Application of ADNT2021 tables to estimate the chances of producing new elements

Michał Kowal

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

Properties of heaviest nuclei with $98 \le Z \le 126$ and $134 \le N \le 192$

P. Jachimowicz^a, M. Kowal^{b,*}, J. Skalski^b

^a Institute of Physics, University of Zielona Góra, Szafrana 4a, 65-516 Zielona Góra, Poland ^b National Centre for Nuclear Research, Pasteura 7, 02-093 Warsaw, Poland

ARTICLE INFO

ABSTRACT

Article history: Received 21 October 2020 Accepted 5 November 2020 Available online 19 December 2020 We systematically determine ground-state and saddle-point shapes and masses for 1305 heavy and superheavy nuclei with Z = 98-126 and N = 134-192, including odd-A and odd-odd systems. From these we derive static fission barrier heights, one- and two-nucleon separation energies, and Q_a values for g.s. to g.s. transitions. Our study is performed within the microscopic-macroscopic method with the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy taken as the smooth part. We use parameters of the model that were fitted previously to masses of even-even heavy nuclei. For systems with odd numbers of protons, neutrons, or both, we use a standard BCS method with blocking. Ground-state shapes and energies are found by the minimization over seven axially-symmetric deformations. A search for saddle-points was performed by using the "imaginary water flow" method in three consecutive stages, using five- (for nonaxial shapes) and seven-dimensional (for reflection-asymmetric shapes) deformation spaces. Calculated ground-state mass excess, nucleon separation- and Q_{α} energies, total, macroscopic (normalized to the macroscopic energy at the spherical shape) and shell corrections energies, and deformations are given for each nucleus in Table 1. Table 2 contains calculated properties of the saddle-point configurations and the fission barrier heights. In Tables 3-7, are given calculated ground-state, inner and outer saddle-point and superdeformed secondary minima characteristics for 75 actinide nuclei, from Ac to Cf, for which experimental estimates of fission barrier heights are known. These results are an additional test of our model.

© 2020 Elsevier Inc. All rights reserved.

CONTENTS

1.	Introduction		2
2.	Method		3
	2.1. Macroscopic energy		3
	2.2. Microscopic energy		4
	2.2.1. Woods-Saxon potential		4
	2.2.2. Shell correction		4
	2.2.3. Pairing correlations		5
	2.2.4. Pairing correction		5
3.	Shape parametrization		6
	3.1. Deformation space in the analysis of the ground states		6
	3.2. Deformation space in the analysis of the saddle points		6
4.	Discussion of the results		7
	4.1. Ground state properties		7
	4.1.1. Ground state shapes (deformations)		7
	4.1.2. Ground state mass excess		12
	4.1.3. Q-alpha energies	•••••	12
	4.1.4. Neutron and proton separation energies		12
	4.2. Saddle point properties		15
	4.2.1. Saddle point snapes (deformations)		14
e.	4.2.2. Saddle point mass excesses – insion partier neights		14
э. с	Results III the actilitue region		10
0.	Declaration of compating interest		17
	Acknowledgments		17
	References		17
	Explanation of Tables		19
	Table 1 Ground state properties		19
	Table 2. Saddle point properties		19
	Table 3 Ground state properties of selected 75 actinide nuclei with $Z = 89-98$		19
	Table 4. First saddle point properties of selected 75 actinide nuclei with $Z = 89-98$		19
	Table 5. Second saddle point properties of selected 75 actinide nuclei with $Z = 89-98$.		19
	Table 6. Secondary minima properties of selected 75 actinide nuclei with $Z = 89-98$		19
	Table 7. Calculated vs experimental fission barriers and excitations of second minima of selected 75 actinide nuclei with $Z =$	89-98	19
	•		

Borrowed from Yu.Ts. Oganessian.

SYNTHESIS SCENARIOS

COLD (102<Z<113)

- the strongly bound target nuclei (208Pb or 209Bi) are bombarded with projectiles ranging from Ca to Zn;
- the excitation energy of the resulting compound nucleus is usually in the range of 10 to 20 MeV;
- as the target-projectile symmetry increases, the compound nucleus production cross section decreases.

HOT (112<Z<118)

- the deformed actinide target-nuclei (from U to Cm) are bombarded with a doubly magic 48Ca projectile;
- the excitation energy of the resulting compound nucleus is usually in the range of 30 to 40 MeV, and the dominant evaporation channels are 3n and 4n channels;
- the evaporation residue cross sections do not show any strong dependence on the target-projectile symmetry and are at the picobarn level.

the issues

Attempts of going beyond the reactions Act. + ⁴⁸Ca by using heavier projectiles like ⁵⁰Ti, ⁵⁴Cr, ⁵⁸Fe, and ⁶⁴Ni gave no results so far.

Time (a)

CAPTURE

T. Cap, M. Kowal,, K. Siwek-Wilczynska, Eur. Phys. J. A In preparation

SURVIVAL

covering nuclear physics

Highlights Recent Accepted Collections Authors Referees Search Press About Staff a

Access by Problemow Jadrowych Institute Go Mobile »

Level-density parameters in superheavy nuclei

A. Rahmatinejad, A. N. Bezbakh, T. M. Shneidman, G. Adamian, N. V. Antonenko, P. Jachimowicz, and M. Kowal

Phys. Rev. C 103, 034309 – Published 9 March 2021

PHYSICAL REVIEW C

covering nuclear physics

Highlights Recent Accepted Collections

is Authors

Referees Sear

Search Press

About Staff ふ

Access by Problemow Jadrowych Institute Go Mobile »

Energy dependent ratios of level-density parameters in superheavy nuclei

A. Rahmatinejad, T. M. Shneidman, G. G. Adamian, N. V. Antonenko, P. Jachimowicz, and M. Kowal Phys. Rev. C **105**, 044328 – Published 28 April 2022

PHYSICAL REVIEW C

covering nuclear physics

Highlights	Recent	Accepted	Collections	Authors	Referees	Search	Press	About	Staff	ລ		
Letter							Access by	y Pi ene	e declin h in ergy ur	e of the cl creasing expected	ross se excit y turne	ection tation ed out
Rate o nucle	of decli i with <i>Z</i>	ne of the $Z=114-$	e producti 117 at hig	on cros Jh excita	s section ation ene	n of sup ergies	erhea	√y to int	be re riguing	elatively behavior	weak. may	This open
J. Hong, (Phys. Rev	G. G. Adami ⁄. C 103 , L04	an, N. V. Antor 11601 – Publist	nenko, P. Jachin ned 20 April 20	nowicz, and 21	M. Kowal			and iso	d the topes	productio	on of	new
10 ⁻¹ [⁴⁸ Ca+ ²⁴	¹ Pu	10 ⁻⁷	······································	⁴⁸ Ca+ ²⁴⁴ Pu		10	1		⁴⁸ Ca+ ²⁴⁴ F	²u

Possibilities of direct production of superheavy nuclei with Z=112-118 in different evaporation channels

J. Hong^a, G.G. Adamian^{b,*}, N.V. Antonenko^{b,c}, P. Jachimowicz^d, M. Kowal^e

^a Department of Physics and Institute of Physics and Applied Physics, Yonsei University, Seoul 03722, Republic of Korea

^b Joint Institute for Nuclear Research, Dubna 141980, Russia

^c Tomsk Polytechnic University, 634050 Tomsk, Russia

^d Institute of Physics, University of Zielona Góra, Szafrana 4a, 65-516 Zielona Góra, Poland

^e National Centre for Nuclear Research, Pasteura 7, 02-093 Warsaw, Poland

RECENT POSTS

IUPAC Centenary Endowment Board – Call for members

eTOC Alert 'Pure and Applied Chemistry' – May 2022

IUPAC celebrates IYBSSD2022

Digital Coordinator for WorldFAIR Chemistry project – Call for Applicants IUPAC Concentrate – sample 2022-06-15

CATEGORIES

RECENT RELEASES

FOR PUBLIC REVIEW

UPCOMING DEADLINES

AWARDS & PRIZES

GRANTS

IUPAC IS NAMING THE FOUR NEW ELEMENTS NIHONIUM, MOSCOVIUM, TENNESSINE, AND OGANESSON

8 June 2016

IUPAC is naming the four new elements nihonium, moscovium, tennessine, and oganesson

Following earlier reports that the claims for discovery of these elements have been fulfilled [1, 2], the discoverers have been invited to propose names and the following are now disclosed for public review:

Nihonium and symbol Nh, for the element 113, Moscovium and symbol Mc, for the element 115, Tennessine and symbol Ts, for the element 117, and Oganesson and symbol Og, for the element 118.

The IUPAC Inorganic Chemistry Division has reviewed and considered these proposals and recommends these for acceptance. A five-month public review is now set, expiring 8 November 2016, prior to the formal approval by the IUPAC Council.

IUPAC Periodic Table of the Elements

1																	18
1 H hydrogen 1.0080 ±0.0002	2		Key:									13	14	15	16	17	2 He helium 4.0026 ±0.0001
3 Li lithium 6.94 ±0.06	4 Be beryllium 9.0122 ± 0.0001		atomic num Symbo name abridged standa atomic weigh	ber DI ard								5 B boron 10.81 ± 0.02	6 C carbon 12.011 ± 0.002	7 N nitrogen 14.007 ± 0.001	8 O oxygen 15.999 ± 0.001	9 F fluorine 18.998 ± 0.001	10 Ne neon 20.180 ± 0.001
11 Na sodium 22.990 ±0.001	12 Mg magnesium 24.305 ± 0.002	3	4	5	6	7	8	9	10	11	12	13 AI aluminium 26.982 ± 0.001	14 Si silicon 28.085 ± 0.001	15 P phosphorus 30.974 ± 0.001	16 S sulfur 32.06 ± 0.02	17 CI chlorine 35.45 ±0.01	18 Ar argon 39.95 ± 0.16
19 K potassium 39.098 ±0.001	20 Ca calcium 40.078 ± 0.004	21 Sc scandium 44.956 ± 0.001	22 Ti titanium 47.867 ±0.001	23 V vanadium 50.942 ± 0.001	24 Cr chromium 51.996 ± 0.001	25 Mn manganese 54.938 ±0.001	26 Fe iron 55.845 ± 0.002	27 Co cobalt 58.933 ±0.001	28 Ni nickel 58.693 ± 0.001	29 Cu copper 63.546 ± 0.003	30 Zn zinc 65.38 ± 0.02	31 Ga gallium 69.723 ± 0.001	32 Ge germanium 72.630 ± 0.008	33 As arsenic 74.922 ± 0.001	34 Se selenium 78.971 ± 0.008	35 Br bromine 79.904 ± 0.003	36 Kr krypton 83.798 ± 0.002
37 Rb rubidium 85.468 ±0.001	38 Sr strontium 87.62 ± 0.01	39 Y yttrium 88.906 ±0.001	40 Zr zirconium ^{91,224} ±0.002	41 Nb niobium 92.906 ± 0.001	42 Mo molybdenum 95.95 ± 0.01	43 TC technetium [97]	44 Ru ruthenium 101.07 ± 0.02	45 Rh rhodium 102.91 ±0.01	46 Pd palladium 106.42 ± 0.01	47 Ag silver 107.87 ± 0.01	48 Cd cadmium 112.41 ±0.01	49 In indium 114.82 ± 0.01	50 Sn tin 118.71 ± 0.01	51 Sb antimony 121.76 ± 0.01	52 Te tellurium 127.60 ± 0.03	53 iodine 126.90 ± 0.01	54 Xe xenon 131.29 ± 0.01
55 CS caesium 132.91 ± 0.01	56 Ba barium 137.33 ± 0.01	57-71 Ianthanoids	72 Hf hafnium 178.49 ±0.01	73 Ta tantalum 180.95 ± 0.01	74 W tungsten 183.84 ± 0.01	75 Re rhenium 186.21 ±0.01	76 OS osmium 190.23 ± 0.03	77 Ir iridium 192.22 ± 0.01	78 Pt platinum 195.08 ± 0.02	79 Au gold 196.97 ± 0.01	80 Hg mercury 200.59 ± 0.01	81 TI thallium 204.38 ± 0.01	82 Pb lead 207.2 ± 1.1	83 Bi bismuth 208.98 ± 0.01	84 Po polonium [209]	85 At astatine [210]	86 Rn radon [222]
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 HS hassium	109 Mt meitnerium	110 DS darmstadtium	111 Rg roentgenium	112 Cn copernicium	113 Nh nihonium	114 Fl flerovium	115 MC moscovium	116 Lv livermorium	117 TS tennessine	118 Og oganesson
[]	[]		[_0]	[=30]	1-00]	[_,0]	[]	1-1-1	[]	[]	[]	[]	1-001	[]	[===0]	[]	[=04]

INTERNATIONAL UNION OF

PURE AND APPLIED CHEMISTRY

58 Ce 60 Nd 63 Eu Gd Gd 65 **Tb** 68 Er 57 59 61 62 66 67 69 70 71 Dy dysprosium 162.50 Yb La Pr Pm Ho Tm Sm Lu praseodymium 140.91 ±0.01 ytterbium lanthanum cerium neodymium promethium samarium europium gadolinium terbium holmium erbium thulium lutetium 144.24 ±0.01 150.36 ± 0.02 151.96 ± 0.01 157.25 ± 0.03 158.93 ± 0.01 164.93 ±0.01 167.26 ± 0.01 173.05 ± 0.02 138.91 ± 0.01 140.12 168.93 174.97 [145] ± 0.01 ± 0.01 ± 0.01 ± 0.01 89 90 92 93 94 95 96 97 98 99 100 103 91 101 102 U Cf Th Pa Np Pu Cm Bk Es Ac Am Fm Md No Lr actinium thorium protactinium uranium neptunium plutonium americium curium berkelium californium einsteinium fermium mendelevium nobelium lawrencium 232.04 231.04 238.03 [227] ± 0.01 ±0.01 ±0.01 [237] [244] [243] [247] [247] [251] [252] [257] [258] [259] [262]

> For notes and updates to this table, see www.iupac.org. This version is dated 4 May 2022. Copyright © 2022 IUPAC, the International Union of Pure and Applied Chemistry.

What Next ?

The *pxn*-and αxn -evaporation channels allow us to obtain an access to the isotopes which are unreachable in *xn*-evaporation channels due to the lack of proper projectile-target combination. Thus, employing the reactions suggested, one can produce the heaviest isotopes closer to the center of the island of stability.

Z = 120

These values of the evaporation residue cross sections are much smaller (at least one order of magnitude) than previously published predictions.

Thank you for your attention & for the prize

www.ncbj.gov.pl