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Abstract

Recent developments in observational cosmology call for understanding the nature of

the cosmological singularity (CS). Our work proposes modelling the vicinity of CS

by a time dependent orbifold (TDO). Our model makes sense if quantum elementary

objects (particle, string, membrane) can go across the singularity of TDO, and our

work addresses this issue. We find quantum states of elementary objects, that can

propagate in TDO. Our results open door for more detailed examination.
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Introduction

Presently available cosmological data suggest that the Universe emerged from a state

with extremely high density of physical fields. It is called the cosmological singularity.

The data also indicate that known forms of energy and matter comprise only 4% of

the makeup of the Universe. The remaining 96% is unknown, called ‘dark’, but its

existence is needed to explain the evolution of the Universe [13, 33]. The dark matter,

DM, contributes 22% of the mean density. It is introduced to explain the observed

dynamics of galaxies and clusters of galaxies. The dark energy, DE, comprises 74%

of the density and is responsible for the observed accelerating expansion. These data

mean that we know almost nothing about the dominant components of the Universe!

Understanding the nature and the abundance of the DE and DM within the

standard model of cosmology, SMC, has difficulties [41, 49]. These difficulties have

led many physicists to seek anthropic explanations which, unfortunately, have little

predictive power. However, there exist promising models based on the idea of a cyclic

evolution of the Universe. There are two main developments based on such an idea:

(i) resulting from application of loop quantum gravity [6, 39, 47] to quantization of

FRW type Universes, and (ii) inspired by string/M theory [17], the so called cyclic

model of the Universe, CMU [42, 43].
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The loop quantum cosmology, LQC, shows that the classical cosmological singu-

larity does not occur due to the loop geometry. The Big-Bang of the SMC model is

replaced by the Big-Bounce [2, 8, 9, 19]. However, at the present state of development,

the LQC is unable to explain the origin of DE and DM.

An alternative model has been proposed by Steinhardt and Turok (ST) [42, 43,

44]. The ST model has been inspired by string/M theories [17]. In its simplest

version it assumes that the spacetime can be modelled by the higher dimensional

compactified Milne space, MC . The most developed model [43, 42] is one in which

spacetime is assumed to be the five dimensional compactified Milne space. In this

model the Universe has a form of two 4-dimensional branes separated by a distance

which changes periodically its length from zero to some finite value. The Universe

changes periodically its dimensionality from five to four, which leads to the evolution

of the Universe of the Big-Crunch / Big-Bang type. This model tries to explain the

observed properties of the Universe as the result of interaction of ‘our’ brane with

the other one. The attractiveness of the ST model is that it potentially provides

a complete scenario of the evolution of the universe, one in which the DE and DM

play a key role in both the past and the future. The ST model requires DE for its

consistency, whereas in the standard model, DE is introduced in a totally ad hoc

manner. Demerits of the ST model are extensively discussed in [20]. Response to the

criticisms of [20] can be found in [49].

The mathematical structure and self-consistency of the ST model has yet not been

fully tested and understood. Such task presents a serious mathematical challenge. It

is the subject of the Thesis.
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The CMU model has in each of its cycles a quantum phase including the cosmo-

logical singularity, CS. The CS plays key role because it joins each two consecutive

classical phases. Understanding the nature of the CS has primary importance for the

CMU model. Each CS consists of contraction and expansion phases. A physically

correct model of the CS, within the framework of string/M theory, should be able to

describe propagation of a p-brane, i.e. an elementary object like a particle, string

and membrane, from the pre-singularity to post-singularity epoch. This is the most

elementary, and fundamental, criterion that should be satisfied. It presents a new

criterion for testing the CMU model. Hitherto, most research has focussed on the

evolution of scalar perturbations through the CS.

Successful quantization of the dynamics of p-brane will mean that the MC space

is a promising candidate to model the evolution of the Universe at the cosmological

singularity. Thus, it could be further used in advanced numerical calculations to

explain the data of observational cosmology. Failure in quantization may mean that

the CS should be modelled by a spacetime more sophisticated than the MC space.

Figure 1 shows the two dimensional MC space embedded in the three dimensional

Minkowski space. It can be specified by the following isometric embedding

y0(t, θ) = t
√

1 + r2, y1(t, θ) = rt sin(θ/r), y2(t, θ) = rt cos(θ/r), (0.0.1)

where (t, θ) ∈ R1× S1 and 0 < r ∈ R1 is a constant labelling compactifications . One

has

r2

1 + r2
(y0)2 − (y1)2 − (y2)2 = 0. (0.0.2)

Eq. (0.0.2) presents two cones with a common vertex at (y0, y1, y2) = (0, 0, 0). The

induced metric on (0.0.2) reads

ds2 = −dt2 + t2dθ2. (0.0.3)
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Figure 1: Compactified 2d Milne space embedded in 3d Minkowski space.

Generalization of the 2-dimensional CM space to the d+1 dimensional spacetime has

the form

ds2 = −dt2 + t2dθ2 + δkl dxkdxl, (0.0.4)

where t, xk ∈ R1, θ ∈ S1 (k = 2, . . . , d).

One term in the metric (0.0.4) disappears/appears at t = 0, thus the MC space

may be used to model the big-crunch/big-bang type singularity. Orbifolding S1 to the

segment gives a model of spacetime in the form of two orbifold planes which collide

and re-emerge at t = 0. Such a model of spacetime was used in [17, 42, 43]. Our

results apply to both choices of topology of the compact dimension.

The MC space is an orbifold due to the vertex at t = 0. The Riemann tensor

components equal 0 for t 6= 0. The singularity at t = 0 is of removable type: any

time-like geodesic with t < 0 can be extended to some time-like geodesic with t > 0.

However, the extension cannot be unique due to the Cauchy problem at t = 0 for the

geodesic equation (the compact dimension shrinks away and reappears at t = 0).



Chapter 1

Classical dynamics of extended
objects

In this chapter we consider classical dynamics of p-brane propagating in a back-

ground spacetime. We formulate it in terms of both Lagrangian and Hamiltonian.

The formulations admit gauge symmetry: the action is invariant with respect to re-

parametrization of p-brane’s world-sheet and the Hamiltonian is a sum of first-class

constraints. Next we specialize the formalism to the case the embedding spacetime

is the compactified Milne space, MC , and analyze classical propagation of extended

objects as well as prepare formalism for canonical quantization.

1.1 The Lagrangian formalism

A p-brane is a p-dimensional object, which traces out a p + 1-dimensional surface,

called a p-brane’s world-sheet, in the embedding spacetime as it propagates. Both

the embedding spacetime and the world-sheet are assumed to be locally Lorentzian.

5
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The Nambu-Goto action is a p + 1-volume of the p-brane world-sheet and reads:

SN−G = −µp

∫ √
|det(gIND

ab )| dp+1σ = −µp

∫ √
−det(∂aXα∂bXβgαβ) dp+1σ, (1.1.1)

where µp is a mass per unit p + 1-volume, (σa) ≡ (σ0, σ1, . . . , σp) are p-brane world-

sheet coordinates, gIND
ab is an induced metric on the world-sheet, (Xα) ≡ (Xµ, Θ) ≡

(T, Xk, Θ) ≡ (T, X1, . . . , Xd−1, Θ) are the embedding functions of a p-brane, i.e.

Xα = Xα(σ0, . . . , σp), in d + 1 dimensional background spacetime with metric gαβ.

As a subcase for p = 0 the formula (1.1.1) includes the action of a particle moving

in a background spacetime. The least action principle, i.e. δSN−G = 0, applied to

(1.1.1) leads to the following equations of motion:

∂a(
∂bX

α∂bX
βgαβ√−det(∂aXα∂bXβgαβ)

∂aXµ − ∂aX
α∂bX

βgαβ√−det(∂aXα∂bXβgαβ)
∂bXµ)

−(∂aX
α∂aX

βgαβ)∂bX
α∂bX

β − (∂aX
α∂bX

βgαβ)∂aX
α∂bX

β

2
√−det(∂aXα∂bXβgαβ)

gαβ,µ = 0. (1.1.2)

The above equations (1.1.2) are undetermined (not only because of unspecified ini-

tial/boundary conditions but) due to freedom in the choice of parameters (σa) (for

a = 0, . . . , p) as consequence of re-parametrization invariance of the action (1.1.1). A

convenient setting for gauge fixing is the Polyakov action.

The Polyakov action for a test p-brane embedded in a background spacetime with

metric gαβ has the form

SP = −1

2
µp

∫
dp+1σ

√−γ
(
γab∂aX

α∂bX
βgαβ − (p− 1)

)
, (1.1.3)

where γab is the p-brane world-sheet metric, γ := det[γab]. The least action principle

applied to (1.1.3) produces the following equations of motion:

∂a(
√−γγab∂bXµ) =

1

2

√−γγab∂aX
α∂bX

βgαβ,µ, (1.1.4)
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∂aX
α∂bX

β gαβ − 1

2
γabγ

cd∂cX
α∂dX

β gαβ = 0. (1.1.5)

The above equations are in full equivalence with the equations (1.1.2). But in this

case it is convenient to fix a gauge by specifying the fields γab to some extent. For

example, in case of a string there are two ways of doing it:

1. Partially fixed gauge: one sets the matrix
√

γγab as functions of (σa); afterwards

there are still conformal isometries of the world-sheet allowed in this setting and

the least action principle wrt fields Xα is still applicable.

2. Fully fixed gauge: one sets lapse and shift function like in General Relativity;

one fixes this gauge at the level of equations of motion.

In the next section we will move to the Hamiltonian formalism, which comes from

applying a Legandre transormation to the Nambu-Goto or Polyakov action.

1.2 The Hamiltonian formalism

This section introduces Hamiltonian formalism with a brief review of Dirac proce-

dure for constrained systems. The constraints are phase space functions that are

gauge generators, i.e. the are manifestation of re-parametrization invariance of the

corresponding action.

Let us denote a position-velocity space of a system by (q, q̇). Let us also assume

that the Legendre transformation (q, q̇) 7→ (q, p = ∂L
∂q̇

) is singular, i.e. there exist

relations of the form Φa(q, p) = 0. The consistency condition requires:

{Φa, H} ≈ 0, {Φa, Φb} ≈ 0,
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where H = pq̇ − L, ’≈’ denotes equality holding on the surface Φ(q, p) = 0 and

a, b = 1, 2, . . . The satisfaction of the above equation may require introduction of

new relations Υa(q, p) = 0, called secondary constraints. One applies the consistency

condition until it produces no more new constraints. Now the constraints are first-

class, which means they close to a Poisson algebra (for more details see [12, 15]).

Sometimes it is possible to reduce the number of conjugate pairs by solving some

of the constraints. This is called reduced phase space formalism and it is used here.

It has been found [34] that the total Hamiltonian, HT , corresponding to the action

(1.1.1) is the following

HT =

∫
dpσHT , HT := AC + AiCi, i = 1, . . . , p (1.2.1)

where A = A(σa) and Ai = Ai(σa) are any functions of p-volume coordinates,

C := ΠαΠβgαβ + µ2
p det[∂aX

α∂bX
βgαβ] ≈ 0, (1.2.2)

Ci := ∂iX
αΠα ≈ 0, (1.2.3)

and where Πα are the canonical momenta corresponding to Xα. Equations (1.2.2)

and (1.2.3) define the first-class constraints of the system.

The Hamilton equations are

Ẋα ≡ ∂Xα

∂τ
= {Xα, HT}, Π̇α ≡ ∂Πα

∂τ
= {Πα, HT}, τ ≡ σ0, (1.2.4)

where the Poisson bracket is defined by

{·, ·} :=

∫
dpσ

( ∂·
∂Xα

∂·
∂Πα

− ∂·
∂Πα

∂·
∂Xα

)
. (1.2.5)
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One finds that the constraints satisfy the following algebra:

{C(f), C(g)} = 4µ2
pCi(hhij(fg,j − gf′j))

{Ci(f
i), C(g)} = C(f ig,i − gf i

,i) (1.2.6)

{Ci(f
i), Ci(g

i)} = Ci(f
jgi

,j − gjf i
,j)

where hab := det[∂aX
α∂bX

βgαβ], h := det[hab] and the smeared phase space function

A(f) is defined as:

A(f) :=

∫

Σ

dpσ f(σa)A(Xµ, Πµ). (1.2.7)

1.3 A p-brane in the compactified Milne Universe

In this section we will specialize the general formulas gathered in previous sections

to the cases of the lowest dimensional objects, i.e. particle, string and membrane,

propagating in the compactified Milne space, MC . We will solve the equations of

motion in case of particle and string. We will also introduce dimensionally reduced

states that are possible for string and membrane. These reductions will play a role

in canonical formulation, prior to quantization performed in the next chapter.

1.3.1 Particle

For the sake of clarity we restrict the following analysis to the significant dimensions

of the MC space, i.e. the time and the disappearing/appearing dimensions. In other

words, we use the metric

ds2 = −dt2 + t2dθ2. (1.3.1)
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The Lagrangian formalism

The Polyakov action, SP , describing a relativistic test particle of mass m in a gravi-

tational field gαβ (α, β = 0, 1) is defined by (see (1.1.3) and [24, 25]):

SP =

∫
dτ L(τ), L(τ) :=

m

2
(
ẊαẊβ

e
gαβ − e), Ẋα := dXα/dτ, (1.3.2)

where τ is an evolution parameter, e(τ) denotes the ‘einbein’ on the world-line (e(τ) ≡
√

γ in (1.1.3)), X0 and X1 are time and space coordinates, respectively.

In the specified metric (1.3.1) the Lagrangian in (1.3.2) reads

L(τ) =
m

2e
(T 2Θ̇2 − Ṫ 2 − e2). (1.3.3)

For the Lagrangian (1.3.3) the equations of motion read

d

dτ

(
mT 2Θ̇

e

)
= 0, T̈ −

(
ė

e

)
Ṫ + Θ̇2T = 0, e2 = Ṫ 2 − T 2Θ̇2. (1.3.4)

The solution to (1.3.4) may be expressed in a gauge-invariant manner:

Θ(T ) = −
∫

d( c1
mT

)√
1 + ( c1

mT
)2

= −arsinh

(
c1

mT

)
+ c2, c1 ∈ R, 0 ≤ c2 < 2π. (1.3.5)

Now one observes that for c1 6= 0 particle winds infinitely many times around θ-

dimension as t → 0 and the value of dΘ
dT

is not well-defined for t = 0. If we dis-

tinguish between points of different value of θ for t = 0, then the particle becomes

topologically (of length equal to zero) a string at the singularity, since every point

in the line (t, θ) = (0,S1) is the t → 0 limit of the formula (2.4.25). Therefore, the

dynamics has no unique extension beyond the singularity no matter which topology

one ascribes to the point(s) t = 0.

We now see that there are two different aspects of non-uniqueness of the particle’s

classical propagation across the singularity:
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1. There is no coordinate system covering a neighborhood of the singularity unless

we assign the topology of circle to it.

2. Even if we do this the particle cannot be traced down to the very singularity

since it winds infinitely many times around the compact dimension.

Taking into account the above one may say that only the c1 = 0 states can be

uniquely extended beyond the singularity.

The Hamiltonian formalism

In the Hamiltonian formalism we obtain the constraint (see (1.2.2) and [22]):

C := ΠaΠbg
ab + m2 = (Πθ/T )2 − (Πt)

2 + m2, (1.3.6)

where Πt := ∂L/∂Ṫ and Πθ := ∂L/∂Θ̇ are canonical momenta. The Hamiltonian

HT = A C (where A is an arbitrary function of τ) gives the equations of motion:

Θ̇ =
2A(τ)

T 2
Πθ, Ṫ = 2A(τ)Πt, (1.3.7)

Π̇θ = 0, Π̇t = 2A(τ)
T 3 Π2

θ. (1.3.8)

Thus, during evolution of the system Πθ is conserved. Owing to the constraint

(1.3.6), Πt blows up as T → 0 for Πθ 6= 0. This is a real problem, i.e. it cannot be

avoided by a suitable choice of coordinates. It is called the ’blue-shift’ effect.

However, trajectories of a test particle, i.e. nonphysical particle, coincide (by

definition) with time-like geodesics of an empty spacetime, and there is no obstacle for

such geodesics to reach/leave the singularity. It is clear that such an extension cannot

be unique because at t = 0 the Cauchy problem for the geodesic equation is not well



12

defined. Therefore the Πθ = 0 states are distinguished as the only deterministically

extendable ones.

We postpone further discussion to the next chapter, where we will deal with

quantum theory.

1.3.2 String

The Lagrangian formalism

One can check that using the embedding functions T and Θ for expressing dynamics

of a string even in the most convenient gauges produces a difficult system of coupled

non-linear equations. Therefore we will proceed in a different way [28] and use the

local flatness of the MC space, a fact, that is transparent in the coordinates:

x0 = t cosh θ, x1 = t sinh θ. (1.3.9)

This strategy is to be effective because the solutions to the dynamics of string in

Minkowski spacetime are already known.

An action describing a test string in a fixed background spacetime with metric

gµν may be given by the Polyakov action (see (1.1.3)):

SP = −1

2
µ1

∫
dτdσ

√−γ γab Xµ
,aX

ν
,b gµν , (1.3.10)

where µ1 is a mass per unit length, γab is the string world-sheet metric, γ := det[γab]

and where Xµ = (T, X1, . . . , Xd).

Inserting
√−γ γab := ηab (which is a special choice of gauge on the string’s world-

sheet) and gµν := ηµν into (1.3.10) leads to, after applying variational principle, the

following equations of motion

∂2
τX

µ − ∂2
σX

µ = 0, (1.3.11)



13

plus a boundary condition. Hence, the string’s propagation in Minkowski space is

described by

Xµ(τ, σ) = Xµ
+(τ + σ) + Xµ

−(τ − σ), (1.3.12)

∂τX
µ∂τXµ + ∂σX

µ∂σXµ = 0, ∂τX
µ∂σXµ = 0, (1.3.13)

where Xµ
± are any functions. The equations (1.3.13) are gauge constraints. We can

make use of these solutions to construct string solutions in the MC space which wind

round the compact dimension, and therefore can be expressed in terms of a function

X(t, θ), where X := (X2, X3, ..., Xd).

It follows from (1.3.9) that the range of this mapping has a nontrivial topology due

to the existence of the singular point (x0, x1) = (0, 0) (see figure 1.3.2). Combining

this property with the general solution (1.3.12), we inevitably arrive to the following

topology condition

x0 = f(τ + σ)− f(−τ + σ), x1 = g(τ + σ)− g(−τ + σ), (1.3.14)

where f and g are any functions. One can always arrive to the above form by per-

forming an appropriate conformal transformation σ± → σ̃±(σ±), where σ± = σ ± τ .

More precisely, let us make the conformal transformation on the solution (1.3.12) to

get X0 = f(τ + σ)− f(−τ + σ). One can verify that other forms of X0 are excluded.

It follows from (1.3.9) that we have the implication: (X0 = 0) ⇒ (X1 = 0). This

means that for τ = 0 we have X1 = 0, which leads to X1 = g(τ + σ)− g(−τ + σ).

Now, let us impose the symmetry condition on the remaining Xk, (k > 1) embed-

ding functions. Due to the assumption made earlier, Xk are functions of t and θ, i.e.

Xk(τ, σ) = X̃k(t(τ, σ), θ(τ, σ)) and are to be periodic in θ. It follows from (1.3.14)
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Σ

Τ

x0H..L x1H..L

x1

x0

Figure 1.1: Singular property of the map (τ, σ) −→ (x0, x1). The map is invertible
for τ 6= 0, and non-invertible for τ = 0.

that

θ = arctanh
( g(σ+)− g(−σ−)

f(σ+)− f(−σ−)

)
(1.3.15)

t = sgn(τ)
√

(f(σ+)− f(−σ−))2 − (g(σ+)− g(−σ−))2 (1.3.16)

So the symmetry condition states that Xk = Xk
+(σ+) + Xk

−(σ−) is periodic in θ =

arctanh( g(σ+)−g(−σ−)
f(σ+)−f(−σ−)

). In other words, we should determine Xk
+ and Xk

− from

Xk
+(σ+) + Xk

−(σ−) =
∑

n

ak
n(t) exp

(
ı
2πn

β
θ
)
, (1.3.17)

where ak
n are functions of t whose exact form we will discover below. It may seem to

be impossible to satisfy these conditions. One obstacle is due to the fact that on the

left-hand side we have a sum of functions of a single variable, while on the right-hand

side there is a sum of functions which depend in a rather complicated way on both

variables. However, we can compare both sides of (1.3.17) at a line. In this way one

can rule out one of the variables and compare functions dependent on just a single

variable. The procedure rests upon the fact that the dynamics is governed by a second

order differential equation (1.3.11), and thus it is sufficient to satisfy the symmetry



15

condition by specifying Xk, ∂tX
k on a single Cauchy’s line. We choose it to be the

singularity, i.e. the line σ+ = −σ−, or equivalently t = 0. One can check that as

σ+ + σ− → 0, one gets θ → arctanh(g′/f ′), where the prime indicates differentiation

with respect to an arbitrary parameter.

Our strategy consists in the imposition of the two conditions:

lim
σ++σ−→0

Xk = Xk
+(σ) + Xk

−(σ) =
∑

n

ak
n(0) exp

(
ı
2πn

β
arctanh

( g′

f ′
)
(σ)

)
, (1.3.18)

lim
σ++σ−→0

∂tX
k = ∂tX

k
+(σ) + ∂tX

k
−(σ) =

∑
n

ȧk
n(0) exp

(
ı
2πn

β
arctanh

( g′

f ′
)
(σ)

)
. (1.3.19)

In this way we get the following simplifications: (i) as we compare functions on

a line we in fact compare functions of a single variable, (ii) since we choose the line

t = 0, we obtain a rather simple form on the right-hand side in the form of a periodic

function of θ = arctan(g′/f ′). The only remaining work to be done is to find the

operator ∂t in the limit σ+ + σ− → 0.

One can check (see the paper [28]) that

∂t =
∂−θ

∂+t∂−θ − ∂−t∂+θ
∂+ − ∂+θ

∂+t∂−θ − ∂−t∂+θ
∂−

in the limit σ+ + σ− → 0 turns to be

∂t −→ 1

2
√

(f ′)2 − (g′)2
(∂+ + ∂−)

∣∣∣
σ+=−σ−

. (1.3.20)

Now it is straightforward to check that application the conditions (1.3.18) and
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(1.3.19) render

X0 = q sinh(σ+) + q sinh(σ−), (1.3.21)

X1 = q cosh(σ+)− q cosh(σ−), (1.3.22)

Xk =
∑

n

ak
n+ exp

(
ı
2πn

β
σ+

)

+
∑

n

ak
n− exp

(
ı
2πn

β
σ−

)
+ ck

0(σ+ + σ−), (1.3.23)

where k > 1. These solutions should satisfy the gauge conditions (1.3.13), which now

takes the form

∂+Xk∂+Xk = q2 = ∂−Xk∂−Xk. (1.3.24)

Now one can find that the solutions as functions of t and θ have the form

Xk(t, θ) =
∑

n

(
ak

n+eı 2πn
β

arcsinh
(

t
2q

)
+ ak

n−e−ı 2πn
β

arcsinh
(

t
2q

))
exp

(
ı
2πn

β
θ
)

+ 2ck
0arcsinh

( t

2q

)
, (1.3.25)

where n denotes n-th excitation. The number of arbitrary constants in (1.3.25) can

be reduced by the imposition of the gauge condition (1.3.24).

Equation (1.3.25) defines the solution corresponding to the compactification of

one space dimension to S1. The solution corresponding to the compactification to a

segment, can be obtained from (1.3.25) by the imposition of the condition Xk(t, θ) =

Xk(t,−θ), which leads to ak
n = −bk

n and ϕk
n = −φk

n, where θ ∈ [0, β/2].

The general solution (1.3.25) shows that the propagation of a string through the

cosmological singularity is not only continuous and unique, but also analytic. Solution

in the MC space is as regular as in the case of the Minkowski space.
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The imposition of the gauge constraint (1.3.24) on the infinite set of functions

given by (1.3.25) produces an infinite variety of physical states. This procedure goes

exactly in the same way as for a closed string in Minkowski spacetime, but with a

smaller number of degrees of freedom due to the condition that the string is winding

around the compact dimension.

The Hamiltonian formalism

There is no need to repeat all the results from the Lagrangian formalism in the

Hamiltonian formalism. Our need for the Hamiltonian formalism comes from our

intention to quantize the system canonically. Although we have found all the solutions

for a string winding round the compact dimension, we are going to quantize only

special states, i.e. strings which are winding uniformly. In this way we reduce a field

theory (with infinitely many degrees of freedom) to a mechanical system and thus

multiply our chances for success.

We analyze the dynamics of a string in the zero-mode (the lowest energy state)

which is winding around the θ-dimension [21, 26]. The string in such a state is defined

by the condition

σ1 := θ and ∂θX
µ = 0 = ∂θΠµ, (1.3.26)

One can show that the condition (1.3.26) eliminates the canonical pair (Θ, Πθ)

and thus reduces the constraints (see (1.2.2), (1.2.3) and [21, 26]):

C = Πµ(τ) Πν(τ) ηµν + µ̌2
1 T 2(τ) ≈ 0, C1 ≡ 0, (1.3.27)

where µ̌1 ≡ θ0µ1 and Xµ no longer includes the embedding functions corresponding

to the compact dimension θ.
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Let us solve the dynamics. The equations of motion (1.2.4) read

Π̇t(τ) = −2A(τ) µ̌2
1 T (τ), Π̇k(τ) = 0, (1.3.28)

and

Ṫ (τ) = −2A(τ) Πt(τ), Ẋk(τ) = 2A(τ) Πk(τ), (1.3.29)

where A = A(τ) is any regular function.

It can be verified that in the gauge A(τ) = 1, the solutions are

Πt(τ) = b1 exp(2µ̌1τ) + b2 exp(−2µ̌1τ), Πk(τ) = Π0k, (1.3.30)

where b1, b2, Π0k ∈ R, and

T (τ) = a1 exp(2µ̌1τ) + a2 exp(−2µ̌1τ), Xk(τ) = Xk
0 + 2Π0k τ, (1.3.31)

where a1, a2, X
k
0 ∈ R.

To analyze the propagation of a string across the singularity t = 0, we eliminate

τ from (1.3.30) and (1.3.31). Making the choice of a1 and a2 in such a way that

a1a2 < 0 leads to one-to-one relation between T and τ . For instance, one may put

a1 = −a2 =
√

Πk
0Π0k/2µ̌1, (1.3.32)

that gives

T (τ) =
√

Πk
0Π0k sinh(2µ̌1 τ)/µ̌1, (1.3.33)

which can be rewritten as

τ =
1

2µ̌1

sinh−1
( µ̌1√

Πk
0Π0k

t
)
, (1.3.34)

due to T = t. The insertion of (1.3.34) into (1.3.31) gives

Xk(t) = Xk
0 +

Πk
0

µ̌1

sinh−1
( µ̌1√

Πk
0Π0k

t
)
. (1.3.35)
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The solution (1.3.35) is bounded and continuous at the singularity. Thus, the classical

dynamics of the zero-mode winding string is well defined in the MC space. In fact,

it corresponds to the solution (1.3.25) for

q =

√
Πk

0Π0k

2µ̌1

, ck
0 =

Πk
0

2µ̌1

, ak
0+ + ak

0− = Xk
0 . (1.3.36)

One may note that in case the string is winded uniformly around the compact

dimension the propagation is unique and smooth through the singularity no matter

whether it has circle or point topology.

Let us once more distinguish between two different topologies one may assign to

compactified Milne space, for which the line element reads (we omit higher dimen-

sions):

ds2 = −dt2 + t2dθ2. (1.3.37)

As it is clear from the above formula, for t = 0 the metric is degenerate and there

is a singularity. We say the singularity has point topology if there is a single point

with t = 0. On the contrary, we say the singularity has circle topology if there is a

continuum of points with t = 0, each enumerated with different value of θ. Clearly,

the distance between these points is equal to zero.

1.3.3 Membrane

The case of a membrane constitutes the most difficult part of our classical analysis.

We restrict ourselves to considering the states that are winding uniformly round

the compact dimension both in Lagrangian and Hamiltonian formulation. In the

Lagrangian formalism we will limit our discussion to stating the equations of motion

and laws of conservation in the gauge, which as we believe, is the most promising for
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finding the solutions. In the Hamiltonian formalism the mentioned reduction leads to

an algebra of two constraints, which we will rephrase in a form convenient for Dirac

quantization.

The Lagrangian formalism

The Nambu-Goto action for a membrane in the MC space reads

SNG = −µ2

∫
d3σ

√
−det(∂aXµ∂bXνgµν)

= −µ2

∫
d3σ

√
−det(−∂aT∂bT + T 2∂aΘ∂bΘ + ∂aXk∂bXk) (1.3.38)

where (T, Θ, Xk) are embedding functions of the membrane corresponding to the

spacetime coordinates (t, θ, xk) respectively.

An action SNG in the lowest energy winding mode, defined by (1.3.26), has the

form [29]

SNG = −µ2θ0

∫
d2σ

√
−T 2det(−∂aT∂bT + ∂aXk∂bXk)

= −µ2θ0

∫
d2σ

√
−det(∂aXα∂bXβ g̃αβ). (1.3.39)

where a, b ∈ {0, 1}, g̃αβ = Tηαβ and θ0 =
∫

dθ. Now it is clear that the dynamics of a

membrane in the state (1.3.26) is equivalent to the dynamics of a string with tension

µ2θ0 in the spacetime with the metric g̃αβ.

The Nambu-Goto action (1.3.39) is equivalent to the Polyakov action

Sp = −1

2
µ2θ0

∫
d2σ

√
γ(γab∂aX

α∂bX
β Tηαβ) (1.3.40)

because variation with respect to γab (and using δγ = γγabδγab) gives

∂aX
α∂bX

β Tηαβ − 1

2
γabγ

cd∂cX
α∂dX

β Tηαβ = 0. (1.3.41)
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The insertion of (1.3.41) into the Polyakov action (1.3.40) reproduces the Nambu-

Goto action (1.3.39).

In the gauge
√−γγab = 1− δab the action (1.3.40) reads

Sp = −µ2θ0

∫
d2σ(∂+Xα∂−Xβ Tηαβ) (1.3.42)

where ∂± = ∂
∂σ±

.

The least action principle applied to (1.3.42) gives the following equations of

motion

∂−(T∂+Xk) + ∂+(T∂−Xk) = 0 (1.3.43)

∂−(T∂+T ) + ∂+(T∂−T ) + ∂+Xα∂−Xβ ηαβ = 0, (1.3.44)

where (1.3.41) with the specified gauge reads

∂+Xα∂+Xβ ηαβ = 0 = ∂−Xα∂−Xβ ηαβ. (1.3.45)

On the other hand, the action (1.3.42) is invariant under the conformal transfor-

mations, i.e. σ± −→ σ± + ε±(σ±). It is so because for such transformations we have

δXα = −ε−∂−Xα − ε+∂+Xα and hence

δSp = −µ2θ0

∫
d2σ

(
∂−(−ε−∂+Xα∂−Xβ Tηαβ) + ∂+(−ε+∂+Xα∂−Xβ Tηαβ)

)
,

(1.3.46)

which is equal to zero since the fields Xα either vanish at infinity or are periodic.

Now let assume that the fields Xα satisfy (1.3.43) and (1.3.44). Then (1.3.46) can be

rewritten as

δSp = −µ2θ0

∫
d2σ

(
∂−(−ε−∂+Xα∂−Xβ Tηαβ) + ∂+(−ε−∂−Xα∂−Xβ Tηαβ)

+ ∂+(−ε+∂+Xα∂−Xβ Tηαβ) + ∂−(−ε+∂+Xα∂+Xβ Tηαβ)
)

(1.3.47)
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which leads to the conservation of currents

∂−T++ = 0, ∂+T−− = 0 (1.3.48)

where

T++ = ε+∂+Xα∂+Xβ Tηαβ, T−− = ε−∂−Xα∂−Xβ Tηαβ . (1.3.49)

One can verify that the vector fields ε−∂− and ε+∂+ satisfy the following Lie algebra

[f+∂+, g+∂+] = (f+ǵ+ − g+f́+)∂+, (1.3.50)

[f−∂−, g−∂−] = (f−ǵ− − g−f́−)∂−, (1.3.51)

[f+∂+, g−∂−] = 0. (1.3.52)

The Hamiltonian formalism

From the general theory described in the section 1.2 we know that in the case of mem-

brane the system is described by three first-class constraints, which close to Poisson

algebra with structure functions on the phase space. However, little is known about

representations of algebras of such type. Therefore we will consider only the mem-

branes in the lowest energy winding mode defined in eq. (1.3.26) and subsequently

by the action (1.3.39). These reduced states are mathematically equivalent to strings

propagating in the curved spacetime with the metric gαβ = |T |nαβ and thus are char-

acterized by two constraints. The Hamiltonian corresponding to the action (1.3.39)

has the form:

HT =

∫
dσHT , HT := AC + A1C1, (1.3.53)

where

C :=
1

2µ2θ0T
ΠαΠβηαβ +

µ2θ0

2
T ∂aX

α∂bX
βηαβ ≈ 0, C1 := ∂σX

αΠα ≈ 0 (1.3.54)
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and A = A(τ, σ) and A1 = A1(τ, σ) are any regular functions. The constraint C

and C1 may be interpreted as diffeomorphism generators in the space of solutions

to Hamilton’s equations (see the paper [29]). Let us redefine the constraints in the

following way:

C± :=
C ± C1

2
(1.3.55)

and check that they close to the Lie algebra:

{Č+(f), Č+(g)} = Č+(fǵ − gf́), (1.3.56)

{Č−(f), Č−(g)} = Č−(fǵ − gf́), (1.3.57)

{Č+(f), Č−(g)} = 0. (1.3.58)

Let us use the functions of the form exp(ınσ) as the basis in the space of the smearing

functions f and g, so the above algebra gains the compact form:

[L+
n , L+

m] = ı(m− n)L+
n+m (1.3.59)

[L−n , L−m] = ı(m− n)L−n+m (1.3.60)

[L+
n , L−m] = 0 (1.3.61)

where L±n = Č±(eınσ) and n,m ∈ Z.



Chapter 2

Dirac quantization of dynamics of
extended objects

In this chapter we will first briefly enumerate the essential steps in the Dirac’s method

of quantization of constrained systems and then try to apply Dirac’s prescription to

the problem of quantizing dynamics of particle, string and membrane in the MC

space.

2.1 Introduction

Dirac proposed in [12] a method for canonical quantization of dynamics of constrained

systems, according to which:

1. First, one applies stabilization algorithm, so one obtains a Hamiltonian H and

first-class constraints Oa, a = 0, 1, . . . , which by definition close to Poisson

algebra; sometimes reduction in number of conjugate pairs and thus number of

first-class constraints is possible.

2. Then, one constructs a (essentially) self-adjoint representation for the algebra

of the Hamiltonian and the observables so that their commutators resemble

24
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standard canonical prescription i.e. {̂A,B} = 1
ı
[Â, B̂].

3. Subsequently, one finds the union of all the kernels of the constraints, i.e.

{ ⋂
aKa : Ψ ∈ Ka ⇔ ÔaΨ = 0 }.

4. Finally one introduces a Hilbert space structure on the union
⋂

aKa, i.e. one

redefines scalar product, because the kernel usually do not belong to the starting

Hilbert space. One can do it e.g. by applying so called group-averaging method

[1, 32]. Below we do not modify definition of scalar product since we restrict

our model only to the neighborhood of singularity, which gives the upper limit

for the length of any time-like curve and thus guarantees square-integrability of

the kernel’s vectors.

It is worth noting that in case the Hamiltonian is a sum of first-class constraints then

there may arise questions concerning the flow of time, since the Hamiltonian has gone

with the Dirac procedure.

2.2 Particle

First we will construct the quantum Hamiltonian of a particle from the classical one

(1.3.6). We use the following mapping (see, e.g. [40])

ΠkΠlg
kl −→ 2 := (−g)−1/2∂k[(−g)1/2gkl∂l], (2.2.1)

where g := det[gkl] and ∂k := ∂/∂xk. The Laplace-Beltrami operator, 2, is invari-

ant under the change of spacetime coordinates and it leads to Hamiltonians that

give results consistent with experiments [40], and which has been used in theoretical

cosmology (see, [34] and references therein).
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In the case of the MC space the quantum Hamiltonian, for t < 0 or t > 0, reads

[22]

Ĥ = 2 + m2 =
∂

∂t2
+

1

t

∂

∂t
− 1

t2
∂2

∂θ2
+ m2. (2.2.2)

The operator Ĥ was obtained by making use of (1.3.6) and the gauge A(τ) = 11.

Thus the Dirac quantization scheme [12, 15] leads to the equation

Ĥψ(θ, t) = 0. (2.2.3)

Let us find the non-zero solutions of (2.2.3). Separating the variables

ψ(θ, t) := A(θ) B(t) (2.2.4)

leads to the equations

d2A/dθ2 + ρ2A = 0, ρ ∈ R (2.2.5)

and

d2B

dt2
+

1

t

dB

dt
+

m2t2 + ρ2

t2
B = 0, t 6= 0, (2.2.6)

where ρ is a constant of separation. Two independent continuous solutions on S1 read

A1(ρ, θ) = a1 cos(ρθ), A2(ρ, θ) = a2 sin(ρθ), a1, a2 ∈ R. (2.2.7)

Two independent solutions on R (for t < 0 or t > 0) have the form [5, 52]

B1(ρ, t) = b1<J(iρ,mt), B2(ρ, t) = b2<Y (iρ,mt), b1, b2 ∈ C, (2.2.8)

where <J and <Y are the real parts of Bessel’s and Neumann’s functions, respectively.

Since ρ ∈ R, the number of independent solutions is: 2×2×∞ ( for t < 0 and t > 0).

1Since the theory we use is gauge invariant, the different choice of the gauge should not effect
physical results.
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We define the scalar product on the space of solutions given by the formulas (2.2.7)

and (2.2.8) as follows

< ψ1|ψ2 >:=

∫
eΓ dµ ψ1 ψ2, dµ :=

√−g dθ dt = |t| dθ dt, (2.2.9)

where Γ̃ := [−T, 0[×S1 (with T > 0) in the pre-singulaity epoch, and Γ̃ :=]0, T ]×S1 in

the post-singularity epoch. We assume that the MC space can be used to model the

universe only during its quantum phase, which lasts the period [−T, T ]. No boundary

conditions on a wavefunction is imposed.

Now we construct an orthonormal basis, in the left neighborhood of the cosmo-

logical singularity, out of the solutions (2.2.7) and (2.2.8). One can verify that the

solutions (2.2.7) are orthonormal and continuous on S1 if a1 =
√

2
θ0

= a2 and

θ0ρ
2π

= 0,±1,±2, . . .. Some effort is needed to construct the set of orthonormal func-

tions out of <J(iρ,mt) and <Y (iρ, mt). First, one may verify that these functions

are square-integrable on the interval [−T, 0]. This is due to the choice of the measure

in the scalar product (2.2.9), which leads to the boundedness of the corresponding

integrants. Second, having normalizable set of four independent functions, for each ρ,

we can turn it into an orthonormal set by making use of the Gram-Schmidt procedure

(see, e.g. [5]). Our orthonormal and countable set of functions may be used to define

the span F . The completion of F in the norm induced by the scalar product (2.2.9)

defines the Hilbert spaces L2(Γ̃× S1, dµ). It is clear that the same procedure applies

to the right neighborhood of the singularity.

We have constructed the two Hilbert spaces: one for the pre-singularity epoch,

H(−), and another one to describe the post-singularity epoch, H(+). Next problem is

to ‘glue’ them into a single Hilbert space, H = L2([−T, T ]×S1, dµ), that is needed to

describe the entire quantum phase. From the mathematical point of view the gluing
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Figure 2.1: Probability density corresponding to ψ(θ, t) = A1(0, θ) <J(0, t)
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Figure 2.2: Probability density corresponding to ψ(θ, t) = A1(0, θ) <Y (0, t)

seems to be problematic because the Cauchy problem for the equation (2.2.3) is not

well defined2 at t = 0, and because we have assumed that t 6= 0 in the process of

separation of variables to get Eqs. (2.2.5) and (2.2.6). However, arguing based on the

physics of the problem enables the gluing. First of all we have already agreed that a

classical test particle is able to go across the singularity (see, section 1.3.1). One can

also verify that the probability density

P (θ, t) :=
√−g |ψ(θ, t)|2 = |t| |ψ(θ, t)|2 (2.2.10)

is bounded and continuous in the domain [−T, T ]×S1. Figures 2.1 and 2.2 illustrate

the behavior of P (θ, t) for two examples of gluing the solutions having ρ = 0. The

2Except one case discussed later.
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cases with ρ 6= 0 have similar properties. Thus, the assumption that the gluing is

possible is justified. However one can glue the two Hilbert spaces in more than one

way. In what follows we present two cases, which are radically different.

Deterministic propagation

Among all solutions (2.2.8) there is one, corresponding to ρ = 0, that attracts an

attention. It reads (see e.g. [52])

B1(0, mt) = b1 <J(0,mt), b1 ∈ R, (2.2.11)

and has the following power series expansion close to t = 0

B1(0, x)/b1 = 1− x2

4
+

x4

64
− x6

2304
+O[x8]. (2.2.12)

It is visualized in Fig. 5a. The solution (2.2.11) is smooth at the singularity, in spite

of the fact that (2.2.6) is singular at t = 0.
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Figure 2.3: Continuous (a) and singular (b) propagations of a particle with ρ = 0.

It defines a solution to (2.2.3) that does not depend on θ. Thus, it is unsensitive

to the problem that one cannot choose a common coordinate system for both t < 0

and t > 0.
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The solution B1 can be used to construct a one-dimensional Hilbert space H =

L2([−T, T ] × S1, dµ). The scalar product is defined by (2.2.9) with Γ̃ replaced by

Γ := [−T, T ]× S1.

The solution (2.2.11) is continuous at the singularity. It describes an unambiguous

propagation of a quantum particle. Thus, we call it a deterministic propagation.

Since (2.2.6) is a second order differential equation, it should have two independent

solutions. However, the second solution cannot be continuous at t = 0. One may

argue as follows: The solution (2.2.11) may be obtained by ignoring the restriction

t 6= 0 and solving (2.2.6) for ρ = 0 with the following initial conditions

B(0, 0) = 1, dB(0, 0)/dt = 0. (2.2.13)

Equations (2.2.6) and (2.2.13) are consistent, because the middle term of the l.h.s. of

(2.2.6) is equal to zero due to (2.2.13) so the resulting equation would be non-singular

at t = 0. Another independent initial condition would be of the form dB(0, 0)/dt 6=
0 . Thus, it could not lead to the solution which is continuous at t = 0.

Indeterministic propagation

All solutions (2.2.8), except (2.2.11), are discontinuous at t = 0. This property is

connected with the singularity of (2.2.6) at t = 0. It is clear that due to such an

obstacle the identification of corresponding solutions on both sides of the singularity

is impossible. However there are two natural constructions of a Hilbert space out of

H(−) and H(+) which one can apply:

(a) Tensor product of Hilbert spaces

The Hilbert space is defined in a standard way [37] asH := H(−)⊗H(+) and it consists
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of functions of the form

f(t1, θ1; t2, θ2) ≡ (f (−) ⊗ f (+))(t1, θ1; t2, θ2) := f (−)(t1, θ1) f (+)(t2, θ2), (2.2.14)

where f (−) ∈ H(−) and f (+) ∈ H(+). The scalar product reads

< f | g >:=< f (−)| g(−) > < f (+)| g(+) >, (2.2.15)

where

< f (−)| g(−) >:=

∫ 0

−T

dt1

∫ 2π

0

dθ1 |t1| f (−)(t1, θ1) g(−)(t1, θ1) (2.2.16)

and

< f (+)| g(+) >:=

∫ T

0

dt2

∫ 2π

0

dθ2 |t2| f (+)(t2, θ2) g(+)(t2, θ2). (2.2.17)

The action of the Hamiltonian is defined by

Ĥ
(
f (−) ⊗ f (+)

)
:=

(
Ĥf (−)

)⊗ f (+) + f (−) ⊗ (
Ĥf (+)

)
. (2.2.18)

The quantum system described in this way appears to consist of two independent

parts. In fact it describes the same quantum particle but in two subsequent time

intervals separated by the singularity at t = 0.

(b) Direct sum of Hilbert spaces

Another standard way [37] of defining the Hilbert space is H := H(−)
⊕H(+). The

scalar product reads

< f1|f2 >:=< f
(−)
1 |f (−)

2 > + < f
(+)
1 |f (+)

2 >, (2.2.19)

where

fk := (f
(−)
k , f

(+)
k ) ∈ H(−) ×H(+), k = 1, 2, (2.2.20)
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and where f
(−)
k and f

(+)
k are two completely independent solutions in the pre-singularity

and post-singularity epochs, respectively. (The r.h.s of (2.2.19) is defined by (2.2.16)

and (2.2.17).)

The Hamiltonian action on H reads

H 3 (f (−), f (+)) −→ Ĥ(f (−), f (+)) := (Ĥf (−), Ĥf (+)) ∈ H. (2.2.21)

By the construction, the space H(−)
⊕H(+) includes vectors like (f (−), 0) and

(0, f (+)), which give non-vanishing contribution to (2.2.19) (but yield zero in case

(2.2.15)). The former state describes the annihilation of a particle at t = 0. The

latter corresponds to the creation of a particle at the singularity. These type of states

do not describe the propagation of a particle across the singularity. The annihila-

tion/creation of a massive particle would change the background. Such events should

be eliminated from our model because we consider a test particle which, by definition,

cannot modify the background spacetime. Since H(−) and H(+), being vector spaces,

must include the zero solutions, the Hilbert space H(−)
⊕H(+) cannot model the

quantum phase of our system.

2.3 String

In the gauge A = 1, the Hamiltonian of a string (1.3.27) is

HT = C = Πµ(τ) Πν(τ) ηµν + µ̌2
1 T 2. (2.3.1)

The quantum Hamiltonian corresponding to (2.3.1) has the form [21, 26]

ĤT =
∂2

∂t2
− ∂2

∂xk∂xk

+ µ̌2
1t

2. (2.3.2)
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According to the Dirac quantization method [12, 15] the physical states ψ should

first of all satisfy the equation

ĤT ψ(t, xk) = 0. (2.3.3)

To solve (2.3.3), we make the substitution

ψ(t, x1, . . . , xd−1) = F (t) G1(x
1) G2(x

2) · · ·Gd−1(x
d−1), (2.3.4)

which turns (2.3.3) into the following set of equations

d2Gk(qk, xk)

dx2
k

+ q2
k Gk(qk, xk) = 0, k = 1, . . . , d− 1, (2.3.5)

d2F (q, t)

dt2
+ (µ̌2

1t
2 + q2) F (q, t) = 0, q2 := q2

1 + . . . + q2
d−1, (2.3.6)

where q2
k, q

2 ∈ R are the separation constants. Two independent solutions to (2.3.5)

have the form

G1k(qk, xk) = cos(qkx
k), G2k(qk, xk) = sin(qkx

k), k = 1, . . . , d− 1 (2.3.7)

(there is no summation in qkx
k with respect to k).

Two independent solutions of (2.3.6) read [52]

F1(q, t) = exp (−iµ̌1t
2/2) H

(
− µ̌1 + iq2

2µ̌1

, (−1)1/4
√

µ̌1 t
)
, (2.3.8)

F2(q, t) = exp (−iµ̌1t
2/2) 1F1

( µ̌1 + iq2

4µ̌1

,
1

2
, iµ̌1t

2
)
, (2.3.9)

where H(a, t) is the Hermite function and 1F1(a, b, t) denotes the Kummer confluent

hypergeometric function.

In what follows we present the construction of a Hilbert space, H, of our system

based on the solutions (2.3.7)-(2.3.9):
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First, we intend to redefine (2.3.8) and (2.3.9) to get bounded functions on R×[−t0, t0],

where [−t0, t0] denotes the ‘time-like’ neighborhood of the singularity. For fixed value

of q and t ∈ [−t0, t0] the solutions (2.3.8) and (2.3.9) are bounded functions, as it is

demonstrated by the plots of Fig. 2.4 .
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Figure 2.4: Solutions as functions of t in the neighborhood of the singularity (µ̌1 = 1,
q = 1).

For q2 À µ̌2
1t

2
0, the solution to (2.3.6) can be approximated by

F (q, t) ≈ A(q) sin(qt) + B(q) cos(qt), (2.3.10)

where A(q) and B(q) are any functions. Finding bounded A(q) and B(q) in (2.3.10)

gives bounded F (q, t). They can be determined from the equations (q2 À µ̌2t20)

F (q, t)|t=0 = B(q) and ∂tF (q, t)|t=0 = qA(q). (2.3.11)

It can be checked [52] that

F1(q, t)|t=0 =
√

π 2
−ıq2−µ̌1

2µ̌1

Γ( 3
4
+ı q2

4µ̌1
)

, ∂tF1(q, t)|t=0 = (−1)−1/4√π (−ıq2−µ̌1) 2
−ıq2−µ̌1

2µ̌1

2
√

µ̌1 Γ( 5
4
+ı q2

4µ̌1
)

,

F2(q, t)|t=0 = 1, ∂tF2(q, t)|t=0 = 0.

(2.3.12)

It results from (2.3.12) that the solution F2(q, t) is a bounded function, so it does not

need any redefinition. For q2 big enough, F1(q, t)|t=0 and ∂tF1(q, t)|t=0 are found to be
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(see Eq. (6.1.45) in [3])

|F1(q, t)|t=0| ≈ 4

√
µ̌1

4

exp ( π
8µ̌1

q2)
√

q
, |∂tF1(q, t)|t=0| ≈ 4

√
µ̌1

4

√
q exp (

π

8µ̌1

q2). (2.3.13)

Thus, we redefine the solution F1(q, t) as follows

F1(q, t) :=
√

q exp (− π

8µ̌1

q2) exp (−iµ̌1t
2/2) H

(
− µ̌1 + iq2

2µ̌1

, (−1)1/4
√

µ̌1 t
)
.

(2.3.14)

It is clear that (2.3.14) is the solution of (2.3.6) owing to the structure of the equation.

Now, one can verify that

|A1(q)| = 4

√
µ̌1

4
, |B1(q)| = 4

√
µ̌1

4
,

A2(q) = 0, B2(q) = 1.
(2.3.15)

Therefore, we get the result that the functions R × [−t0, t0] 3 (q, t) → Fs(q, t) ∈
C, (s = 1, 2) are bounded.

Second, we define the following generalized functions

hs(t,X
1, . . . , Xd−1) :=

∫

Rd−1

f(q1, . . . , qd−1) Fs(q, t)
∏

k

exp(−iqkX
k) dq1 . . . dqd−1,

(2.3.16)

where q2 = q2
1 + . . . q2

d−1, and where f ∈ L2(Rd−1) . Since Fs are bounded, the

functions fFs ∈ L2([−t0, t0] × Rd−1). Equation (2.3.16) includes (2.3.7) due to the

term exp(−iqkX
k), with qk ∈ R.

Finally, we notice that (2.3.16) defines the Fourier transform of fFs. Therefore,

according to the Fourier transform theory (see, e.q. [11]) the equation (2.3.16) defines

the mapping

L2(Rd−1) 3 f −→ hs ∈ L2([−t0, t0]× Rd−1) =: H̃. (2.3.17)

Replacing f by consecutive elements of a basis in L2(Rd−1) leads to an infinite count-

able set of vectors in H̃. So obtained set of vectors can be rearranged into a set
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of independent vectors and further turned into an orthonormal basis by making use

of the Gram-Schmidt procedure [37]. One can show [11] that the span of such an

orthonormal basis, F , is dense in H̃. The completion of F defines the Hilbert space

H ⊆ H̃.

To illustrate the above construction, let us use the Hilbert space L2(Rd−1) :=

⊗d−1
k=1 L2

k(R), where L2
1(R) = L2

2(R) = . . . = L2
d−1(R) ≡ L2(R). Let us take a count-

able infinite set of vectors fn ∈ L2(R) defined as

fn(q) :=
1√

2nn!
√

π
exp(−q2/2) Hn(q), n = 0, 1, 2, . . . , (2.3.18)

where Hn(q) is the Hermite polynomial. It is proved in [4] that (2.3.18) defines an

orthonormal basis in L2(R). The basis (2.3.18) can be used to construct a basis in

L2(Rd−1). The basis is defined as the set of all vectors of the form
⊗d−1

k=1 fnk
(qk) ∈

L2(Rd−1). Further steps of the procedure leading to the dense subspace F are the

same as described in the paragraph including Eq. (2.3.17).

It is clear that (2.3.16), owing to the above construction, defines the solution to

the equation ĤT hs = 0.

2.4 Membrane

The algebra of Hamiltonian constraints describing a membrane winding around com-

pact dimension of the MC space is defined as follows (for notation and more details

see [29])

{Č+(f), Č+(g)} = Č+(fǵ − f́g), (2.4.1)

{Č−(f), Č−(g)} = Č−(fǵ − f́g), (2.4.2)

{Č+(f), Č−(g)} = 0, (2.4.3)
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where

Č±(f) =

∫ π

−π

C ± C1

2
f dσ (2.4.4)

and

C :=
1

2κX0
ΠµΠνη

µν +
κX0

2
det[X́µX́νηµν ] ≈ 0, (2.4.5)

C1 := X́µΠµ, (2.4.6)

and where the Poisson bracket is defined to be

{Ǎ, B̌} :=

∫ π

−π

dσ
( ∂Ǎ

∂Xµ

∂B̌

∂Πµ

− ∂Ǎ

∂Πµ

∂B̌

∂Xµ

)
, (2.4.7)

and where f́ ≡ df/dσ; (Xµ) ≡ (T, Xk) ≡ (T, X1, . . . , Xd−1) are the embedding

functions of an uniformly winding membrane in the MC space; d + 1 is dimension of

the target space; Πµ are the canonical momenta corresponding to Xµ; and ‘smeared’

constraint Ǎ is defined as

Ǎ :=

∫ π

−π

dσ f(σ)A(Xµ, Πµ), f ∈ {C∞[−π, π] | f (n)(−π) = f (n)(π)}. (2.4.8)

Quantization of the algebra (2.4.1)-(2.4.3) means finding its self-adjoint represen-

tation in a Hilbert space. It is clear that (2.4.1)-(2.4.3) consists of two independent

subalgebras. To be specific, we first quantize the subalgebra satisfied by

Ln := Č+(exp inσ), n ∈ Z. (2.4.9)

One may easily verify that

{Ln, Lm} = i(m− n)Lm+n. (2.4.10)

Quantization of (2.4.2) can be done by analogy. Merger of both quantum subal-

gebras will complete the problem of finding the representation of the algebra (2.4.1)-

(2.4.3).
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2.4.1 Representations of the constraints

Representation based on a single field

Hilbert space

The pre-Hilbert space, H̃, induced by the space of fields, S 3 σ → X(σ), is defined

to be (see the paper [31])

H̃ 3 Ψ[X] :=

∫
ψ(X, X́, σ)dσ, (2.4.11)

〈Ψ|Φ〉 :=

∫
Ψ[X]Φ[X][dX], (2.4.12)

where ψ(X, X́, σ) is such that 〈Ψ|Ψ〉 < ∞. The measure [dX] is assumed to be

invariant with respect to σ reparametrization. Completion of H̃ in the norm induced

by (2.4.12) defines the Hilbert space H.

Representation of generator

In what follows we find a representation of (2.4.10). Let us consider a diffeomorphism

on S1 of the form X(σ) 7→ X(σ + εv(σ)). For a small ε we have

X(σ + εv(σ)) ≈ X(σ) + εv(σ)X́(σ) =: X(σ) + εLvX(σ), (2.4.13)

X́(σ + εv(σ)) ≈ X́(σ) + ε
d

dσ
[v(σ)X́(σ)] = X́(σ) + ε

d

dσ
[LvX(σ)]. (2.4.14)

Now, we define an operator L̂v corresponding to Lv defined by (2.4.13). Since we

have

Ψ[X(σ + εv(σ))] ≈ Ψ[X(σ)] + ε

∫ ( ∂ψ

∂X
LvX +

∂ψ

∂X́

d

dσ
[LvX]

)
dσ, (2.4.15)

we set

L̂vΨ[X] :=

∫ ( ∂ψ

∂X
LvX +

∂ψ

∂X́

d

dσ
[LvX]

)
dσ. (2.4.16)
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One may verify that {Lv, Lw} = L(vẃ−v́w) and check that

[L̂v, L̂w] = L̂(vẃ−v́w). (2.4.17)

Next, let us consider the following

∫
Ψ[X(σ + εv(σ))]Φ[X(σ)][dX(σ)] =

∫
Ψ[X(σ)]Φ[X(σ − εv(σ))][dX(σ − εv(σ))]

=

∫
Ψ[X(σ)]Φ[X(σ − εv(σ))][dX(σ)],(2.4.18)

where we assume that v(σ) is a real function and σ 7→ σ + εv(σ) is a diffeomorphism.

Taking derivative with respect to ε of both sides of (2.4.18) and putting ε = 0 leads

to

〈L̂vΨ|Φ〉 = −〈Ψ|L̂vΦ〉. (2.4.19)

Therefore, the operator L̂n defined by the mapping

Ln −→ L̂n := i L̂exp(inσ) (2.4.20)

is symmetric on H and leads to a symmetric representation of the algebra (2.4.10).

It is a self-adjoint representation if L̂n are bounded operators [38].

Solving the constraint

Since we look for diffeomorphism invariant states, it is sufficient to assume that ψ =

ψ(X, X́). Let us solve the equation

L̂nΨ = 0, (2.4.21)

which after making use of (2.4.16) and integrating by parts reads

∫
´(eınσ)[−ψ +

∂ψ

∂X́
X́] dσ = 0. (2.4.22)
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General solution to (2.4.22) has the form

−ψ +
∂ψ

∂X́
X́ =

∑

k 6=−n

ake
ıkσ for n 6= 0, (2.4.23)

where ak are arbitrary constants, and there is no condition for n = 0. Our goal is an

imposition of all the constraint, i.e. we look for Ψ : ∀n L̂nΨ = 0. We find that the

intersection of all the kernels defined by (2.4.23) is given by the equation

−ψ +
∂ψ

∂X́
X́ = c, (2.4.24)

where c is an arbitrary constant. It is enough to solve (2.4.24) for c = 0 and then

simply add to the solution any constant. Since the above equation results from

(2.4.22), it is expected to hold in a more general sense, i.e. in a distributional sense.

It is clear that the space of solutions to (2.4.24) is defined by

ψ = α(X)|X́|+ β(X)X́ − c, (2.4.25)

where α and β are any functions. The first term is a distribution, the second one can

be checked to be trivial, since

∫

S1
β(X)X́ dσ =

∫

S1
β(X)dX = 0 (2.4.26)

for a periodic field X, and third one is a functional that gives the same value 2πc for

every field.

Interpretation of solutions

Let us identify special features of the fields X specific to the first term in (??)

Ψ[X] =

∫
α(X)|X́| dσ =

∫
d

dσ
[γ(X)](H̃(X́)− H̃(−X́)) dσ

= −
∫

γ(X)2δ(X́) dX́ = −
∑

extr X

2γ(X) =
∑

min X

2γ(X)−
∑

max X

2γ(X),(2.4.27)
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where dγ/dX = α and H̃ is the Heaviside function. Thus, Ψ depends on the values of

γ at extrema points of X. We have diffeomorphism invariance due to the implication

(dX
dσ

= 0) ⇒ (dX
deσ = dσ

deσ dX
dσ

= 0).

Representation of the algebra

The mapping (2.4.20) turns (2.4.10) into

[L̂n, L̂m] = (n−m)L̂n+m. (2.4.28)

It is clear that our representation is self-adjoint on the space of solutions to (2.4.21),

which is defined by (2.4.27), if L̂n are bounded operators.

Considerations concerning finding the representation of the subalgebra (2.4.1) ex-

tend directly to the subalgebra (2.4.2), due to (2.4.3). To construct the representation

of the algebra (2.4.1)-(2.4.3), which consists of two commuting subalgebras, one may

use standard techniques [26, 37]. For instance, the representation space of the algebra

may be defined to be either a tensor product or direct sum of the representations of

both subalgebras.

Representation based on phase space functions

Hilbert space

Using the ideas with the single field case (presented in the previous subsection) and

some ideas from [46], we construct now the representation of the algebra (2.4.1)-

(2.4.3) by making use of the phase space functions with coordinates (Xµ, Πµ), where

µ = 0, 1, . . . , d− 1.

Inspired by [46], we identify two types of 1-forms on S1, namely Y λ
± , which are
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solutions to the equation

{C±(u), Y λ
∓} =

∫ (
− d

dσ

(
2u(TX́µ ± Πµ)

)δY λ
∓

δΠµ

− 2u(
Πµ

T
± X́µ)

δY λ
∓

δXµ

−u(
ΠµΠνη

µν

T 2
− X́µX́νηµν)

δY λ
∓

δΠ0

)
dσ = 0. (2.4.29)

The 1-form Y µ
± defines a basis of the plus/minus sector, respectively. It is clear that

an action of C± does not lead outside of a given sector. To be specific, let us first

define the representation for a single sector (for simplicity of notation we use Y µ

without lower label ‘plus’ or ‘minus’).

As before we propose to include fields Y µ(σ) as well as their first derivatives Ý µ(σ)

in the definition of a state

H 3 Ψ[
−→
Y ] :=

∫
ψ(
−→
Y ,
−́→
Y , σ)dσ, (2.4.30)

〈Ψ|Φ〉 :=

∫
Ψ[
−→
Y ]Φ[

−→
Y ][d

−→
Y ], (2.4.31)

where
−→
Y ≡ (Y µ), and where ψ(

−→
Y ,
−́→
Y , σ) is any well-behaved function such that

〈Ψ|Ψ〉 < ∞.

Solving the constraint

We assume again that ψ = ψ(
−→
Y ,
−́→
Y ). Let us solve the equation

L̂nΨ[
−→
Y ] = 0, (2.4.32)

which in the case of many fields is a simple extension of (2.4.22), and reads

∫
´(eınσ)[−ψ +

∂ψ

∂Ý µ
Ý µ] dσ = 0. (2.4.33)

By analogy to the single field case we infer that

−ψ +
∂ψ

∂Ý µ
Ý µ =

∑

k 6=−n

ake
ıkσ for n 6= 0 (2.4.34)
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and again with no condition for n = 0. Imposing all the constraints leads to

−ψ +
∂ψ

∂Ý µ
Ý µ = c. (2.4.35)

One can check that the solutions are of the form

ψ =

( ∑
i

αi(
−→
Y )

∏
µ

|Ý µ|ρµ
i

) 1
ρ

− c, (2.4.36)

where
∑

µ ρµ
i = ρ. This is an expected result since the measure ρ

√∏
µ |Ý µ|ρµdσ is

invariant with respect to σ-diffeomorphisms.

Interpretation of solutions

Suppose we have a space V 3 −→Y in which a closed curve, σ 7→ Y µ(σ), is embedded.

Due to (2.4.36) we have a kind of measure in V given by

ρ

√
α(
−→
Y )

∏
µ

|dY µ|ρµ . (2.4.37)

One may say, it is a generalization of the Riemannian type metric, since for ρµ
i = 1

and ρ = 2 we have

√
gµνdY µdY ν , (2.4.38)

where gµν = gµν(
−→
Y ). In the case, e.g., Y 0 is not a constant field (2.4.37) becomes

ρ

√
α(
−→
Y )

∏
µ

|dY µ|ρµ = ρ

√√√√α(
−→
Y )

∏

µ6=0

∣∣∣∣
dY µ

dY 0

∣∣∣∣
ρµ

|dY 0| =: α̃(Y 0)|dY 0|. (2.4.39)

Thus, it is an extension of the single field metric defined by (2.4.27), which may

be rewritten as α(Y )|dY |. In this case however integration (2.4.39) is performed in

the multidimensional space so α̃(Y 0) depends on a particular curve (not just its end

points). In fact, it is a measure of relative variation of fields, i.e. quantity that is both
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gauge-invariant and determines curve uniquely. Two simple examples of wavefunction

for two fields Y1 and Y2 are given by

ψ = α(Y1 ± Y2)|Ý1 ± Ý2|, (2.4.40)

ψ = α(Y1Y2)|Ý1Y2 + Y1Ý2|, (2.4.41)

where in analogy to the single field case, (2.4.40) and (2.4.41) ‘measure extrema

points’ for fields Y1 ± Y2 and Y1Y2, respectively.

It is clear that finding the representation of the complete algebra (2.4.1)-(2.4.3),

may be carried out by analogy to the single field case by using standard techniques

[37, 26]. For instance, we may define Ψ[Y µ
+ , Y µ

− ] := Ψ[Y µ
+ ]⊗Ψ[Y µ

− ].

2.4.2 Comment

We conclude that the resolution of the cosmic singularity in the context of propagation

of a membrane in the compactified Milne space relies on finding non-trivial quantum

states of a membrane winding uniformly around compact dimension of the MC space.

Above we have proposed a consistent way to construct such states. Finding solution

to the equation (2.4.29) will complete our quantization procedure, since it will allow

to interpret the states in terms of physical quantities.

2.4.3 Remarks on representations of observables

In the space of solutions to the constraints there are many types of measures in the

form (2.4.37) which may be used to define a variety of physical Hilbert spaces and

representations. One may associate operators, in physical Hilbert space, with ho-

momorphisms V 7→ V . The operators split the Hilbert space into a set of invariant



45

subspaces, each of which defines a specific representation. Each subspace is connected

with specific measure and all other measures that are produced by homomorphisms.

For example, the products of the action of homomorphism upon a metric (of Rieman-

nian manifold) constitute the space of all the metrics that are equivalent modulo a

change of coordinates and all other metrics that are reductions of the initial metric.

Now, let us consider an infinitesimal homomorphism, Ôu : V → V , of the space V

along the vector field u = uλ(
−→
Y ) ∂/∂Y λ. In what follows we consider two examples

of representations:

For the special form of (2.4.36) defined by

ψ := αµ(
−→
Y )Ý µ, or Ψ[Y ] =

∫
αµ(

−→
Y )dY µ, (2.4.42)

we find that [48]

Ôu

( ∫
αµdY µ

)
=

∫ (
uλαµ,λ + uλ

,µαλ

)
dY µ. (2.4.43)

For the choice

ψ :=
√

gµνdY µdY ν (2.4.44)

we have [48]

√
gµνdY µdY ν 7→

√(
uλgµν,λ + gλνuλ

,µ + gλµuλ
,ν

)
dY µdY ν . (2.4.45)

One may verify that the operators Ôu and Ôv associated with vector fields u and

v satisfy the algebra

[Ôu, Ôv] = Ô[u,v] (2.4.46)

The representations defined by (2.4.43), (2.4.45) and (2.4.46) are self-adjoint if the

operators are bounded.



Conclusions

In this work we propose modelling the early Universe with quantum elementary ob-

jects propagating in a spacetime with big-crunch/big-bang type singularity. Thus, we

assume that quantum phase of the Universe (describing the cosmological singularity)

includes classical spacetime. It means that our model is not as radical as, e.g., the

loop quantum cosmology models, which are expressed entirely in terms of self-adjoint

operators acting in a Hilbert space. Our results show that there exist variety of

quantum states of various extended objects that propagate through the cosmological

singularity and thus fulfil the fundamental criterion of self-consistency: A physically

correct model of the CS, within the framework of string/M theory, should be able to

describe propagation of a p-brane, i.e. an elementary object like a particle, string and

membrane, from the pre-singularity to post-singularity epoch.

Summary

We have considered propagation of test particle, string and membrane across the sin-

gularity of the compactified Milne space [21, 22, 23, 24, 25, 26, 27, 28, 29, 31]. Our

analysis includes both classical and quantum level. Now we will sum up our results

and then give proposal for future research.

Classical analysis of the motion of particle, string and membrane led us to identifica-

tion of two special issues:
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• If there is no coordinate system covering both cones of the MC space, we are

unable to extend geodesics uniquely beyond singularity by the very definition.

However, the so-called uniformly winding modes of strings and higher dimen-

sional objects are insensitive to this issue, since the embedding function related

to the compact dimension is integrated out and the modes in this special case

propagate smoothly and uniquely.

• If we assign circle topology to the singularity and thus obtain a global coordi-

nate system, particle goes infinitely many times along the compact dimension

while approaching the singularity so the particle cannot propagate through it

uniquely. However in the case of string we have found that all the winding

modes propagate smoothly and uniquely - it seems that the same holds also for

higher dimensional objects.

We have quantized the elementary objects by two different methods: (a) reduced

phase space method (see appendix) and (b) the Dirac method. Mostly we have

focused on the latter one. The conclusions are the following:

• A special state of quantum particle propagates uniquely through the singularity.

Moreover the quantum realm makes it, to some extent, natural to join propa-

gation of quantum particle across pre-big-bang and post-big-bang epochs into

a single Hilbert space in an indeterministic manner.

• Classical and quantum analysis proves that quantum string propagates smoothly

and uniquely.

• Construction of Hilbert space for membrane demonstrates that the existence of

quantum membranes in the MC space is possible.
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• The reduced phase space quantization of particle, presented in appendix, al-

lows to speculate about different propagation rules and adding new degrees of

freedom. It also comes with a different concept of the evolution of quantum

states of elementary objects and gives an argument supporting deterministic

propagation of variety of quantum particle’s states across the MC .

We have found that our model is promising enough to deserve more detailed

examination, which we specify in what follows.

Next Steps

The CMU is able potentially to provide a complete scenario of the evolution of the

Universe, one in which the DE and DM play a key role in both the past and the

future. However, the CMU is not free from problems. The most difficult one is the

gravitational instability of the quantum phase. It has been argued [16, 53] that Big-

Crunch of the CMU may collapse into a black hole which would end the evolution of

the Universe. In such a case, the CMU scenario would need to be modified to make

sense.

Finding an instability of the quantum phase would mean that the cosmological

singularity should be modelled by another spacetime. Examination of the (in)stability

problem of the CMU scenario is the natural next step of our research programme.



Appendix A

Quantization of particle’s dynamics
by an alternative method

In this chapter, based on [23, 24, 25], we will follow an alternative path to a quantum

theory of a particle in the MC space. In contrast to the Dirac’s method we will

solve the constraint classically and then quantize the remaining, physical, degrees of

freedom. We will make use of the symmetries of the compactified Milne space in

order to identify observables. As it has been already indicated the particle’s classical

passage through the singularity, though possible, cannot be determined uniquely due

to ill-posed Cauchy problem (except very special states), which has its imprints in the

Dirac’s quantum theory (see section 2.2). Here we will investigate if the alternative

quantization sheds new light on the problem.

A.1 Preliminaries

The line element in MC reads

ds2 = −dt2 + t2dθ2, (A.1.1)

where (t, θ) ∈ R1 × S1 and we omitted additional Euclidian dimensions.
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Solution to the Killing field equations with the metric (A.1.1) reads

η1 = cosh θ
∂

∂t
− sinh θ

t

∂

∂θ
, η2 = sinh θ

∂

∂t
− cosh θ

t

∂

∂θ
, η3 =

∂

∂θ
. (A.1.2)

One may easily verify that the Killing vectors (A.1.2) satisfy the algebra

[η1, η2] = 0, [η3, η2] = η1, [η3, η1] = η2, (A.1.3)

which is the iso(1, 1) Lie algebra [51]. The algebra (A.1.3) is well defined locally

everywhere in the MC space with exception of the singularity t = 0.

It is commonly known that Killing vectors of a spacetime may be used to find

dynamical integrals of a particle, i.e. quantities which do not change during the

motion of a point mass. In our case there exist three dynamical integrals and they

can be determined as follows

I1 := Πt ηt
1 + Πθ ηθ

1 = Πt cosh θ − Πθ
sinh θ

T
, (A.1.4)

I2 := Πt ηt
2 + Πθ ηθ

2 = Πt sinh θ − Πθ
cosh θ

T
, (A.1.5)

I3 := Πt ηt
3 + Πθ ηθ

3 = Πθ, (A.1.6)

where ηT
a and ηθ

a are components of the Killing vectors ηa (a = 1, 2, 3) and Πt, Πθ

were defined below eq. (1.3.6). Making use of (A.1.4)-(A.1.6) we may rewrite the

constraint (1.3.26) in the form

Φ = I2
2 − I2

1 + m2 = 0. (A.1.7)

For further analysis we introduce the phase space. It is defined to be the space of

all particle geodesics. To describe a geodesic uniquely one may use two independent
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dynamical integrals. In case only one part of the Milne space is available for particle

dynamics, for example with t < 0, the phase space, Γ, could be defined as

Γ = {(I1, I2, I3) | I2
2 − I2

1 + m2 = 0, I3 = pθ}. (A.1.8)

For the choice (A.1.8) the phase space may be parameterized by two variables σ and

pσ in the following way

I1 = m cosh σ, I2 = m sinh σ, I3 = pσ. (A.1.9)

One can easily check that

{I1, I2} = 0, {I3, I2} = I1, {I3, I1} = I2, (A.1.10)

where the Poisson bracket is defined as

{·, ·} =
∂·

∂pσ

∂·
∂σ

− ∂·
∂σ

∂·
∂pσ

. (A.1.11)

Thus the dynamical integrals (A.1.4)-(A.1.6) and the Killing vectors (A.1.2) satisfy

the same algebra. Using properties of the Poisson bracket we get

{Φ, Ia} = 0, a = 1, 2, 3. (A.1.12)

We define classical observables to be real functions on phase space which are: (i)

gauge invariant, (ii) specify all time-like geodesics of a particle, and (iii) their algebra

corresponds to the local symmetry of the phase space. It is clear, due to (A.1.12), that

all dynamical integrals are gauge invariant. There exist two functionally independent

combinations of them which specify all time-like geodesics. We use them to represent

particle observables (one may verify that they are gauge invariant).

Let us denote by S↓ the part of spacetimeMC with t < 0, the big-crunch/big-bang

singularity by S, and the part of MC with t > 0 by S↑.
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By definition, a test particle with constant mass does not modify a background

spacetime. Hence, we postulate that a particle arriving at the singularity S from

S↓ is ‘annihilated’ at S and next, ‘created’ into S↑. There are four interesting cases

of propagation depending on the way a particle may go across S. In each case the

propagation must be consistent with the constraint equation (A.1.7). At S both I1

and I2 are not well defined.

Specification of phase space and observables based on continuous symme-

tries

In this subsection we consider the following propagation: particle following spiral

geodesics winding clockwise the cone S↓ continues to move along clockwise spirals in

S↑ (the same concerns propagation along anticlockwise spirals). Obviously, for Πθ = 0

particle trajectories are just straight lines both in S↓ and S↑. Apart from this we take

into account the rotational invariance (with respect to the axis which coincides with

the y0-axis of 3d Minkowski frame defining (0.0.1)) of the space of particle trajectories

which occur independently in S↓ and S↑.

The set of all particle trajectories can be determined by two parameters (c1, c2) ∈
R1 × [0, 2π[. Thus, the phase space Γ↓ of a particle in S↓ has topology R1 × S1. The

transition of a particle across S makes the dynamics in S↓ and S↑ to be, to some extent,

independent so the phase space Γ↑ of a particle in S↑ has also the R1 × S1 topology.

Therefore, the phase space ΓC of the entire system has the topology S1 × R1 × S1.

Now let us specify the local symmetry of either Γ↓ or Γ↑ by defining the Lie

algebra of particle observables. The system has two independent degrees of freedom

represented by the observables c1 and c2. Equation (2.4.25) tells us that c2 has
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interpretation of position coordinate, whereas c1 plays the role of momentum. With

such an interpretation, it is natural to postulate the following Lie algebra for either

Γ↓ or Γ↑.

{c1, c2} = 1, {·, ·} :=
∂·
∂c1

∂·
∂c2

− ∂·
∂c2

∂·
∂c1

. (A.1.13)

Suppose the observables c1 and c2 describe dynamics in S↓, and let us assume that

propagations in S↓ and S↑ are independent. In such case it would be convenient to

introduce two new observables c4 and c3 in S↑ corresponding to c1 and c2. The Lie

algebra in ΓC would be defined as follows

{c1, c2} = 1, {c4, c3} = 1, {ci, cj} = 0, where i = 1, 2 and j = 3, 4 (A.1.14)

with the Poisson bracket

{·, ·} :=
∂·
∂c1

∂·
∂c2

+
∂·
∂c4

∂·
∂c3

− ∂·
∂c2

∂·
∂c1

− ∂·
∂c3

∂·
∂c4

. (A.1.15)

But from the discussion above it results that ΓC has only three independent variables.

We can encode this property modifying (A.1.14) and (A.1.15) by the condition c4 = c1.

Finally, we get

{c1, c2} = 1, {c1, c3} = 1, {c2, c3} = 0, (A.1.16)

with the Poisson bracket

{·, ·} =
∂·
∂c1

∂·
∂c2

+
∂·
∂c1

∂·
∂c3

− ∂·
∂c2

∂·
∂c1

− ∂·
∂c3

∂·
∂c1

. (A.1.17)

The type of propagation we have considered so far is consistent with the local

isometry (i.e., continuous symmetry) of the compactified Milne space, in both cones

independently. In the next subsection we increase respected symmetries to include

the space inversion (i.e., discrete symmetry).
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Specification based on continuous and discrete symmetries

We take into account (as in case considered in the previous subsection) that S↓ and

S↑ have the (clockwise and anticlockwise) rotational symmetry quite independently.

Apart from this we assume that the singularity S may ‘change’ the clockwise type

geodesics into anticlockwise ones, and vice-versa. From mathematical point of view

such case is allowed because at S the space dimension disappears, thus pθ is not

well defined there, so it may have different signs in S↓ and S↑. Therefore, the space

of geodesics has reflection type of symmetry independently in S↓ and S↑, which is

equivalent to the space inversion separately in S↓ and S↑. The last symmetry is of

discrete type, so it is not the isometry of the compactified Milne space. It is clear

that the phase space ΓC has the topology S1 × R1 × S1 × Z2.

Proposed type of propagation of a particle through S may be characterized by

the conservation of |Πθ| (instead of Πθ required in the previous subsection). The

consequence is that now |c1| = |c4| (instead of c1 = c4 of the previous subsection). To

obtain the algebra of observables we propose to put c4 = εc1, where ε = ±1 is a new

descrete variable, into (A.1.14) and (A.1.15). Thus the algebra reads

{c1, c2} = 1, {c1, c3} = ε, {c2, c3} = 0, (A.1.18)

with the Poisson bracket

{·, ·} =
∂·
∂c1

∂·
∂c2

+ ε
∂·
∂c1

∂·
∂c3

− ∂·
∂c2

∂·
∂c1

− ε
∂·
∂c3

∂·
∂c1

. (A.1.19)

The case trajectories in pre- and post-singularity epochs are independent

Now, we assume that there is no connection at all between trajectories in the upper

and lower parts of the Milne space. For instance, spiral type geodesic winding the
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cone in S↓ may be ‘turned’ by S into straight line in S↑, and vice-versa. In addition

we propose that Πθ may equal zero either in S↓ or in S↑. Justification for such choices

are the same as in the preceding subsection. Obviously, the present case also includes

transitions of spiral geodesics into spiral ones, and straight line into straight line

geodesics.

It is clear that now the algebra of observables coincides with (A.1.14) and (A.1.15),

and the entire phase space ΓC has the topology Γ↓ × Γ↑ := (S1 × R1)× (R1 × S1).

The case space of trajectories has reduced form of rotational invariance

There is one more case we would like to consider: it is obtained by ignoring the

rotational invariance of the MC space assumed to exist separately in S↓ and S↑. Now

we assume that the invariance does occur, but in the entire spacetime. Consequently,

the algebra of observables is defined by Eq. (A.1.13).

Such type of symmetry of the space of geodesics appears, e.g. in case of prop-

agation of a particle in two-dimensional one-sheet hyperboloid embedded in three-

dimensional Minkowski space [35] (2d de Sitter space with topology R1 × S1).

A.2 Proposals for consistent quantum models

By quantization we mean finding a self-adjoint representation of the algebra of clas-

sical observables1. We find that our quantization method is sufficient for analysis of

evolution of a quantum particle across the vertex of MC . Such method was used in

1We do not need the observables to be well defined globally, which would be required for finding
an unitary representation of the corresponding Lie group.
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the papers [35, 36] dealing with dynamics of a particle in de Sitter space2. Applying

the same quantization method in both cases enables the comparison of results.

Before we begin quantization, it is advantageous to redefine the algebra (A.1.16).

It is known (see [7, 10, 14, 18, 36, 45] and references therein) that in case canonical

variables (π, β) have the topology R1×S1, it is necessary to replace β by U := exp(iβ),

and replace the Poisson bracket

{·, ·} =
∂·
∂π

∂·
∂β

− ∂·
∂β

∂·
∂π

(A.2.1)

by the bracket

< ·, · >:=
( ∂·

∂π

∂·
∂U

− ∂·
∂U

∂·
∂π

)
U = {·, ·}U. (A.2.2)

So, in particular one gets < π, U >= U , instead of {π, β} = 1.

Quantization corresponding to the continuous symmetry case

Applying the redefinition (A.2.2) to the algebra (A.1.16) leads to

〈c1, U2〉 = U2, 〈c1, U3〉 = U3, 〈U2, U3〉 = 0, (A.2.3)

where U2 := exp(ic2) and U3 := exp(ic3), and where the algebra multiplication reads

〈·, ·〉 :=
( ∂·

∂c1

∂·
∂U2

− ∂·
∂U2

∂·
∂c1

)
U2 +

( ∂·
∂c1

∂·
∂U3

− ∂·
∂U3

∂·
∂c1

)
U3. (A.2.4)

One may verify that (A.2.4) defines the Lie multiplication.

Now, let us quantize the algebra (A.2.3). To begin with, we define the mappings

c1 → ĉ1ψ(β)ϕ(α) := −i
d

dβ
ψ(β)ϕ(α), (A.2.5)

2Lifting of self-adjoint representation of the algebra to the unitary representation of the corre-
sponding Lie group was possible in case of the spacetime topology R1 × S1, but could not be done
in case of topology R2.
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U2 → Û2ψ(β)ϕ(α) := eiβψ(β)ϕ(α), U3 → Û3ψ(β)ϕ(α) := eiβψ(β)eiαϕ(α),

(A.2.6)

where 0 ≤ β, α < 2π. The operators ĉ1, Û2 and Û3 act on the space Ωλ ⊗ Ωλ̌, where

Ωλ, 0 ≤ λ < 2π, is a dense subspace of L2(S1) defined as follows

Ωλ = {ψ ∈ L2(S1) | ψ ∈ C∞[0, 2π], ψ(n)(2π) = eiλψ(n)(0), n = 0, 1, 2, . . . }. (A.2.7)

The space Ωλ̌ may be chosen to have more general form than Ωλ. For simplicity,

we assume that it is defined by (A.2.7) as well. However, we do not require that

λ̌ = λ, which means that the resulting representation may be labelled by λ̌ and λ

independently.

The space Ωλ ⊗ Ωλ̌ is dense in L2(S1 ⊗ S1), so the unbounded operator ĉ1 is

well defined. The operators Û2 and Û3 are well defined on the entire Hilbert space

L2(S1 ⊗ S1), since they are unitary, hence bounded. It is clear that Ωλ ⊗ Ωλ̌ is a

common invariant domain for all three operators (A.2.5) and their products.

One may easily verify that

[ĉ1, Û2] = ̂< c1, U2 >, [ĉ1, Û3] = ̂< c1, U3 >, [Û2, Û3] = ̂< U2, U3 >, (A.2.8)

([·, ·] denotes commutator), which shows that the mapping defined by (A.2.5) and

(A.2.6) is a homomorphism.

The operator ĉ1 is symmetric on Ωλ ⊗ Ωλ̌, due to the boundary properties of

ψ ∈ Ωλ. It is straightforward to show that ĉ1 is self-adjoint by solving the deficiency

indices equation [38] for the adjoint ĉ1
∗ of ĉ1 (for more details see Appendix A of

[35]).

The space Ωλ may be spanned by the set of orthonormal eigenfunctions of the
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operator ĉ1 with reduced domain from Ωλ ⊗ Ωλ̌ to Ωλ, which are easily found to be

fm,λ(β) := (2π)−1/2 exp iβ(m + λ/2π), m = 0,±1,±2, . . . (A.2.9)

The space Ωλ̌ may be also spanned by the set of functions of the form (A.2.9).

We conclude that the mapping defined by (A.2.5) and (A.2.6) leads to the self-

adjoint representation of (A.2.3).

Quantization corresponding to the continuous and discrete symmetries

case

Making use of the method presented in preceding subsection we redefine the algebra

(A.1.18) to the form

〈c1, U2〉 = U2, 〈c1, U3〉 = εU3, 〈U2, U3〉 = 0, (A.2.10)

where ε = ±1. We quantize the algebra (A.2.10) by the mapping

c1 → ĉ1ψ(β)fεϕ(α) := −i
d

dβ
ψ(β)fεϕ(α), U2 → Û2ψ(β)fεϕ(α) := eiβψ(β)fεϕ(α),

(A.2.11)

U3 → Û3ψ(β)fεϕ(α) := eiβε̂eiαψ(β)fεϕ(α) := eiβεψ(β)fεe
iαϕ(α), (A.2.12)

where ε̂ is the operator acting on the two-dimensional Hilbert space E spanned by

the eigenstates fε defined by

ε̂fε = εfε. (A.2.13)

It is easy to check that

[ĉ1, Û2] = Û2, [ĉ1, Û3] = ε̂Û3, [Û2, Û3] = 0. (A.2.14)

The domain space of operators (A.2.11) and (A.2.12) is defined to be the space Ωλ⊗
E ⊗ Ωλ̌ . It is evident that ε̂ commutes with all operators, so the algebra (A.2.14) is
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well defined. It is easy to check (applying results of preceding subsection) that the

representation is self-adjoint.

Quantization in case the system consists of two almost independent parts

In the last case, the only connection between dynamics in S↓ and S↑ is that a particle

assumed to exist in S↓, can propagate through the singularity into S↑. It is clear

that now quantization of the system may be expressed in terms of quantizations done

separately in S↓ and S↑. To be specific, we carry out the reasoning for S↓:
The phase space has topology Γ↓ = R1 × S1 and the algebra of observables read

〈c1, U2〉 = U2. (A.2.15)

Quantization of (A.2.15) immediately gives

c1 → ĉ1ψ(β) := −i
d

dβ
ψ(β), U2 → Û2ψ(β) := eiβψ(β), ψ ∈ Ωλ, (A.2.16)

which leads to

[ĉ1, Û2] = ̂< c1, U2 > = Û2. (A.2.17)

It is obvious that the same reasoning applies to a particle in S↑.
At this stage we can present quantization of the entire system having phase space

with topology ΓC := Γ↓ × Γ↑. The algebra of classical observables reads

〈c1, U2〉 = U2, 〈c4, U3〉 = U3, (A.2.18)

with all other possible Lie brackets equal to zero.

Quantization of the algebra (A.2.18) is defined by

c1 → ĉ1ψ(β)ϕ(α) := −i
d

dβ
ψ(β)ϕ(α), U2 → Û2ψ(β)ϕ(α) := eiβψ(β)ϕ(α), (A.2.19)
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c4 → ĉ4ψ(β)ϕ(α) := ψ(β)
(− i

d

dα
ϕ(α)

)
, U3 → Û3ψ(β)ϕ(α) := ψ(β)eiαϕ(α),

(A.2.20)

where the domain of the operators ĉ1, ĉ4, Û2 and Û3 is Ωλ ⊗ Ωλ̌.

It is evident that presented representation is self-adjoint.

Time-reversal invariance

The system of a test particle in the Milne space is a non-dissipative one. Thus,

its theory should be invariant with respect to time-reversal transformation T . The

imposition of this symmetry upon the quantum system, corresponding to the classical

one enjoying such an invariance, may reduce the ambiguity of quantization procedure

commonly associated with any quantization method [50].

In our case the ambiguity is connected with the freedom in the choice of λ. Since

0 ≤ λ < 2π, there are infinite number of unitarily non-equivalent representations for

the algebras of observables considered in the preceding subsections. One may reduce

this ambiguity following the method of the imposition of T -invariance used for particle

dynamics in de Sitter’s space. However, imposition of the rotational invariance on

the space of trajectories makes the definition of time-reversal invariance meaningless

in cases considered in the first three subsections. The T -invariance may be imposed

only on the dynamics considered in the last subsection. The first step of quantization

for this case is specified by Eqs. (A.2.15) and (A.2.16). The imposition of the T -

invariance upon the system may be achieved by the requirement of the time-reversal

invariance of the algebra (A.2.17). Formally, the algebra is T̂ -invariant since

T̂ ĉ1T̂
−1 = −ĉ1, T̂ Û2T̂

−1 = Û2
−1

, (A.2.21)

where T̂ denotes an anti-unitary operator corresponding to the transformation T . The
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first equation in (A.2.21) results from the correspondence principle between classical

and quantum physics, because c1 has interpretation of momentum of a particle. The

assumed form of Û2 and anti-unitarity of T̂ lead to the second equation in (A.2.21).

The formal reasoning at the level of operators should be completed by the corre-

sponding one at the level of the domain space Ωλ of the algebra (A.2.17). Following

step-by-step the method of the imposition of the T -invariance upon dynamics of a

test particle in de Sitter’s space, presented in Sec.(4.3) of [36], leads to the result that

the range of the parameter λ must be restricted to the two values: λ = 0 and λ = π.

Now, let us take into account that quantum theory is expected to be more fun-

damental than its classical counterpart (if the latter exists). In the context of the

time-reversal invariance it means that T̂ -invariance may be treated to be more funda-

mental than T -invariance. Applying this idea to quantum particle in the MC space,

we may ignore the lack of T -invariance of classical dynamics considered in the first

three subsections. For these cases we propose to mean by the time-reversal invariance

the T̂ -invariance only. It may be realized by the requirement of T̂ -invariance of the

corresponding algebras. For instance, the algebra (A.2.14) is formally T̂ -invariant if

the observables transform as follows

T̂ ĉ1T̂
−1 = −ĉ1, T̂ Û2T̂

−1 = Û2
−1

, T̂ Û3T̂
−1 = Û3

−1
, T̂ ε̂T̂−1 = ε̂ . (A.2.22)

We require the first equation of (A.2.22) to hold. All other equations in (A.2.22)

result from the functional forms of Û2, Û3 and ε̂, and the anti-unitarity of T̂ . These

analysis should be completed by the corresponding one at the level of the the domain

space Ωλ ⊗ E ⊗ Ωλ̌ of the algebra (A.2.14), but we do not enter into such details.

The imposition of T̂ -invariance not only meets the expectation that a system

with no dissipation of energy should have this property, but also helps to reduce the
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quantization ambiguity as it was demonstrated in the simplest case (It is clear that

three other cases enjoy this reduction too.).

A.3 Comment

In short, what we have proposed above is getting rid of indeterminacy in passage

through singularity by

1. Solving constraint classically and thus loosing the concept of evolution.

2. Introducing new degrees of freedom of quantum particle, so it ’knows’ its destiny

before reaching the singularity.

The new degrees of freedom may seem to be introduced in an arbitrary way since they

came from randomly picked symmetries of the orbifold, which are connected with the

singularity, when we assign point topology to it, i.e.:

1. One can rotate the cones independently.

2. One can inverse θ 7→ −θ independently in the both cones.

3. The Cauchy problem is ill defined so one may actually join any two geodesics

at the singularity.

These new degrees of freedom are somehow hidden, at least to the extent we can

’see’ the physical world. It would be interesting to consider a model of interactions

between these new degrees of freedom but at the present level of understanding the

physics of singularity it seems to be far too speculative and definitely beyond the

scope of this work.
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A.4 A new criterion and the problem of time

As it was pointed out already, even the circle topology singularity produces a non-

trivial obstacle in a way to extend uniquely a geodesic. The reason is that a particle

winds around the compact dimension infinitely many times before it reaches the

singularity. But one may still ask if a quantum state propagating across the singularity

can be extended beyond it uniquely. We already tried to answer this question in case

of a particle in the Dirac method in chapter 2. In what follows we propose another

approach.

We found in (2.4.25) that

Θ(T ) = −arsinh

(
c1

mT

)
+ c2, c1 ∈ R, 0 ≤ c2 < 2π. (A.4.1)

As it was shown in the paper [24], c1 and c2 satisfy the algebra: {c1, c2} = 1. We

quantize them according to the section (A.2), i.e. we replace c2 by U2 := exp(ic2)

and assign quantum operators:

c1 → ĉ1ψ(β) := −i
d

dβ
ψ(β), (A.4.2)

U2 → Û2ψ(β) := eiβψ(β), (A.4.3)

where 0 ≤ β < 2π.

Now inspired by ideas presented in [30], we treat T in (A.4.1) as a classical evo-

lution parameter, which enumerates an ordered family of operators Θ̂, which comes

from substituting in (A.4.1) c1 and c2 with ĉ1 and Û2, respectively. But for the sake

of simplicity, let us consider the following family of self-adjoint operators:

Θ̂(T ) = −arsinh
( ĉ1

mT

)
(A.4.4)
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Now let us study the particle approaching the singularity, i.e. the limit

lim
T→0±

〈θ〉 = lim
T→0±

〈ψ(β)| Θ̂ψ(β)〉. (A.4.5)

First let us express a general state with the eigenvectors of ĉ1 given in (A.2.9):

ψ(β) =
∑

m∈ Z
amfm,λ(β) (A.4.6)

Now we observe that:

arsinh
( c1

mT

) ≈ sgn(
c1

T
) ln

∣∣ 2c1

mT

∣∣, for T ¿ c1

m
. (A.4.7)

and from this and (A.4.6) we conclude that for all finite combinations of fm,λ(β) such

that:
∑

sgn(mj + λ/2π)|amj
|2 = 0 (A.4.8)

the limit (A.4.5) exists and reads:

± ln

(∏
mj

|mj + λ/2π| sgn(mj+λ/2π)|amj |2
)

. (A.4.9)

So we have learnt that though a classical particle in the limit T → 0 winds the compact

dimension infinitely many times, in quantum theory there exist such mixtures of

states, constrained by (A.4.8), for which the limit value of 〈θ〉 exists. This observation

may be used to extend the quantum states uniquely beyond the singularity. This

seems to be more natural then models constructed in the previous sections of the

appendix, since one does not introduces new degrees of freedom but rather reduces

the Hilbert space to vectors well-behaving in time.
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