

NATIONAL SCIENCE CENTRE

ALPINE: a survey for studying teenage galaxies in the early Universe

Michael Romano¹

¹National Centre for Nuclear Research, Astronomy Department (BP4), Warsaw, Poland <u>michael.romano@ncbj.gov.pl</u>

Special Colloquium of the Fundamental Research Department June 26, 2023 - Warsaw, Poland Scientific context

- The ALPINE survey (an overview)
- A few major results from ALPINE
- [CII] as a star-formation tracer in the early Universe
- Summary and conclusions

The history of the Universe

Michael Romano

The history of the Universe

Michael Romano

Scientific context

ALPINE: the ALMA Large Program to INvestigate [CII] at Early times

- → PI: Olivier Le Fèvre
- → 70h of [CII] + continuum observations in ALMA Band 7 (275 373 GHz)
- → <u>118 normal star-forming galaxies</u> (SFGs) drawn from the COSMOS and Extended Chandra Deep Field South (E-CDFS) fields
- → 4.4 < zspec < 5.9 with VUDS and DEIMOS 10K

→ "main-sequence" galaxies SFR > 10 M_☉/yr & 9 < $\log(M_*/M_\odot)$ < 11

ALPINE: the ALMA Large Program to INvestigate [CII] at Early times

Michael Romano

ALPINE: the ALMA Large Program to INvestigate [CII] at Early times

General results: more dust than expected!

SFRTOT = SFRUV + SFRFIR

- Discovery of optically-dark galaxies missed by previous UV/optical surveys
- HST-dark galaxies contribute ~17% to the total SFRD at z>3
- SFRD almost constant between redshift 2 and 6
- Large difference between ALPINE and UV/optical data, reaching a factor of 10 at z~6
- Need to revise galaxy formation models and simulations which are not able to predict such a high amount of SFR in dusty galaxies at high-z

General results: morpho-kinematic diversity of primordial galaxies

General results: mergers as a mechanism of galaxy mass-assembly

- A large fraction (~40%) of major mergers is found in ALPINE (two times higher than at $z\sim2$ by using optical data)
- Hints that optical survey could miss dust-obscured meerger components, which are bright in the sub-mm
- The contribution of major mergers to the cosmic star-formation rate density varies from 5% to 30%, depending on the assumed merger timescale

Michael Romano

DBP Colloquium - Warsaw 26/06/2023

 $\log(\mathrm{L}_{[\mathrm{CII}]}/\mathrm{L}_{\odot}) = a + b \times \log(\mathrm{SFR}/\mathrm{M}_{\odot} \mathrm{yr}^{-1})$

 $a = 7.06 \pm 0.33, b = 1.00 \pm 0.04 \dots \rightarrow \text{Local}$ De Looze et al. 2014, A&A, 568, 62

Romano et al. 2022, A&A, 660, 14

Rest-frame UV spectra

Michael Romano

DBP Colloquium - Warsaw 26/06/2023

3. If FWHM < 400 km/s:

ok

Else:

repeat

[CII] luminosity as a function of SFR

Michael Romano

DBP Colloquium - Warsaw 26/06/2023

ALPINE has opened a new window on the study of the high-z Universe

- Lot of dust in the early Universe, more than what expected
- A large population of dust-obscured galaxies at z>4 is being now observed in the sub-mm regime → large contribution to global SFRD
- Mergers could provide a significant contribution to the galaxy mass assembly at all epochs
- [CII] can trace the star formation up to z~6

New results are coming...

EXTRAS

Galactic outflows in local galaxies

Further constraints on the baryon cycle and IGM enrichment of high-z galaxies by studying their analogs in the local universe, e.g. dwarf low-metallicity galaxies

Astronomy & Astrophysics manuscript no. aanda June 21, 2023 ©ESO 2023

Star-formation driven outflows in local dwarf galaxies as revealed of from [CII] observations by Herschel*

M. Romano^{**1,2}, <u>A. Nanni^{1,3}</u>, <u>D. Donevski^{1,4,5}</u>, M. Ginolfi⁶, G. C. Jones⁷, I. Shivaei⁸, <u>Junais¹</u>, D. Sala^{2,10}, and P. Sawant¹

APPLICATION FOR OBSERVING TIME

Principal Investigator: Michael Romano

ID: 110.2417 · Type: Normal · Cycle: P110 · Status: Valid

TITLE: Probing the dust and metal content of primordial star-forming galaxies through rest-frame UV-to-FIR spectroscopy

Scheduling and Feasibility Comments (per run)

Run	Instrument	Obs. Mode	Rank Class	From - To Noon	Feasibility Comment	Scheduling Comment	Final Outcome
Run A	KMOS	SM	В			In period 110 the number of requested nights on UT1 exceeded the available time by a factor of 5.0. Ranking: This run has been ranked in the 2nd quartile of all runs at this telescope (250) and in the 2nd quartile of all non-triaged runs requested in this period (1562).	APPROVED

[OII] observations in a sample of ~90 SFGs at z~4.5 with the K-band Multi Object Spectrograph (KMOS) at the Very Large Telescope at Cerro Paranal (Chile):

Approved in ESO Cycle 110 (110.241; **PI: M. Romano**) for a total of 22 hours of observation.

Main objectives:

- Star formation, dust attenuation, & metal enrichment
- Systemic redshift
- Environment

