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Introduction
§ The current era of “Precision Cosmology” has produced a large amount of high-quality observational data at all

astrophysical and cosmic scales whose theoretical interpretation requires robust modeling of self-gravitating systems.

§ The analysis of these observations by means of analytic or numerical solutions of Einstein’s equations has been less
favored due to their non-linear complexity.
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Exact solutions: Sze.-Szafron

• Dust + Cosmological constant.
• No symmetries (but quasi-symmetries).
• Dynamics: Friedmann-like eq. and another eq.

formally equivalent to the one leading to the
growing and decaying modes in CPT.

Sze-Sza: dipolar 
dust distribution

LTB: SS dust 
distribution 

FLRW
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x = a(t) [X+ b(t)s(X)] := f(X, t)
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For general backgrounds including a constant-curvature
term and a cosmological constant, see [40].

As we shall discuss in more detail later, Zel’dovich
suggested to extrapolate this trajectory field into the mildly
nonlinear regime, so that the nonlinearly evolved density
can be calculated through its exact integral

NZA% ¼ %HðtÞ
%Hðt0Þ

%
& ð ~XÞ=NZAJFð ~X; tÞ; (22)

where JF ' detðFi
jjÞ is evaluated for the comoving trajec-

tory field (21). His motivation was that this expression for
the density, if linearized at the background, coincides with
the linearized solution for the density in comoving
Eulerian coordinates ~q, while the nonlinear expression is
capable of describing a continuum that develops caustics in
a finite time, in form similar to the rectilinear motion of
an inertial continuum [41] (for further discussions of
this extrapolation idea and its subsequent developments
see [19]).

We summarize the logical structure of the derivation
of Zel’dovich’s approximation: (i) the basic system of
equations furnishes a closed system for a single dynamical

variable, the deformation field ~f, or the deformation
gradient fijj; (ii) introducing a split into a background

deformation (the Hubble flow) and a deviation field, we
exploited the fact that we have only to linearize in the
deformation field and not, e.g., in the density deviations as
in the Eulerian picture; (iii) Eulerian fields, e.g., the density
field, but also others, can then be evaluated as functionals
of the linearized perturbation and so provide nonlinear
expressions as an extrapolation into the mildly nonlinear
regime (i.e. up to shell-crossing singularities developing,
after which the transformation of the Lagrangian func-
tionals back to Eulerian space is no longer regular). The
further restriction of initial data is not mandatory so that,
in principle, we can use this extrapolation idea also for
the general first-order solution including vorticity. The
functional for the vorticity is given by Cauchy’s exact
integral [20]:

~! ¼
~! ( r0

~F

a2JF
; ~! ' ~!ð ~X; t0Þ: (23)

C. The strategy to find the corresponding
relativistic approximation

According to what has been said above, a general-
relativistic analogue of Zel’dovich’s approximation has to
aim at (i) writing Einstein’s equations in terms of a system
of evolution equations that all feature a single dynamical
field variable corresponding to the Lagrangian deformation
gradient; (ii) reducing constraint equations to constraints

on initial data where possible; (iii) finding the general
first-order solution of the system of evolution equations
for the deformation variable; and then (iv) employing
Zel’dovich’s extrapolation idea to functionally express
other variables in terms of the single perturbed defor-
mation. It is clear that such a strategy results in a non-
perturbative approximation of relevant field variables. For
example, the resulting spatial metric as a quadratic form of
the deformation field will remain a quadratic form in this
approximation. We are so able to keep highly nonlinear
information encoded in the functional dependence on the
perturbation variable (e.g., the exact density integral, the
Ricci and Weyl curvatures, etc.), while their solution is
explicitly expressible in terms of constraint initial data and
known time-dependent coefficients. While Zel’dovich and
his co-workers mainly exploited the nonlinear functional
dependence on the deformation in the density field, we
here wish to apply this logic to all functionals of interest.
As emphasized previously, this strategy is only applicable
if the governing equations form a closed system for the
deformation variable alone.

III. LAGRANGIAN THEORY OF STRUCTURE
FORMATION IN RELATIVISTIC COSMOLOGY

In this section we shall introduce the coframe field being
the generalization of the Lagrangian deformation gradient
of Newtonian cosmology. In the general-relativistic case
the deformation of fluid elements is no longer integrable;
i.e. instead of the basis dxa ¼ fajidX

i, we have to consider

a nonexact basis !a ¼ !a
idX

i. While the linearly trans-
formed (Lagrangian or local) basis in the Newtonian case
derives from three functions (the components of the tra-
jectory field), here the linearly transformed local basis
(here viewed in the cotangent space at a point of the
manifold) involves nine functions (the coefficients of the
set of coframe fields); hence we have to find at least nine
evolution equations. (We use Latin letters a; b; . . . ¼ 1; 2; 3
as counters in order to distinguish them from coordinate
indices i; j; . . . ¼ 1; 2; 3; throughout the paper k denotes
covariant derivative with respect to the 3-metric with a
symmetric connection, whereas j denotes partial derivative
as before.) As in the previous section the three spatial
deformation one-forms will be the only dynamical varia-
bles in our setup.

A. The Lagrange-Einstein system

Restricting the matter model to irrotational dust, the
simplest spacetime foliation is given by a family of flow-
orthogonal hypersurfaces with induced 3-metric coeffi-
cients gij in the comoving and synchronous metric form

ð4Þg¼%dt)dtþð3Þg; ð3Þg'gijdX
i)dXj; (24)

where Xi are Gaussian normal (Lagrangian) coordi-
nates that are constant along flow lines (here geodesics).
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The motivation underlying this work goes beyond these
technical clarifications. The relativistic generalization of
the Newtonian Lagrangian perturbation theory, with its
first-order member RZA, reveals the powerful property
that its average, [L2], contains the spatially averaged ex-
act spherically symmetric LTB solution [29, Sect. 7.2],
a property that is unexpected since the local model con-
tains a class of plane-symmetric solutions and is expected
to perform best for highly anisotropic collapse. However,
this remark holds true for flat LTB solutions only and
as such it corresponds to the situation of Newton’s iron
sphere theorem. Thus, RZA appears to be a restricted
answer to a full relativistic generalization, and we aim at
understanding the class I Szekeres solutions as providing
hints towards such a generalization.

The plan of this article is as follows. We begin by
presenting the most fundamental properties of the Rela-
tivistic Zel’dovich Approximation and Szekeres models in
Sections II and III, respectively. Section IV provides the
general steps to reformulate the Szekeres solutions in the
language of relativistic Lagrangian perturbations. This
reformulation is specialized to be compatible with RZA
in Section V, with the result that the whole class II is ex-
actly contained in RZA. Within this section, we study the
conditions under which deviations from an FLRW back-
ground solution average out on some scale of homogene-
ity, Subsection VA, while in Subsection VB we present
a lattice model made up of consecutive cells with null
backreaction on a particular homogeneity scale, smoothly
matched across suitable surfaces. In Subsection VC we
show that the RZA functionals reproduce the correct
Szekeres quantities and examine the correspondence be-
tween class II and a class of three-dimensional Newtonian
solutions without symmetry. In Section VI we discuss the
relation of class I solutions to RZA, reinterpret the dy-
namics as a set of independent world lines, and show that
each one follows the RZA model equations. Our results
are summarized and discussed in Section VII.

The main text is complemented with nine appendices,
providing the necessary background material to keep the
paper as self-contained as possible: Appendix A con-
tains a detailed discussion about the relation between the
Szekeres-Szafron and Goode-Wainwright parametriza-
tions, which incidentally proves the compatibility of the
Goode-Wainwright formulation (of both classes I and II)
with the presence of a cosmological constant. As a refer-
ence to the case with ⇤ = 0, in Appendix B, we show the
Goode-Wainwright parametric solutions of the Szekeres
field equations. Appendix C presents the transforma-
tions to Cartesian coordinates of some subcases of the
Szekeres solutions. The spatially averaged equations for
the volume-expansion and volume-acceleration are shown
in Appendix D. Appendix E contains the formal proof of
the Lemma 2 enunciated in Section VA, while the proofs
of Lemmata 3 and 4 are provided in Appendix F. Sup-
plementary calculations, based on the noncommutativity
of averaging and evolution as well as cosmological back-
reaction, aim at a better understanding of the class I

solutions and are presented in Appendix G. For better
readability, we have reserved for Appendix H the func-
tional evaluation of the relevant dynamical fields. Fi-
nally, in Appendix I, we provide the formal relation be-
tween LTB models and RZA, which supports the discus-
sion conducted in Section VIB.

II. THE RELATIVISTIC LAGRANGIAN
FORMULATION

In this section, we summarize the most important re-
sults about RZA that are relevant to the subject of the
paper. Therefore, we will limit our exposition to the
case of an irrotational dust source with a flow-orthogonal
foliation of the spacetime (compatible with the restric-
tions obeyed by the Szekeres solutions). For more details
and generalizations including tensor perturbations (giv-
ing place to gravitational waves) or pressure gradients
see [L1, L2, L3, L4, L5].
For comoving and synchronous observers, the metric

takes the form:

(4)g = �dt⌦dt+(3)g with (3)g = gijdX
i⌦dXj , (1)

where Xi are Gaussian normal (Lagrangian) coordi-
nates.1 Following [L2, L3, L4, L5], the spatial metric
is decomposed in terms of the coframes as follows:

(3)g = Gab⌘
a ⌦ ⌘b ; gij = Gab⌘

a

i
⌘b

j
, (2)

~P = ~p/a (3)

where the coframes are split into a trivial set and de-
viations thereof:

⌘a = ⌘a
i
dXi = a(t) (�a

i
+ P a

i
)dXi . (4)

The initial metric coe�cients are encoded in Gram’s
matrix Gab:

Gab(X)�a
i
�b

j
= Gij(X) ⌘ gij(ti,X) . (5)

Through the 3+1 formalism with a flow-orthogonal fo-
liation of spacetime, Einstein’s equations are transformed
into a system of 9+4 evolution equations (the 4 constraint
equations of general relativity are transformed to evolu-
tion equations in the Lagrangian framework) for the 9

1 Indices i, j, k, · · · denote coordinate indices, while indices
a, b, c · · · are introduced as counters of components, e.g. of vec-
tors or di↵erential forms. In this paper we use units where the
gravitational constant and the speed of light are set to G = c = 1.
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For general backgrounds including a constant-curvature
term and a cosmological constant, see [40].

As we shall discuss in more detail later, Zel’dovich
suggested to extrapolate this trajectory field into the mildly
nonlinear regime, so that the nonlinearly evolved density
can be calculated through its exact integral

NZA% ¼ %HðtÞ
%Hðt0Þ

%
& ð ~XÞ=NZAJFð ~X; tÞ; (22)

where JF ' detðFi
jjÞ is evaluated for the comoving trajec-

tory field (21). His motivation was that this expression for
the density, if linearized at the background, coincides with
the linearized solution for the density in comoving
Eulerian coordinates ~q, while the nonlinear expression is
capable of describing a continuum that develops caustics in
a finite time, in form similar to the rectilinear motion of
an inertial continuum [41] (for further discussions of
this extrapolation idea and its subsequent developments
see [19]).

We summarize the logical structure of the derivation
of Zel’dovich’s approximation: (i) the basic system of
equations furnishes a closed system for a single dynamical

variable, the deformation field ~f, or the deformation
gradient fijj; (ii) introducing a split into a background

deformation (the Hubble flow) and a deviation field, we
exploited the fact that we have only to linearize in the
deformation field and not, e.g., in the density deviations as
in the Eulerian picture; (iii) Eulerian fields, e.g., the density
field, but also others, can then be evaluated as functionals
of the linearized perturbation and so provide nonlinear
expressions as an extrapolation into the mildly nonlinear
regime (i.e. up to shell-crossing singularities developing,
after which the transformation of the Lagrangian func-
tionals back to Eulerian space is no longer regular). The
further restriction of initial data is not mandatory so that,
in principle, we can use this extrapolation idea also for
the general first-order solution including vorticity. The
functional for the vorticity is given by Cauchy’s exact
integral [20]:
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C. The strategy to find the corresponding
relativistic approximation

According to what has been said above, a general-
relativistic analogue of Zel’dovich’s approximation has to
aim at (i) writing Einstein’s equations in terms of a system
of evolution equations that all feature a single dynamical
field variable corresponding to the Lagrangian deformation
gradient; (ii) reducing constraint equations to constraints

on initial data where possible; (iii) finding the general
first-order solution of the system of evolution equations
for the deformation variable; and then (iv) employing
Zel’dovich’s extrapolation idea to functionally express
other variables in terms of the single perturbed defor-
mation. It is clear that such a strategy results in a non-
perturbative approximation of relevant field variables. For
example, the resulting spatial metric as a quadratic form of
the deformation field will remain a quadratic form in this
approximation. We are so able to keep highly nonlinear
information encoded in the functional dependence on the
perturbation variable (e.g., the exact density integral, the
Ricci and Weyl curvatures, etc.), while their solution is
explicitly expressible in terms of constraint initial data and
known time-dependent coefficients. While Zel’dovich and
his co-workers mainly exploited the nonlinear functional
dependence on the deformation in the density field, we
here wish to apply this logic to all functionals of interest.
As emphasized previously, this strategy is only applicable
if the governing equations form a closed system for the
deformation variable alone.

III. LAGRANGIAN THEORY OF STRUCTURE
FORMATION IN RELATIVISTIC COSMOLOGY

In this section we shall introduce the coframe field being
the generalization of the Lagrangian deformation gradient
of Newtonian cosmology. In the general-relativistic case
the deformation of fluid elements is no longer integrable;
i.e. instead of the basis dxa ¼ fajidX

i, we have to consider

a nonexact basis !a ¼ !a
idX

i. While the linearly trans-
formed (Lagrangian or local) basis in the Newtonian case
derives from three functions (the components of the tra-
jectory field), here the linearly transformed local basis
(here viewed in the cotangent space at a point of the
manifold) involves nine functions (the coefficients of the
set of coframe fields); hence we have to find at least nine
evolution equations. (We use Latin letters a; b; . . . ¼ 1; 2; 3
as counters in order to distinguish them from coordinate
indices i; j; . . . ¼ 1; 2; 3; throughout the paper k denotes
covariant derivative with respect to the 3-metric with a
symmetric connection, whereas j denotes partial derivative
as before.) As in the previous section the three spatial
deformation one-forms will be the only dynamical varia-
bles in our setup.

A. The Lagrange-Einstein system

Restricting the matter model to irrotational dust, the
simplest spacetime foliation is given by a family of flow-
orthogonal hypersurfaces with induced 3-metric coeffi-
cients gij in the comoving and synchronous metric form

ð4Þg¼%dt)dtþð3Þg; ð3Þg'gijdX
i)dXj; (24)

where Xi are Gaussian normal (Lagrangian) coordi-
nates that are constant along flow lines (here geodesics).
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of the linearized perturbation and so provide nonlinear
expressions as an extrapolation into the mildly nonlinear
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further restriction of initial data is not mandatory so that,
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C. The strategy to find the corresponding
relativistic approximation

According to what has been said above, a general-
relativistic analogue of Zel’dovich’s approximation has to
aim at (i) writing Einstein’s equations in terms of a system
of evolution equations that all feature a single dynamical
field variable corresponding to the Lagrangian deformation
gradient; (ii) reducing constraint equations to constraints

on initial data where possible; (iii) finding the general
first-order solution of the system of evolution equations
for the deformation variable; and then (iv) employing
Zel’dovich’s extrapolation idea to functionally express
other variables in terms of the single perturbed defor-
mation. It is clear that such a strategy results in a non-
perturbative approximation of relevant field variables. For
example, the resulting spatial metric as a quadratic form of
the deformation field will remain a quadratic form in this
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information encoded in the functional dependence on the
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the deformation of fluid elements is no longer integrable;
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i. While the linearly trans-
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derives from three functions (the components of the tra-
jectory field), here the linearly transformed local basis
(here viewed in the cotangent space at a point of the
manifold) involves nine functions (the coefficients of the
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as counters in order to distinguish them from coordinate
indices i; j; . . . ¼ 1; 2; 3; throughout the paper k denotes
covariant derivative with respect to the 3-metric with a
symmetric connection, whereas j denotes partial derivative
as before.) As in the previous section the three spatial
deformation one-forms will be the only dynamical varia-
bles in our setup.
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Restricting the matter model to irrotational dust, the
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The motivation underlying this work goes beyond these
technical clarifications. The relativistic generalization of
the Newtonian Lagrangian perturbation theory, with its
first-order member RZA, reveals the powerful property
that its average, [L2], contains the spatially averaged ex-
act spherically symmetric LTB solution [29, Sect. 7.2],
a property that is unexpected since the local model con-
tains a class of plane-symmetric solutions and is expected
to perform best for highly anisotropic collapse. However,
this remark holds true for flat LTB solutions only and
as such it corresponds to the situation of Newton’s iron
sphere theorem. Thus, RZA appears to be a restricted
answer to a full relativistic generalization, and we aim at
understanding the class I Szekeres solutions as providing
hints towards such a generalization.

The plan of this article is as follows. We begin by
presenting the most fundamental properties of the Rela-
tivistic Zel’dovich Approximation and Szekeres models in
Sections II and III, respectively. Section IV provides the
general steps to reformulate the Szekeres solutions in the
language of relativistic Lagrangian perturbations. This
reformulation is specialized to be compatible with RZA
in Section V, with the result that the whole class II is ex-
actly contained in RZA. Within this section, we study the
conditions under which deviations from an FLRW back-
ground solution average out on some scale of homogene-
ity, Subsection VA, while in Subsection VB we present
a lattice model made up of consecutive cells with null
backreaction on a particular homogeneity scale, smoothly
matched across suitable surfaces. In Subsection VC we
show that the RZA functionals reproduce the correct
Szekeres quantities and examine the correspondence be-
tween class II and a class of three-dimensional Newtonian
solutions without symmetry. In Section VI we discuss the
relation of class I solutions to RZA, reinterpret the dy-
namics as a set of independent world lines, and show that
each one follows the RZA model equations. Our results
are summarized and discussed in Section VII.

The main text is complemented with nine appendices,
providing the necessary background material to keep the
paper as self-contained as possible: Appendix A con-
tains a detailed discussion about the relation between the
Szekeres-Szafron and Goode-Wainwright parametriza-
tions, which incidentally proves the compatibility of the
Goode-Wainwright formulation (of both classes I and II)
with the presence of a cosmological constant. As a refer-
ence to the case with ⇤ = 0, in Appendix B, we show the
Goode-Wainwright parametric solutions of the Szekeres
field equations. Appendix C presents the transforma-
tions to Cartesian coordinates of some subcases of the
Szekeres solutions. The spatially averaged equations for
the volume-expansion and volume-acceleration are shown
in Appendix D. Appendix E contains the formal proof of
the Lemma 2 enunciated in Section VA, while the proofs
of Lemmata 3 and 4 are provided in Appendix F. Sup-
plementary calculations, based on the noncommutativity
of averaging and evolution as well as cosmological back-
reaction, aim at a better understanding of the class I

solutions and are presented in Appendix G. For better
readability, we have reserved for Appendix H the func-
tional evaluation of the relevant dynamical fields. Fi-
nally, in Appendix I, we provide the formal relation be-
tween LTB models and RZA, which supports the discus-
sion conducted in Section VIB.

II. THE RELATIVISTIC LAGRANGIAN
FORMULATION

In this section, we summarize the most important re-
sults about RZA that are relevant to the subject of the
paper. Therefore, we will limit our exposition to the
case of an irrotational dust source with a flow-orthogonal
foliation of the spacetime (compatible with the restric-
tions obeyed by the Szekeres solutions). For more details
and generalizations including tensor perturbations (giv-
ing place to gravitational waves) or pressure gradients
see [L1, L2, L3, L4, L5].
For comoving and synchronous observers, the metric

takes the form:

(4)g = �dt⌦dt+(3)g with (3)g = gijdX
i⌦dXj , (1)

where Xi are Gaussian normal (Lagrangian) coordi-
nates.1 Following [L2, L3, L4, L5], the spatial metric
is decomposed in terms of the coframes as follows:

(3)g = Gab⌘
a ⌦ ⌘b ; gij = Gab⌘

a

i
⌘b

j
, (2)

where the coframes are split into a trivial set and devia-
tions thereof:

⌘a = ⌘a
i
dXi = a(t) (�a

i
+ P a

i
)dXi . (3)

The initial metric coe�cients are encoded in Gram’s ma-
trix Gab:

Gab(X)�a
i
�b

j
= Gij(X) ⌘ gij(ti,X) . (4)

Through the 3+1 formalism with a flow-orthogonal fo-
liation of spacetime, Einstein’s equations are transformed
into a system of 9+4 evolution equations (the 4 constraint
equations of general relativity are transformed to evolu-
tion equations in the Lagrangian framework) for the 9
coframe coe�cient functions [L1, L4]. The complete sys-
tem of equations reads:

Gab ⌘̇
a

[i⌘
b

j] = 0 ; (5a)
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2J
✏abc✏

ikl
�
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1
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✏abc✏
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j
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2
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1 Indices i, j, k, · · · denote coordinate indices, while indices
a, b, c · · · are introduced as counters of components, e.g. of vec-
tors or di↵erential forms. In this paper we use units where the
gravitational constant and the speed of light are set to G = c = 1.
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coframe coe�cient functions [L1, L4]. The complete sys-
tem of equations reads:
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where the overdot stands for the covariant (here simply
the partial) time-derivative; the single and the double
vertical slash denote the ordinary partial derivative and
the spatial covariant derivative, respectively; J is the de-
terminant of the coframe matrix, see (13), and Rij is the
spatial Ricci tensor with trace R. (The expression of the
Ricci tensor in terms of coframes is left implicit, see [L1].)

A. Relativistic Zel’dovich Approximation

The 3+1 Lagrangian framework of Einstein’s equations
consists in considering the (nine functions of the) spatial
coframes as the only dynamical variables [L1]. The rel-
ativistic Lagrangian perturbation theory then only per-
turbs the coframes, while their first-order member pro-
vides the RZA coframes. The so linearized Lagrange-
Einstein system entitles us to evaluate any other field as
a functional of the linear coframe perturbations, lead-
ing to nonlinear (functional) expressions for any relevant
field. For instance, in this approximation, the spatial
metric is a quadratic form of the deformation field,
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which allows for correctly evaluating distances as well as
having the correct light cone structure in generic inho-
mogeneous matter distributions that correspond to the
coframe deformation at a given order.

Since the initial spatial metric is encoded in the Gram’s
matrix, the deformation field vanishes at some initial
time ti:
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i
(ti) = 0 ; (8a)
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; U[ij] = 0 ; (8b)
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i
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In the equations above, H = ȧ/a is the Hubble func-
tion, and Ua and Wa are the relativistic generalizations
of the initial Newtonian peculiar-velocity and peculiar-
acceleration gradients, with coe�cients in the exact co-
ordinate basis dXi denoted by Ua

i
and W a

i
, respectively.

B. Example: the solution for the trace

The solution is separated into spatial and temporal
parts. If we focus on the trace part, the time-dependence

is determined from Raychaudhuri’s equation [L4],

P̈ + 2HṖ � 4⇡%b(t)P = a�3W , (9)

where %b(t) is the background density, and the following
abbreviations were and will be used:
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Once a background model has been set, the growing and
decaying solutions of Eq. (9) determine the temporal
evolution. For an EdS (Einstein-de Sitter) background
model, we have:
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The relativistic correspondence to Zel’dovich’s approxi-
mation is obtained by subjecting the initial data to the
slaving condition U = Wti, cf. [23, 28] for the Newtonian
case.
We emphasize that RZA also contains trace-free tenso-

rial parts that include nonperturbative models for grav-
itational waves. We direct the reader to the detailed
analyses in [L4].

C. Functional evaluation

Let us examine in more detail the functional evalu-
ation within RZA. As was pointed out previously, the
crucial aspect of the formalism relies on its very archi-
tecture, linearizing the deformation field in the coframe
set only. All relevant fields are computed from their exact
and, in general, nonlinear functional expressions with no
further truncations. This extrapolation idea accounts for
the intrinsic nonlinearity of the model, encoded in its pre-
dicted fields—as in the example of the metric form (7), or
the implicit functional of the Ricci tensor/scalar in (6).
In this spirit, the nonlinear density field is evaluated
through the exact integral of the continuity equation:
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where the determinant, J , is given by
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and the peculiar-determinant is defined through

J ⌘ J/a3 . (14)

In (13), we introduced the principal scalar invariants of
the perturbation matrix P a
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,
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It contains



GRZA
• GRZA does not assume the existence of a global FLRW model, but (inspired by the Szekeres solutions) 

considers an inhomogenous Friedmann-like reference model.
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IV. GENERALIZED RELATIVISTIC
ZEL’DOVICH APPROXIMATION (GRZA)

Motivated by the mathematical connection between
the Szekeres class II solutions and RZA, we present a new
nonperturbative approach that generalizes RZA to con-
tain Szekeres class I. The approach retains the mathemat-
ical structure of RZA but without pre-assuming a global
background. Instead, we consider a space-dependent con-
formal scale factor obeying a Friedmann-like equation (as
in Eq. (22) for Szekeres class I).

Restricting the analysis to an irrotational dust source,
the coframe set (10) finds its generalization in the follow-
ing expressions:
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a
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where, as discussed above, A satisfies a Friedmanian
equation for a reference model with curvature and mat-
ter density parameters k̂ = k̂ (r) and %̂b(r), respectively:
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The line-element keeps the bilinear quadratic mathemat-
ical structure for the deformation field, as in Eq. (1):

gij = Gab⌘
a
i⌘

b
j (28a)

= A
2
h
Gij +Gab

⇣
�
a
iP̂

b
j + �

b
jP̂

a
i + P̂

a
iP̂

b
j

⌘i
. (28b)

Since at the initial time A is normalized and we assume
(without loss of generality) that the initial deformation
field vanishes (P̂ a

i(tini) = 0), the Gram’s matrix is defined
via the initial spatial metric:

Gij(r) := gij(ti, r) . (29)

The subsequent approach consists of (i) obtaining
(Lagrange-)linear evolution equations for the deforma-
tion field and, then, (ii) injecting the formal solution into
the exact nonlinear functional expressions. This scheme
retains the original Zel’dovich’s extrapolation idea and
generalizes RZA to include the whole family of Szek-
eres models within its locally one-dimensional deforma-
tion field limit. In light of this, we call the resulting
approach Generalized Relativistic Zel’dovich Approxima-
tion (GRZA).

A. Functional evaluation

First, let us evaluate all relevant fields as exact func-
tionals of the local deformation and the conformal scale

factor. The exact determinant of the spatial coframe co-
e�cients is given by:

J = A
3J = A

3 (J0 + J1 + J2 + J3) , (30)

where we have introduced the peculiar-determinant J,
and the quantities Jn ⌘ (n)Jkk are defined through:
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From its definition, we can see that J0 = 1, as expected.
Henceforth, the exact inhomogeneous density field fol-
lows from injecting (30) and (31) into (5).
Next, we express the expansion tensor as a functional

of the deformation field. Writing out Eq. (7) yields:
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To keep the above expression short, we have introduced
the short-hand notations:
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Taking the trace of the expansion tensor and using a

similar notation as before, In ⌘ (n)
I
k
k, we obtain the

functional for the expansion scalar:
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Then, the exact functional for the shear tensor can be
computed from (8), (32) and (34).
The gravitoelectric part of the spatially projected Weyl

tensor reads:
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Above, the quantities (n)bIij are defined as (n)
I
i
j in (33),

but replacing ˙̂
P

a
j by ¨̂

P
a
j . The gravitomagnetic part is
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Approach: 

(i) We insert the coframes into the Einstein equations

and linearize in the deformation. 

(i) Then, any quantity is evaluateted as a nonlinear functional of 
the deformation field. 
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Numerical Example: we explore the
numerical solutions of a family of locally 1-d
models, containing Szekeres as a particular case.
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Concluding remarks
• We have developed a new nonlinear approach to model the large-scale structure formation in the Universe

(GRZA). It merges elements of exact solutions and the Lagrangian perturbation theory: the dynamics is
described in terms of a deformation field evolving on a background model. But, it generalizes the global FLRW
background to an inhomogeneous Friedmann-like reference model.

• GRZA contains Szekeres (then LTB) models and RZA as particular limits. However, applications will ultimately
reveal the quality of the approach and whether or not its use is justified.

• Potential applications include:

I. Relativistic corrections to the current N-body numerical simulations.

II. Impact of the inhomogeneities on the prediction of H0 or the Universe’ large-scale average evolution (i.e.,
to address the Hubble tension and the backreaction problem).

III. Corrections of non-linear effects in quantities or observable processes like weak lensing.


