, note the following:

1. The "quantum energy” stored in the ’quantum’ degrees of freedom should be
negligible compared to the "classical energy” stored in the ’classical’ degrees
of freedom, i.e.

〈HQ〉 � HC (3.11)
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2. The interaction potential should be also negligible compared to the "classical
energy" stored in the ’classical’ degrees of freedom, i.e.

|〈VI〉| � HC (3.12)

3. The constraint term sources a force which acts normally to the motion of the
particle and does not contribute to the energy of the system in any way. The
constraints are, moreover, on the ’quantum’ degrees of freedom and they exert
a force on the quantum degrees of freedom only, despite that α and β may
depend on q and p. Therefore, those terms do not affect the classical dynamics
of the system.

The above remarks combine together into the following criterion for classicality:

A quantum system is in a classical state when the quantum energy stored in the shape of
its wavefunction and its quantum-classical interaction potential are negligible compared to
the classical energy stored in the classical degrees of freedom,

|〈HQ〉+ 〈VI〉| � HC (3.13)

Inspired by the above definition one can introduce some measure of ‘how classi-
cal’ a state at some given time is. In the case when one is interested mostly in how
quantum effects push the ‘classical’ variables from their classical trajectory (see eq.
(3.10b)) one can introduce the “interaction index”

I =
∣∣∣∣ 〈VI〉

HC + 〈ĤQ + VI〉

∣∣∣∣. (3.14)

As it is shown in the discussed paper, the systems with polynomial potentials of
order less or equal to two posses an identically vanishing interaction potential. In
that case the trajectories rendered by (q(t), p(t)) labels are exact and the interaction
index vanishes at all times.

3.5 Approximate methods

As was already stated in section 3.2, the standard coherent state semiclassical de-
scription is an approximation of exact quantum dynamics. Looking at the possible
approximation schemes for an extended formalism one is able to find out how the
standard description is embedded in it.

Usually the methods of approximate description of quantum dynamics rely on
the restriction of the available Hilbert space H. The dynamical laws are derived
from the stationary point of the quantum mechanical action obtained by a variation
with respect to the available degrees of freedom. Suppose that the quantum action
becomes confined to the states living in the subspace |ψΓ〉 ∈ Γ ⊂ H. For such
reduced action the wavefunctions |ψΓ〉 obey the following equation

〈δψΓ|i∂t − Ĥ|ψΓ〉 = 0, f or any 〈δψΓ| ∈ TtΓ (3.15)
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FIGURE 3.2: The simulations for meta stable state (3.17) with a2 = 10,
a3 = −2 and the initial fiducial state |φ〉 = |0〉.

Left: The initial values for position and momentum are q(0) =
0, p(0) = 8.01. The initial energy is not enough for the motion ap-
proximated by standard coherent state semiclassical approach (lower
symbol method) to escape the potential. On the other hand, using
moments expansion method the fiducial vector is able to evolve and
the particle tunnels through the potential barrier (gray dashed line
indicates the position of the barrier). The interaction index grows as

the particle is pushed away from its classical trajectory.
Right: The dynamics of the particle with q0 = 0, p0 = −5.82. The par-
ticle oscillates in the potential couple of times and then tunnels out of
the local minimum. The gray dashed contour shows the sepparatrix
of the classical problem, while the gray long-dashed contour shows
the sepparatrix of the effective potential obtained in lower symbol
method. The plot depicts a projection on the motion in an extended
‘classical-quantum’ phase space to label (q, p). The trajectory crosses

itself on the plot, but in full phase space it is not the case.

which can be translated into the statement that the Schrödinger equation holds only
pointwise in the tangent space to |ψΓ〉

TtΓ = span
(

∂|ψΓ〉
∂t

∣∣∣∣
t

)
(3.16)

In our case |ψΓ〉 = |φ0〉 lives on the fiducial space. If |ψΓ〉 is defined in such way
that it does not cover the full fiducial space then we expect that the motion obtained
from equations (3.10a)-(3.10c) is approximate. In general as the fiducial space used
is bigger, the approximation becomes better.

The case of standard coherent state semiclassical description is a limiting case
of approximate dynamics, with the minimal fiducial space possible - it consists of
only one vector |φ0〉|t=0. The obvious extension of this approach is to explicitly add
vectors to the fiducial space basis. The implementation of this method is presented
in Chapter 4.

Another possible generalization of the standard semiclassical method is to per-
form an expansion in symmetrized moments

[
〈Q̂nP̂m〉

]
sym of the fiducial wavefunc-

tion. This approach is succesfully used in many contexts, see for example [55–58]. It
assumes that the moments satisfy a "hierarchy of orders" and therefore is most suited
for systems which states satisfy the criterion of classicality (3.13). The presented in
this chapter extended formalism is especially suited for performing the above ex-
pansion. It is so because all the moments are centered about 〈Q̂〉 = 0 and 〈P̂〉 = 0
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at all times. The implementation of the moments expansion in the exteded formal-
ism is given in the paper [59]. The explicit demonstration of the method is provided
by solving approximately a simple system of meta-stable state. The hamiltonian for
such system has the following form

Ĥ =
1
2

P̂2 + V(Q̂),

V(x) = V0

(
a2

2
x2 − a3

3
x3
)

.
(3.17)

The meta-stability property is seen for the states which are initially trapped in the
potentials local minimum. Although neither the classical nor standard coherent state
semiclassical description allow for the state to eventually tunnel through the poten-
tial barrier, the extended formalism accounts for this possibility (see Fig. 3.2).

Finally, observe that there is no natural way to control accurancy of the standard
coherent state semiclassical approximation, one has to compare the results with tra-
jectories obtained by other means. In the case of extended formalism, it is not the
case. If we explicitly enlarge the fiducial space with additional vectors one is able to
monitor the extent of how the initial fiducial vector becomes modified. If we use mo-
ments expansion method, one can, for example, check whether the total hamiltonian
is kept constant during the evolution.

3.6 A brief summary

The work presented in the paper [59] starts with the definition of generalized coher-
ent states and develops full description of quantum mechanical evolution in Weyl-
Heisenberg coherent states. In the introduced formalism the quantum dynamics is
described with a semiclassical frame, attached to every element of a Hilbert space.
Due to the physical centering conditions the labels (q, p) are interpreted as a semi-
classical position and momentum and form a canonically conjugate pair over a sym-
plectic manifold. The ‘quantum’ degrees of freedom are connected to the shape of
fiducial vector which also evolves. The novelty of the introduced formalism is that
now, all coherent states are able to solve the Schrödinger equation exactly. The ex-
tended formalism gives a quantum system a natural interpretation by dividing it
into ’classical’ and ’quantum’ degrees of freedom and providing a decomposition
of standard hamiltonians into parts which are strictly classical, quantum and a part
which is responsible for mixing of the separated degrees of freedom. The introduced
formalism embeds standard coherent state semiclassical description in the realm of
full quantum mechanics and allows to verify the degree of accuracy of the used ap-
proximation.
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4
Phase space formulation of
quantum mechanics and quantum
cosmology

4.1 Introduction

This chapter continues the analysis of quantum systems with the use of coherent
state methods. The cosmological background variables introduced in Chapter 1
live on half-plane phase space, therefore we cannot use the Weyl-Heisenberg group
which is defined on R2 phase space. We turn to affine group in order to look for
quantum effects in early universe. It is a natural property of a quantum system
that its wavefunction may spread. The dynamical spreading is also expected for
cosmological systems when they approach the big-bang singularity. As it was al-
ready shown in Chapter 1 section 1.2, in this case a quantum repulsive potential may
halt the contraction preventing the universe form collapsing into the singularity and
make it bounce and re-expand. Despite the fact that the expectation values of the ba-
sic observables such as the volume or the Hubble rate evolve symmetrically on both
sides of the bounce (see [60–62] or almost any other work on the semiclassical dy-
namics of bouncing Friedmann models), on the fully quantum level the bounce does
not simply revert the evolution. Thus, the evolution of some of quantum features is
expected to be asymmetric with respect to the bounce. The detailed behavior can be
captured within the extended approach by inspecting the evolution of nonclassical
observables.

4.2 States and expectation values in quantum mechanics

The discussion presented in this section is relevant to Chapter 3 as well. It was
originally given in the paper [63].

Let us assume a quantum system described by projector Pψ = |ψ〉〈ψ| in a finite
dimensional Hilbert space H of dimension N. Pψ belongs to the complex projective
space CPN−1 ∼= S2N−1/U(1) and depends on 2N− 2 real parameters. For a quantum
observable represented by a self-adjoint operator O on H the expectation value in a

The contents of this chapter are published in: Przemysław Małkiewicz, Artur Miroszewski, and
Hervé Bergeron, Quantum phase space trajectories with application to quantum cosmology, Phys. Rev. D 98,
026030 (2018)
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state Pψ is given by

〈O〉ψ = Tr
(

PψO
)
∈ R. (4.1)

The Lie algebra of self-adjoint operators on H is a real vector space of dimension
N2, or N2 − 1 if we exclude the identity. Notice that N2 − 1 ≥ 2N − 2 for N ≥ 1.
Therefore, if we choose appropriately 2N − 2 independent observables {Oi}2N−2

i=1 ,
the mapping

Pψ 7→ ~xψ =
{
〈O1〉ψ, 〈O2〉ψ, . . . , 〈O2N−2〉ψ

}
∈ R2N−2, (4.2)

is locally invertible. Hence, the set of rays Pψ can be seen as a manifold locally
parametrized by an array of expectation values ~x ∈ R2N−2. This mapping gives
a natural physical picture of a quantum state: a quantum state is a complete set of
statistical properties specified by a family of expectation values. The inverse mapping:
~x 7→ P~x, allows to define any expectation value of any quantum observable O as a
function

~x 7→ fO(~x) := Tr (P~xO) . (4.3)

Hence, the set of quantum expectation values looks like a set of classical observables
defined on a classical phase space represented here by the set of ~x. This picture is
enhanced by the Ehrenfest theorem stipulating that expectation values have a de-
terministic behavior through equations similar to the Hamilton equations. Notice,
however, that any function of~x is not an expectation value of a quantum observable.
This is different from the usual classical framework.

The usual stochastic quantum reasoning remains in principle accessible since the
quantum probabilities yielded by the Born rule,

|〈ψ|φ〉|2 = Tr(PψPφ), (4.4)

are included in the framework through eq. (4.3) for Pψ := P~x and Pφ := O.

4.3 Affine coherent states

As we are concerned in this chapter with gravitational systems, we shall turn to
important example of the phase space that appears in cosmology, namely the half-
plane X = R+ ×R. The basic observables form a canonical pair,

(q, p) ∈ R+ ×R, (4.5)

where q is proportional to some power of scale factor of the universe and p measures
the rate of its expansion (see formula (1.23)). Clearly, the Weyl-Heisenberg group is
not applicable to the present case as one of the canonical variables, q, is confined
to the half-line. Instead, we shall employ affine group [21, 53, 64, 65], A f , that is
defined by the multiplication law,

(q′, p′) ◦ (q, p) =
(

q′q,
p
q′

+ p′
)

, (4.6)
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and preserves the symplectic structure of the half-plane phase space,

(q′, p′) ◦ [dq ∧ dp] = d
(
q′q
)
∧ d

(
p
q′

+ p′
)
= dqdp, (4.7)

where (q′, p′) is a fixed element of the affine group.
Reminding the relation (1.44) from Chapter 1, affine coherent states are con-

structed by the action of the unitary irreducible representation of affine group A f
on fiducial vector |φ0〉

|q, p〉 ≡ |q, p; φ0〉 ≡ UA(q, p)|φ0〉, |φ0〉 ∈ L2(R+, dx) ∩ L2(R+, dx/x), (4.8)

where the additional restriction on fiducial vectors follows from the group integra-
bility condition ∫

R+

|φ0|2
dx
x

< 0. (4.9)

Observe that the physical centering conditions for affine group are slightly modified,
comparing with their analogue in Weyl-Heisenberg coherent states

〈q, p; φ0|Q̂|q, p; φ0〉 = q⇒ 〈Q̂〉 = 1, (4.10)

〈q, p; φ0|P̂|q, p; φ0〉 = p⇒ 〈P̂〉 = 0. (4.11)

The modification of the position centering (4.10) was to be expected, as on the Hilbert
space defined on positive real line, the position expectation value has to be positive
definite.

Motivated by the cosmological importance of a particle on the half line, q > 0
(see the discussion in section 1.1), we analyse the quantum analogue of the following
classical system

H = p2, ω = q. ∧ p. , (q, p) ∈ R+ ×R (4.12)

which, up to the multiplicative constant g describes the flat Friedmann-Lemaître-
Robertson-Walker universe with a perfect fluid source (1.28b). Let us assume for
simplicity (ignoring a subtle issue of a domain) that the quantum hamiltonian for
such system reads Ĥ = −∆x, then the lower symbol hamiltonian in affine coherent
states read

Ȟ = p2 + h̄2 K
q2 , (4.13)

where K = 〈P̂2〉.

4.4 Extended formalism for coherent states dynamics

We will now present an extension of the standard semiclassical framework based on
affine coherent states. A way to improve this framework is effectively equivalent to
the one presented in Chapter 3 for Weyl Heisenberg coherent states and considers
a fiducial space rather than a fiducial vector. Such framework allows the quantum
motion to take place not only in expectation values of basic operators but also in
fiducial space. The idea is presented again in Fig. 4.1. In this chapter we will explic-
itly enlarge the fiducial space by adding additional basis vectors.
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FIGURE 4.1: We illustrate the quantum dynamics that takes place in
the fiber bundle. The fibers consist of state vectors with the same ex-
pectation values, q and p, of the basic operators, Q̂ and P̂, respectively.
In the standard semiclassical framework, it is the action of the affine
group UA(q, p) that for a given fiducial vector |φ0〉 induces a section
in the bundle, to which the quantum motion is confined. In the pre-
sented extended approach, extra parameters λi’s to parametrize the
fiducial space are introduced. As a result, the quantum motion takes
place both along the sections given by UA(q, p)|φ0〉 and along the

fibers as the extra parameters can vary.

Assume that the fiducial space to be linear and consist of the fiducial vectors of
the form

|φ0(λj)〉 = ∑
j

λj(t)|ej〉, λj ∈ C, (4.14)

where |ej〉 are fixed orthonormal basis vectors 〈ei|ej〉 = δij weighted by time depen-
dent parameters λj’s. The quantum action functional in affine coherent states with
time-dependent fiducial vectors and the lower symbol hamiltonian (4.13) (h̄ = 1) is

S =
∫

dt
(
−qṗ +

q̇
q

D− Giλ̇i −
(

p2 +
K
q2

))
, (4.15)

where

Gi[λj] = 〈ψ0(λj)|
1
i

∂λi |ψ0(λj)〉 =
1
i

λ̄i, (4.16)

D[λj] = 〈ψ0(λj)|x
1
2i

∂x +
1
2i

∂xx|ψ0(λj)〉 = Dijλ̄iλj, (4.17)

K[λj] = 〈ψ0(λj)| −4x|ψ0(λj)〉 = Kijλ̄iλj. (4.18)
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The summation of repeated indices and physical centering conditions are assumed.
The canonical analysis of the above system gives the hamiltonian

H = p2 +
Kijλ̄iλj

q2 , (4.19)

ω = dqd

(
p +

Dijλ̄iλj

q

)
+ idλ̄idλi (4.20)

with the quadratic physical centering constraints

Qijλ̄iλj = 1, Pijλ̄iλj = 0. (4.21)

Following Dirac procedure [31] one obtains the total hamiltonian

HT = H + αQijλ̄iλj + βPijλ̄iλj, (4.22)

where the Lagrance multipliers are determined from dynamical stability condition.
Upon diagonalization of Dij 7→ diδij and the introduction of new ’quantum’ vari-

ables γj = λjeidj ln q the symplectic form becomes

ω = dqdp + idγ̄idγi (4.23)

and the total hamiltonian (4.22) is modified by the transformation

Kjiλ̄jλi 7→ ei(dj−di) ln qKjiγ̄jγi =: kijγ̄jγi, (4.24)

Qjiλ̄jλi 7→ ei(dj−di) ln qQjiγ̄jγi =: qijγ̄jγi, (4.25)

Pjiλ̄jλi 7→ ei(dj−di) ln qPjiγ̄jγi =: pijγ̄jγi. (4.26)

The equations of motion for the studied model read

q̇ = 2p, (4.27)

ṗ = 2
k jiγ̄jγi

q3 − k ji,qγ̄jγi

q2 − c2qji,qγ̄jγi − c3 pji,qγ̄jγi, (4.28)

γ̇j = −i
k jiγi

q2 − ic1δjiγi − ic2qjiγi − ic3 pjiγi. (4.29)

Equations (4.27) and (4.28) can be recognized as hamilton-like equations. Note how-
ever that after the transformation to γj variables the matrices kij, qij, pij become q
dependent.

4.5 Numerical analysis

In the following examples we choose a restricted fiducial space in which the dilation
operator D̂ = x 1

2i ∂x +
1
2i ∂xx vanishes. Fiducial space is spanned by

|en〉 =
1√
x

φ2n(ln x), (4.30)

where φn(x) is the eigenstate of harmonic oscillator corresponding to energy h̄ω(n+
1/2). In what follows we consider two simple examples.
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FIGURE 4.2: We compare the cases of two and three extra complex
parameters, λ1, λ2 and λ1, λ2, λ3, respectively. The two upper plots
show the dynamics of the extra parameters. For the two-parameter
case, the extra parameters can only rotate in the complex plane. For
the three-parameter case, the extra parameters exhibit very rich dy-
namics with both rotation and contraction/expansion. The latter
proves that the evolution occurs across a set of families of coher-
ent states. The bottom plot shows the dynamics of the classical ob-
servables q and p and despite the fact that the initial conditions for
these observables are the same, the two-parameter (dashed) trajectory
gives a bounce at smaller values of q than the three-parameter (solid)

one. As the initial condition we set λ1(0) =
√

9
10 , λ2(0) = −

√
1

10 ,
λ3(0) = 0, q(0) = 10 and p(0) = −2.
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In the first example, we set the fiducial space to be two-dimensional,

|ψ0〉 = λ1|e1〉+ λ2|e2〉. (4.31)

The ’classical’ observables q and p undergo a simple bounce which is presented in
the bottom plot in Fig. 4.2 (dashed trajectory). We find that the absolute values
|λi| are constant in time while the respective phases are dynamical. This result is
not surprising as the fiducial space is, in fact, one-dimensional. The counting of
dimensionality of fiducial space gives: 4 (two complex parameters) - 2 (two second-
class constraints from the physical centering) - 1 (normalisation condition) = 1. The
fiducial vector is fixed and the standard coherent state semiclassical approximation
is retrieved.

In the second example, we set the fiducial space to be three-dimensional,

|ψ0〉 = λ1|e1〉+ λ2|e2〉+ λ3|e3〉. (4.32)

In this case neither the absolute values |λi| nor the respective phases are preserved
during the evolution. In Fig. 4.2 we compare the dynamics of the classical observ-
ables and of the extra parameters between the two- and three-parameter cases.

FIGURE 4.3: The top plot shows the bouncing evolution of the Fried-
mann universe in the half-plane (a, H). The two lower plots show
the evolution of the dispersions σa and σH of the scale factor and the
Hubble rate, respectively. We see the first evidence that the dynamics
is not symmetric in time around the bounce. As the initial condi-
tion we set the initial data from the three-parameter case of Sec V, i.e

λ1(0) =
√

9
10 , λ2(0) = −

√
1

10 and λ3(0) = 0.

Let us see how one can apply the formalism developed above to a quantum cos-
mological model, namely the quantum radiation-filled flat Friedmann universe with
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a bounce. For more details on the framework consult Chapter 1. The canonical vari-
ables which describe the geometry (up to constants) are

q = a, p = a2H, (4.33)

where a is the scale factor and H is the Hubble rate. In Fig. 4.3 we will plot the
dynamics of the classical variables a and H and their dispersions. Note the following
relations,

σq =
√
〈q, p|Q̂2|q, p〉 − 〈q, p|Q̂|q, p〉2, (4.34)

σp =
√
〈q, p|P̂2|q, p〉 − 〈q, p|P̂|q, p〉2, (4.35)

σa = σq, σH =

√
4

p2

q6 σ2
q + q−4σ2

p . (4.36)

4.6 A brief summary

This chapter presents a phase space trajectory approach to quantum dynamics. Start-
ing from the standard coherent state semiclassical framework we extend it by in-
clusion of nonclassical observables that are equipped with a symplectic form. The
obtained infinite-dimensional phase space trajectories are, in principle, equivalent
to the exact solutions of the Schrödinger equation, though it is the possibility for
consistent truncations to finite phase spaces that makes the approach attractive. We
show that the respective Hamilton equations are not too complicated and can be
successfully used for numerically integrating the dynamics.

The approximate trajectory approach is performed by extending the fiducial space
explicitly. In such construction a quantum model of radiation-filled flat Friedmann-
Lemaître-Robertson-Walker universe is analysed. The proposed semiclassical anal-
ysis captures such effects as change of big bounce scale due to the larger size of fidu-
cial space or the asymmetric character of the bounce originating in natural spreading
of universes wave function.
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5.1 Moments of quantum operators and Ehrenfest theorem

As it was shown in the introductory section 1.2 and further discussed in Chapter 4
the assumption of spacetime being quantum near the classical singularity and affine
quantization leads to the quantum big bounce. Now we would like to see what
observational effects in late universe are expected from this singularity avoidance
scenario. In order to do that we will study the propagation of gravitational waves
on quantum spacetime background. We identify two potential sources of quantum
effects impacting evolution of tensor perturbations:

• the repulsive potential originating in affine quantization and pushing the dy-
namics of the universe from its classical trajectory,

• the spread of the wavefunction affecting its dynamics by introducing infinitely
many additional degrees of freedom in comparison with the classical model.

The former was already studied quite extensively in this thesis, now we would like
to devote a paragraph to the later as, so far, it was discussed only implicitly.

The fundamental property of Quantum Mechanics is non-commutativity in alge-
bra of operators. It is the substance of Heisenberg’s uncertainty principle that some
pairs of observables have a minimal bound on their spread in any physical state. In
particular, we know that the position and momentum operators (referred from this
point on as basic operators), contrary to classical mechanics, cannot be measured
simultaneously with arbitrary precision. A manifestation of the above issues on dy-
namical grounds is presented by Ehrenfest theorem,

d
dt
〈Q̂〉 = 〈P̂〉

m
, (5.1a)

d
dt
〈P̂〉 = −〈V ′(Q̂)〉. (5.1b)

The discrepancy between 〈V ′(Q̂)〉 and V ′(〈Q̂〉) indicates that the expectation values,
which supposedly should follow classical dynamics, might diverge from classical

The contents of this chapter are published in: Przemysław Małkiewicz and Artur Miroszewski, Dy-
namics of primordial fields in quantum cosmological spacetimes, arXiv:2011.03487 and Artur Miroszewski,
Quantum Big Bounce Scenario and Primordial Gravitational Waves, Acta Phys. Pol. B Proc. Suppl. 13, 279
(2020)
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(A) (B)

FIGURE 5.1: (A) Probability density of the solution to the background
dynamics given by (5.5)

(B) Different evolutions of the averaged scale factor 〈ân〉1/n depen-
dent on the power n used for identification with its classical analogue.
The plots are prepared by using the probability density presented in

Fig. 5.1a

trajectories. The difference between 〈 f (Q̂, P̂)〉 and f (〈Q̂〉, 〈P̂〉) vanishes for proba-
bility distributions which have infinitely narrow Dirac delta profile (it is sometimes
achieved by performing h̄ → 0 limit1). Those probability distributions do not corre-
spond to any wave function belonging to Hilbert space H, therefore are not part of
Quantum Mechanical dynamics, but serve as a semiclassical limit of the theory. This
issue points out to another obstacle in connecting quantum and classical eras in uni-
verses evolution - the extrapolation. Observing, for example, a classical scale factor
in a present day cosmology, we do not know whether it corresponds to 〈â〉 expec-
tation value, or maybe some other combinations of its power 〈ân〉1/n. This issue is
addressed in Fig. 5.1b. It presents different quantum expectation values of scale fac-
tor in a bouncing universe filled with radiation. The expectation values calculated
for a solution of background hamiltonian (5.5), presented on Fig 5.1a, are clearly
different, from one another, close to the bounce. They become effectively indistin-
guishable for late time universe. We expect that the character of a bounce might have
a profound impact on the propagation of gravitational waves. Therefore, the effect
of the spread of the universes background wave function is taken into account.

5.2 Classical model

We pick up the discussion of the classical model which was presented in the the-
ory chapter, section 1.1. A model used for our considerations is a flat Friedmann-
Lemaître-Robertson-Walker universe with tensor perturbations, deparametrized in
such way, that the dynamics is relative to the evolution of the fluid. The fluid which
fills the universe is characterized by equation of state p = wρ, where p and ρ are
recognized to be pressure and energy density respectively. The hamiltonian for such

1Usually this limit follows the assumption that h̄/S � 1, where S is the action of the physical
system under consideration
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system, up to second order in pertubartions, is

H = H(0) + ∑
~k

H(2)
~k

, (5.2a)

H(0) = gp2, (5.2b)

H(2)
~k

= −g
(

q
γ

)−2

|π̌±(~k)|2 −
k2

4g

(
q
γ

) 6w+2
3−3w

|ȟ±(~k)|2, (5.2c)

where g = 16πG
V0

and γ = 4
√

6
3(1−w)

.
In order to follow the dynamics of the perturbations it is customary to switch

from internal time t (introduced in section 1.1 as T) to conformal time dη = (q/γ)
6w−2
3−3w dt

and to introduce new perturbation variable µ±,~k = (q/γ)
2

3−3w h±,~k. The propagation
equation for gravitational waves in the new variable reads

µ′′±,~k
+

(
k2 − (q

2
3−3w )′′

q
2

3−3w

)
µ±,~k = 0. (5.3)

This is a central equation for analysis of the dynamics of perturbations. Observe
that, to some extent, it can be interpreted as being mathematically similar to station-
ary Schrödinger equation. Then k2 is seen as an energy of the incoming particle,

which scatters on the potential Vcl =
(q

2
3−3w )′′

q
2

3−3w
. Beware that in this interpretation the

conformal time η has a role similar to the standard position variable x. From the
observational perspective the important aspect of the gravitational waves is their
power or amplitude fluctuation spectrum. Assuming isotropy, µ~k = µk and follow-
ing [66] we introduce the spectrum of fluctuations of the gravitational waves (for
each polarization mode) as

δȟ(k) =
√V0

(q/γ)
2

3−3w

|µk|
2π

k
3
2 . (5.4)

The two most important properties of amplitude spectrum is its magnitude at spe-
cific times and its behaviour in k.

Let us focus on the scattering potential Vcl in a fully classical big-bang cosmology.
From the hamiltonian (5.2b) we know that the background dynamics is analogous to
the system of a free particle - q evolves linearly in conformal time η. For the case of
early universe filled with radiation (w = 1/3) the potential Vcl vanishes at all times.
The perturbations described by equation (5.3) propagate freely. If the early universe
is filled with fluid different than radiation (w 6= 1/3) the potential Vcl explodes in
the vicinity of big-bang singularity.

5.3 Quantum dynamics

Upon affine quantization the zero order hamiltonian reads

Ĥ(0) = g

(
P̂2 +

h̄2K
Q̂2

)
. (5.5)
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As the phase space of each mode of perturbations is R2, then we can quantize them
in a canonical way obtaining

Ĥ(2)
~k

= −g
(

Q̂
γ

)−2

|π̂±(~k)|2 −
k2

4g

(
Q̂
γ

) 6w+2
3−3w

|ĥ±(~k)|2. (5.6)

We assume that there is no entanglement between perturbations and background,
therefore the total space of states is given by the products of elements of the two
respective space of states,

|ψ〉 = |ψ0〉 · |ψ1〉 ∈ H ⊂ Hhom ⊗Hinhom, (5.7)

where Hhom and Hinhom stand for the homogeneous and inhomogeneous Hilbert
spaces, respectively. This assumption breaks Schrödinger equation and a new dy-
namical law is determined by applying variational principle on the quantum action

SQ(ψ0, ψ1) :=
∫
〈ψ0, ψ1|ih̄

∂

∂t
− Ĥ(0) − Ĥ(2)|ψ0, ψ1〉dt. (5.8)

Using the standard assumption that the perturbation hamiltonian is much smaller
than the background hamiltonian the dynamical law (up to overall phase factor) is

ih̄
∂

∂t
|ψ0〉 = Ĥ(0)|ψ0〉, (5.9a)

ih̄
∂

∂t
|ψ1〉 = 〈ψ0|Ĥ(2)|ψ0〉 · |ψ1〉. (5.9b)

Observe that in equation (5.9b) the evolution of perturbations is driven by a time-
dependent hamiltonian 〈ψ0|Ĥ(2)|ψ0〉 constructed by averaging over the background
mode. Performing the quantum-analogue of the transformation to the conformal
time and µ±,k variable one obtains a quantum propagation equation for perturba-
tions

µ̂′′±,~k
+

c2
gk2 −

(
〈Q̂−2〉 1

3w−3

)′′
〈Q̂−2〉 1

3w−3

 µ̂±,~k = 0, (5.10)

where c2
g = 〈(Q̂/γ)

6w+2
3−3w 〉〈(Q̂/γ)−2〉 3w+1

3−3w and the term V =
(
〈Q̂−2〉 1

3w−3

)′′
/〈Q̂−2〉 1

3w−3

will be referred to as a scattering potential. Three major modifications of the classical
equation (5.3) are manifested explicitly and implicitly in the above expression.

i The background dynamics is now driven by hamiltonian (5.5) which manifestly
includes a repulsive potential absent in the classical hamiltonian (5.2b). The dy-
namics is modified close to classical singularity and the potential no longer van-
ishes (w = 1/3) or explodes (w 6= 1/3). It presents a smooth behaviour at all
times (see Fig. 5.2). Close to the bounce it dominates the dynamics for some
modes and amplifies perturbations. The perturbations amplitude amplification
is interpreted as a production of gravitons. The potential vanishes as the system
is far from classical singularity.

ii Equation (5.10) is expressed in terms of expectation values of background de-
grees of freedom, the 〈Q̂−2〉 expectation value seems to have a particular im-
portance in the scattering potential. This is a source of additional effects. The
preliminary discussion on that topic was presented in section 5.1. Observe that
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FIGURE 5.2: The scattering potential in equation (5.10) obtained nu-
merically from the solution presented on Fig. 5.1a

the total power of the Q̂ operator in the numerator (or denominator) in equa-
tion (5.10) is: −2(inside the expectation value)× 1

3w−3 (outside the expectation
value)= 2

3−3w . This matches exactly the power of classical variable q in equa-
tion (5.3). The effect related to the moments of quantum operators modifies the
dynamics of perturbations in quantitative rather than qualitative way, as will be
shown in section 5.6.

iii Additional term c2
g is introduced in quantum propagation equation (5.10). It is re-

lated to the square of the effective speed of gravitational waves, which was fixed
to be the same as speed of light c2

g = c2 = 1 in the classical model. The function
c2

g is not constant in time and can rapidly change close to classical singularity
but, on the other hand, it quickly settles to its asymptotic value. Although this
asymptotic value is not necessarily equal to unity it does not introduce inconsis-
tency to the theory. Because the function c2

g enters the initial values of perturba-
tions (which are set in classical universe), what the observer perceives as a square

of speed of gravitational waves is the ratio of c2
g to its asymptotic value:

(
cg

c±∞
g

)2
.

Therefore, given recent experimental data [67], the value of gravitational waves
speed should be renormalized to match speed of light in a classical regime.

5.4 Semiclassical approximation

In order to analyse analytically the effect of the big bounce on the production of
primordial gravitational waves and estimate the physical parameters of the studied
model we turn to semiclassical approximation. As it was anticipated in section 5.1,
we assume the probability density to be a Dirac delta

ρ(x, t) = δ(x− q(t)), (5.11)

where q(t) = 〈Q̂〉ρ(t). It is a mathematical idealization of a probability density
peaked around semiclassical solution to background equation of motion. Observe
that in such approximation all powers in expectation values trivialize 〈Q̂n〉mρ = qn+m,
hence we are able to isolate i effect described in previous section.
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FIGURE 5.3: The classical singular evolution of the background de-
grees of freedom (dashed line) is extended to non-singular big bounce

scenario (full line).

Solution of the background dynamics is

〈Q̂〉ρ(t) = q(t) = qb

√
(kmaxt)2 + 1, (5.12)

where qb is the value of 〈Q̂〉ρ at the big bounce and kmax is, the so called, character-
istic mode. Its square has the same value as the maximum of scattering potential.
Upon identification of classical and semiclassical solutions by the values of respec-
tive hamiltonians we obtain the extension of the classical expanding solutions to the
ones describing bouncing universe (see Fig. 5.3).
When it comes to the behaviour of perturbations, the effective speed of gravitational
waves trivializes cg = 1 and the scattering potential

V(t)|ρ = k2
max

[
q2

b
γ2 (1 + (kmaxt)2)

] 6w−2
3w−3

(2− 6w)(kmaxt)2 + (6− 6w)

(3w− 3)2[1 + (kmaxt)2]2
(5.13)

becomes a positive, symmetric around the big bounce function which vanishes asymp-
totically.
Numerical simulations of the dynamics of perturbations confirm the anticipated be-
haviour. At times far before bounce (big bounce is indicated by t̃ = 0 on Fig. 5.4a)
amplitude of perturbations is constant, close to the bounce (where specific modes
are superhorizon) there is a rapid amplification. Far after the bounce gravitational
waves amplitude oscillates with a decreasing envelope. Observe that immediately
after the rapid amplification amplitude stays constant for some time. This behaviour
is particularly visible for long waves as the constant value period is extended for
them. On this feature the observational possibility is founded. Extrapolating this
result we expect that extremely long gravitational waves would be still amplified to
the values measurable by current or future detectors.
In Fig. 5.4b we see the spectrum (5.4) as a function of dimensionless wavenumber k̃
for different fluids labeled with their equation of state parameter w. Values of am-
plitude are measured at the constant magnitude period after the amplification. One
can see that the spectrum manifests a power-law behaviour for small wavenum-
bers. Each simulation is marked with the fitted value of tensor index nt, the effective
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FIGURE 5.4: (A) The evolution of the amplitude of few modes in a
semi-classical universe with a big bounce and a cosmological fluid
with w = 0.5. For clarity the maximum amplitude of h has been

normalized to unity for each mode.
(B) The primordial amplitude spectrum δh(k̃) in a semi-classical uni-
verse with a big bounce and a cosmological fluid for few values of

w = ρ
p .

exponent of k in (5.4). The obtained results are similar to the ones presented in arti-
cle [68] in which authors considered big bounce scenario originating from different
(Bohm-de Broglie) approach. The value of the tensor index obtained in the men-
tioned article2 nt =

6w
1+3w matches our numerical results.

5.5 Physical constraints in semiclassical approximation

Having understanding of what to expect in the tensor perturbed universe model we
introduce physical assumptions. First, we are analysing the universe which is filled
with radiation for most of its evolution except a period close to classical singularity.
Currently, our understanding of high-energy physics does not provide a knowledge
of the type of matter in this regime. Therefore we assume that there is a transition
to generic linear perfect fluid with equation of state p = wρ at some redshift. The
relation of the redshift at the bounce zb, at transition zT, the ratio of the volume of
the universe to the volume of its observable patch r and the dimensionless constant
related to repulsive potential K is

zb =

(
10120r

(1− w)
√

K

) 2
3(1−w)

z
1/3−w

1−w
T . (5.14)

If the early universe had not undergone the fluid transition, then zb ≈ 10120 r√
K

,

which implies a huge value of K/
√

r for a cosmological scenario in which the ob-
servable cosmological scales are of the order of Planck length lP at the bounce (r > 1
from its definition). In general, the bigger the universe is and the more energy is con-
tains, the smaller the volume at which it bounces. The inverse is true for the value of√

K. Because the amount of energy in the observable universe is so huge, the quan-
tum correction preventing the singularity comes to dominate the dynamics at the

2There is a discrepancy by a factor of two due to the fact that the authors considered power spec-
trum instead of amplitude spectrum which is used here.
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FIGURE 5.5: (A) The white regions represent the admissible values of
the parameter K as functions of w (r = 2, zT = 1028)

(B) The white regions represent the admissible values of the bounce
redshift zb as functions of w (r = 2, zT = 1028)

Planck volume only if the value of
√

K is very large. Nevertheless, we may fine-tune
the model to yield a bounce exactly at Planck scale. The relation between K and w
is nontrivial. One might think that since the larger the value of K the less redshifted
and the milder bounce is, the amplitude should decrease as K increases. However, it

can be shown that the amplitude scales as ∝ K
5w−1

2(1−w) , therefore the behaviour changes
at w = 1

5 . For w < 1
5 , the larger the value of K the smaller the primordial amplitude

one would expect, the relation is inverted for w > 1
5 . For w = 1

5 the primordial
amplitude does not actually depend on K.
Taking into account the Planck data [69], we set the maximum of the gravitational

wave amplitude at the pivot scale as 10−5. With this assumption a possible range of
physical parameters is plotted on Fig. 5.5a and 5.5b.
The possible scales of K might seem unnaturally large. There are different ways to
argue for the possibility of a large K value in our quantum model, we present one of
them which is close in spirit to the topic of the thesis. It was mentioned in Chapter
2 that dynamical quantities like the scale of the bounce are not physically meaning-
ful in quantum gravity unless one indicates the internal clock used for computing
those quantities. It follows that the scale of the bounce obtained in the present model
is tied to the specific choice of clock t that we have made for the derivation of the
model. One might have chosen another clock and found much more Planckian, or
even sub-Planckian, scale of the bounce issued from a weaker repulsive potential,
i.e. a smaller value of K.

5.6 WKB approximation

The available analytical solutions of the background dynamics do not allow for ob-
taining an analytical formula for the scattering potential or the speed of gravitational
waves. Moreover, the numerical simulations for physical values of parameters, like
K, are unfeasible to be performed with available computational power. Therefore, in
order to study the effects ii and iii, discussed in section 5.3, which crucially depend
on the spread of the wave function, we turn to WKB approximation [70].

With the specific choice of background wave function and additional parameter
σ it is easy to compute crucial dynamical expectation values. Upon restricting the
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FIGURE 5.6: (A) The effective gravity-wave speed in the semiclassical
approximation, where dispersion of probability density of the uni-
verse vanishes (σ = 0) and the WKB approximation (σ = 0.2 and

σ = 0.5)
(B) The scattering potential V in the semiclassical approximation (σ =

0) and the WKB approximation (σ = 0.2 and σ = 0.5)

wavefunction to the time moment of the bounce one obtains unambiguous interpre-
tation of the parameters of the wavefunction

〈Q̂〉
∣∣∣
t=0

= qb, (5.15a)

(∆Q̂)2
∣∣∣
t=0

= 〈Q̂2〉
∣∣∣
t=0
− q2

b = q2
bσ2. (5.15b)

From the above equations one can see that the parameter 0 < σ < 1 is directly
responsible for a spread of the background wavefunction. The σ → 0 is the semi-
classical limit of the theory which fully recovers the results obtained in the previous
section. The sample presentations of the effective speed of gravitational waves and
scattering potentials for three different values of σ are presented, respectively, in Fig.
5.6a and in Fig. 5.6b.

The amplitude of the perturbations is also affected by σ parameter. Fig. 5.7a
shows the normalized evolution of the specific mode of the perturbations, it is clearly
visible that the amplification during the bounce for non-zero spread is smaller.

The main result of this section is the analytical computation of the quantum ana-
logue of amplitude spectrum (5.4) in WKB approximation. The result is obtained
in the piecewise approximation, similar to the one presented in [68]. The equation
of motion (5.10) is solved for long-wave perturbation in two regimes, then the two
solutions are matched. The regimes are connected by the moment when the specific
mode crosses the scattering potential V. Before entering and after leaving poten-
tial, the modes are modelled by asymptotic (|t| → ∞) form of quantum propaga-
tion equation (5.10). When "under" the potential, the equation of motion is solved
formally in the lowest powers of the wavenumber k. It is possible to find the sub-
dominant and dominant terms in the spectrum, taking only the later one obtains
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FIGURE 5.7: (A) The evolution of a selected mode in the semiclassical
(σ = 0 and the WKB approximation (σ = 0.4))

(B) The suppresion of amplitude due to the non-vanishing spread, σ,
for a few different equation of state parameters w.

δĥ(k̃e f f ) =

=

(√
2|1− 3w|

3(1− w)

) 2
3w+1 ∣∣∣∣ 2C√

2|1− 3w|
+ D

∣∣∣∣ ( γ

qb

) 2w
w−1 1

2
kmax

√
V0(1 + σ2)−

1
3w+1 k̃

6w
3w+1
e f f ,

(5.16)

where k̃e f f = c∞
g k/kmax and the constants C and D originate from the assumption of

Bunch-Davies vacuum initial value. In the semiclassical limit σ → 0 the spectrum
5.16 agrees the previous results [68]. Although it is not as easy to compare the magni-
tude of the spectrum due to different notations in different papers, one immediately
can see that the obtained tensor index nt =

6w
3w+1 is the same as in [68]. Moreover, the

inclusion of the spread σ in the computation of the amplitude spectrum points out
to the result that the tensor index is unaffected by σ. On the other hand, there is an
additional multiplicative factor (1+ σ2)−

1
3w+1 which (for fluids with equation of state

parameter in range −1/3 < w < 1) can suppress magnitude of the spectrum (see
Fig. 5.7b). Although for most fluids the effect is negligible, in the case of w ≈ − 1

3 the
spectrum can be suppressed by many orders of magnitude.

5.7 A brief summary

The goal of the work presented in [71] was to promote the affine quantized Friedmann-
Lemaître-Robertson-Walker universe from the mathematical curiosity to plausible
cosmological model. Simultaneously, we did not want to resign from the serious
treatment of underlying quantum spacetime.

We were able to introduce tensor perturbations into the quantum bouncing back-
ground model, which in semiclassical approximation led to the results consistent
with previous results obtained in different framework [68]. A quantum model of big
bounce does generate primordial gravitational waves when close to classical sin-
gularity. The expected magnitude of gravitational waves can be compared to the
observational constraints and yield a space of plausible parameters for the model.
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Moreover the assumption of the quantum background spacetime introduces addi-
tional effects. The work indicated that in a deep quantum era the speed of gravita-
tional waves and the potential which amplifies perturbations are highly dependent
on the quantum aspect of the background wave function. On the other hand, the ob-
servational implications of this aspect are limited to the cases of highly exotic matter
during the bounce.

The model did not take into account neither scalar perturbations nor different
sources of matter than perfect linear fluid. The direct extension of the work pre-
sented in this thesis is to pursue those issues. The scalar perturbations are much bet-
ter understood observationally, therefore they surely would introduce further phys-
ical constraints to the model. Taking into account the popularity of the scalar field as
a matter source in the inflationary scenarios, the inclusion of it - instead or addition-
ally - to perfect fluid would also be highly desirable. Both of those issues deserve a
solid research programmes for the near future.





53

6
Conclusions and future directions

This thesis presents studies on quantum effects in the early universe. Internal clock
aspect of the Problem of Time was investigated from an original perspective. The
obtained results led to the statements about inequivalence of quantum dynamical
descriptions. The convergence to the unambiguous interpretation of dynamics when
classical degrees of freedom are available was shown. The semiclassical framework
based on coherent states was introduced. The tool allows study of the dynamics in
systems that go through the classical and quantum regimes of evolution. Moreover,
the big bounce was analyzed as a primordial gravitational wave emission scenario.
It was shown that the quantum effects in the bouncing universe have impact on
the propagation of the tensor perturbations. The results were related to the current
observational constraints.

It seems to be a rule in science that answering a single question immediately
leads to multitude of additional open issues. I believe that the research presented in
this thesis is a confirmation, rather than exception to this rule.

An interesting issue that deserves further analysis is the emergence of classical
degrees of freedom, which disambiguate the early universe dynamics. Does the
choice of a unique dynamics in universe becoming classical occur through a sponta-
neous symmetry breaking, or maybe some other mechanism? Was the universe even
in such a deep quantum regime during its evolution that the described effect had
non-negligible importance? Is there a possibility that it will enter quantum regime
again?

I believe that the extended semiclassical formalism introduced in my research
shows a solid potential for future development. The next step would be to apply it
to a wide range of quantum systems, including more complex cosmological mod-
els. Another direction is to look for different, possibly better, parametrizations of
the fiducial space. It would be worth to investigate what the extended semiclasical
framework will tell us about interesting cosmological systems.

In the case of primordial fields dynamics on quantum spacetime there are many
promising directions of further research. Staying within the derived model, it would
be favorable to check whether different families of solutions (exact of approximate)
confirm the effect of primordial gravitational waves amplitude dampening. Is there
a possibility of additional amplification of the amplitude for some initial conditions?
Can the interference, which was omitted in Wentzel–Kramers–Brillouin approxima-
tion, change the spectrum of primordial gravitational waves significantly? Another
direction would be to extend the derived model. Introducing scalar perturbations to
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the analysis in a natural next step. We can also analyse more complex cosmological
spacetimes like, for example, anisotropic models. Moreover the inclusion of addi-
tional matter sources would be desirable. Either additionaly or instead of perfect
fluid one can introduce scalar field to the model. I think that the direction worth
pursuing is the study of possible interplay between big bounce and inflationary sce-
narios.

I believe that the quantum cosmological models based on coherent state quan-
tization have reached a maturity level at which they deserve a proper, full-blown
research programme.
Whether I will have a pleasure to be a part of it, only time will tell.
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[57] Bekir Baytaş, Martin Bojowald, and Sean Crowe. Effective potentials from
semiclassical truncations. Physical Review A 99.4 (Apr. 2019). ISSN: 2469-9934.
DOI: 10.1103/physreva.99.042114. URL: http://dx.doi.org/10.1103/
PhysRevA.99.042114.
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