Beyond relàtivistic La angian perturbation theory: an exact-solution contro d model-for structure formation

Reporting seminar. Department of Fundamental Research
Decèmber 20th, 2022
Ismael Delgado Gaspar, NCBJ

Introduction

- The current era of "Precision Cosmology" has produced a large amount of high-quality observational data at all astrophysical and cosmic scales whose theoretical interpretation requires robust modeling of self-gravitating systems.
- The analysis of these observations by means of analytic or numerical solutions of Einstein's equations has been less favored due to their non-linear complexity.

Self-gravitational systems at galactic and galactic cluster scales		Newtonian gravity
Large cosmic scale dynamics		

Gauge Invariant
 Perturbative Approach

Relativistic Numerical Cosmology (BSSN formalism)

$1+3$ splitting of EEs (Ex. silent solutions)

Post-Newtonian Corrections

Exact solutions: Sze.-Szafron

- Dust + Cosmological constant.
- No symmetries (but quasi-symmetries).
- Dynamics: Friedmann-like eq. and another eq. formally equivalent to the one leading to the growing and decaying modes in CPT.

Sze-Sza: dipolar

 dust distribution
It contains

LTB: SS dust distribution

Relativistic Zel'dovich Apprximation

Newtonian case:

Lagrangian deformation

$$
d x^{a}=f^{a}{ }_{\mid i} d X^{i}
$$

$$
\mathbf{x}=a(t)[\mathbf{X}+b(t) \mathbf{s}(\mathbf{X})]:=\mathbf{f}(\mathbf{X}, t) \longrightarrow \quad \text { Trajectory }
$$

Relativistic case case:

$$
\begin{aligned}
& d x^{a}=f^{a}{ }_{\mid i} d X^{i} \\
& \eta^{a}=\eta^{a}{ }_{i} \mathbf{d} X^{i}=a(t)\left(\delta^{a}{ }_{i}+P_{i}^{a}\right) \mathbf{d} X^{i}
\end{aligned}
$$

We insert this ansatz into the Einstein equations and linearize the sol. in the deformation field.

$$
\text { Density: } \quad \varrho=\varrho_{i} J^{-1}, \quad \text { with } \quad J=\sqrt{g} / \sqrt{G}
$$

GRZA

- GRZA does not assume the existence of a global FLRW model, but (inspired by the Szekeres solutions) considers an inhomogenous Friedmann-like reference model.

$$
\begin{array}{r}
\boldsymbol{\eta}^{a}=\eta_{i}^{a} \mathbf{d} X^{i}=A\left(\delta_{i}^{a}+\hat{P}_{i}^{a}\right) \mathbf{d} X^{i} \\
A=A(t, \boldsymbol{r}), \quad \hat{P}_{i}^{a}=\hat{P}_{i}^{a}(t, \boldsymbol{r})
\end{array}
$$

Approach:

(i) We insert the coframes into the Einstein equations

$$
\begin{aligned}
& \quad G_{\mu \nu}\left(g_{\mu \nu}\right)+\Lambda g_{\mu \nu}=\kappa T_{\mu \nu} \\
& \text { and linearize in the deformation. }
\end{aligned} \quad\left\{\begin{array}{r}
g_{i j}=\mathcal{G}_{a b} \eta^{a}{ }_{i} \eta^{b}{ }_{j} \\
\mathcal{G}_{a b}=g_{i j}\left(t_{i n i}, \mathbf{r}\right)
\end{array}\right.
$$

(i) Then, any quantity is evaluateted as a nonlinear functional of the deformation field.

FLRW

A. Krasinski, Inhomogeneous Cosmological Models. Cambridge University Press (1997).
Fig. 2.1 and 2.4

$$
\begin{array}{ll}
\text { Numerical Example: we explore the } & G_{i j}=\operatorname{Diag}\left[\left(\mathcal{A}-\hat{\mathcal{F}}_{\text {ini }}\right)^{2}\left(\frac{\mathcal{W}}{\chi}\right)^{2},\left(\frac{e^{\nu}}{\chi}\right)^{2},\left(\frac{e^{\nu}}{\chi}\right)^{2}\right] \\
\text { numerical solutions of a family of locally 1-d } \\
\text { models, containing Szekeres as a particular case. } & P_{i}^{a}=\frac{\hat{\mathcal{F}}-\hat{\mathcal{F}}_{\text {ini }}}{\mathcal{A}-\hat{\mathcal{F}}_{\text {ini }}} \delta_{3}^{a} \delta_{i}^{3} \quad \hat{\mathcal{F}}=\mathcal{F}+\delta \mathcal{F}, \quad \delta \mathcal{F}=\alpha\left(\delta \beta_{+} f_{+}+\delta \beta_{-} f_{-}\right)
\end{array}
$$

$$
\begin{array}{ll}
\text { Numerical Example: we explore the } & G_{i j}=\operatorname{Diag}\left[\left(\mathcal{A}-\hat{\mathcal{F}}_{\text {ini }}\right)^{2}\left(\frac{\mathcal{W}}{\chi}\right)^{2},\left(\frac{e^{\nu}}{\chi}\right)^{2},\left(\frac{e^{\nu}}{\chi}\right)^{2}\right] \\
\text { numerical solutions of a family of locally 1-d } & P_{i}^{a}=\frac{\hat{\mathcal{F}}-\hat{\mathcal{F}}_{\text {ini }}}{\mathcal{A}-\hat{\mathcal{F}}_{\text {ini }}} \delta_{3}^{a} \delta_{i}^{3} \quad \hat{\mathcal{F}}=\mathcal{F}+\delta \mathcal{F}, \quad \delta \mathcal{F}=\alpha\left(\delta \beta_{+} f_{+}+\delta \beta_{-} f_{-}\right)
\end{array}
$$

$\alpha=4.8 \times 10^{-3}$

Concluding remarks

- We have developed a new nonlinear approach to model the large-scale structure formation in the Universe (GRZA). It merges elements of exact solutions and the Lagrangian perturbation theory: the dynamics is described in terms of a deformation field evolving on a background model. But, it generalizes the global FLRW background to an inhomogeneous Friedmann-like reference model.
- GRZA contains Szekeres (then LTB) models and RZA as particular limits. However, applications will ultimately reveal the quality of the approach and whether or not its use is justified.
- Potential applications include:
I. Relativistic corrections to the current N-body numerical simulations.
II. Impact of the inhomogeneities on the prediction of H_{0} or the Universe' large-scale average evolution (i.e., to address the Hubble tension and the backreaction problem).
III. Corrections of non-linear effects in quantities or observable processes like weak lensing.

