Quantum droplets. New, interesting state of matter

Maciej Pylak
National Centre For Nuclear Research
ul. Pasteura 7, 02-093 Warsaw, Poland

June 26, 2023

NATIONAL CENTRE FOR NUCLEAR RESEARCH
 ŚWIERK

A small correction with huge consequences!

Energy density for Bose-Bose mixture:

$$
\begin{aligned}
\epsilon\left[\psi_{1}, \psi_{2}\right]= & \frac{\hbar^{2}}{2 m_{1}}\left|\vec{\nabla} \psi_{1}\right|^{2}+\frac{\hbar^{2}}{2 m_{2}}\left|\vec{\nabla} \psi_{2}\right|^{2}+V_{\text {trap }}(\vec{r})\left(\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}\right) \\
& +\frac{1}{2} g_{1}\left|\psi_{1}\right|^{4}+\frac{1}{2} g_{2}\left|\psi_{2}\right|^{4}+g_{12}\left|\psi_{1}\right|^{2}\left|\psi_{2}\right|^{2}+\epsilon_{L H Y}\left[\psi_{1}, \psi_{2}\right]
\end{aligned}
$$

The addition of the repulsive Lee-Huang-Young term stabilizes our mixture, since it competes with the attractive inter-species interaction. ${ }^{1}$

[^0]
A small correction with huge consequences!

Energy density for Bose-Bose mixture:

$$
\begin{aligned}
\epsilon\left[\psi_{1}, \psi_{2}\right]= & \frac{\hbar^{2}}{2 m_{1}}\left|\vec{\nabla} \psi_{1}\right|^{2}+\frac{\hbar^{2}}{2 m_{2}}\left|\vec{\nabla} \psi_{2}\right|^{2}+V_{\text {trap }}(\vec{r})\left(\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}\right) \\
& +\frac{1}{2} g_{1}\left|\psi_{1}\right|^{4}+\frac{1}{2} g_{2}\left|\psi_{2}\right|^{4}+g_{12}\left|\psi_{1}\right|^{2}\left|\psi_{2}\right|^{2}+\epsilon_{L H Y}\left[\psi_{1}, \psi_{2}\right]
\end{aligned}
$$

The addition of the repulsive Lee-Huang-Young term stabilizes our mixture, since it competes with the attractive inter-species interaction. ${ }^{1}$

$$
\epsilon_{L H Y}=\frac{8}{15 \pi^{2} \hbar^{3}} m_{1}^{3 / 2}\left(g_{1} n_{1}\right)^{5 / 2} f\left(\frac{m_{2}}{m_{1}}, \frac{g_{12}^{2}}{g_{1} g_{2}}, \frac{g_{2} n_{2}}{g_{1} n_{1}}\right)
$$

[^1]
A small correction with huge consequences!

Energy density for Bose-Bose mixture:

$$
\begin{aligned}
\epsilon\left[\psi_{1}, \psi_{2}\right]= & \frac{\hbar^{2}}{2 m_{1}}\left|\vec{\nabla} \psi_{1}\right|^{2}+\frac{\hbar^{2}}{2 m_{2}}\left|\vec{\nabla} \psi_{2}\right|^{2}+V_{\text {trap }}(\vec{r})\left(\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}\right) \\
& +\frac{1}{2} g_{1}\left|\psi_{1}\right|^{4}+\frac{1}{2} g_{2}\left|\psi_{2}\right|^{4}+g_{12}\left|\psi_{1}\right|^{2}\left|\psi_{2}\right|^{2}+\epsilon_{L H Y}\left[\psi_{1}, \psi_{2}\right]
\end{aligned}
$$

The addition of the repulsive Lee-Huang-Young term stabilizes our mixture, since it competes with the attractive inter-species interaction. ${ }^{1}$

$$
\epsilon_{L H Y}=\frac{8}{15 \pi^{2} \hbar^{3}} m_{1}^{3 / 2}\left(g_{1} n_{1}\right)^{5 / 2} f\left(\frac{m_{2}}{m_{1}}, \frac{g_{12}^{2}}{g_{1} g_{2}}, \frac{g_{2} n_{2}}{g_{1} n_{1}}\right)
$$

for $m_{1}=m_{2}=m$ function f is analytical
$f(1, x, y)=\frac{1}{4 \sqrt{2}} \sum_{ \pm}\left(1+y \pm \sqrt{(1-y)^{2}+4 x y}\right)^{5 / 2}$

[^2]
How to get a droplet?

We need to find a balance between intraspecies repulsion $\left(g_{i}>0\right)$ and interaction g_{12} between different atoms!

Courtesy of F. Gampel

Convenient dimensionless units:

- length $\xi=\sqrt{\frac{3}{2} \frac{\sqrt{g_{1}} / m_{1}+\sqrt{g_{2}} / m_{2}}{|\delta g| \sqrt{g_{1} n_{10}}}}, \delta g=g_{12}+\sqrt{g_{1} g_{2}}$
- density $n_{10}=\frac{25 \pi}{1024} \frac{\delta g^{2}}{a_{1}^{3} g_{1} g_{2} f^{2}\left(m_{2} / m_{1}, 1, \sqrt{g_{2} / g_{1}}\right)}$
- time $\tau=\frac{3}{2} \frac{\sqrt{g_{1}}+\sqrt{g_{2}}}{\delta g \mid \sqrt{g_{1} n_{10}}}$

Convenient dimensionless units:

- length $\xi=\sqrt{\frac{3}{2} \frac{\sqrt{g_{1}} / m_{1}+\sqrt{g_{2}} / m_{2}}{|\delta g| \sqrt{g_{1} n_{10}}}}, \delta g=g_{12}+\sqrt{g_{1} g_{2}}$
- density $n_{10}=\frac{25 \pi}{1024} \frac{\delta g^{2}}{a_{1}^{3} g_{1} g_{2} f^{2}\left(m_{2} / m_{1}, 1, \sqrt{g_{2} / g_{1}}\right)}$
- time $\tau=\frac{3}{2} \frac{\sqrt{g_{1}}+\sqrt{g_{2}}}{\delta g \mid \sqrt{g_{1} n_{10}}}$
- and assuming that $n_{i}=\left|\phi_{i}\right|^{2}$

Convenient dimensionless units:

- length $\xi=\sqrt{\frac{3}{2} \frac{\sqrt{g_{1}} / m_{1}+\sqrt{g_{2}} / m_{2}}{|\delta g| \sqrt{g_{1} n_{10}}}}, \delta g=g_{12}+\sqrt{g_{1} g_{2}}$
- density $n_{10}=\frac{25 \pi}{1024} \frac{\delta g^{2}}{a_{1}^{3} g_{1} g_{2} f^{2}\left(m_{2} / m_{1}, 1, \sqrt{g_{2} / g_{1}}\right)}$
- time $\tau=\frac{3}{2} \frac{\sqrt{g_{1}}+\sqrt{g_{2}}}{\delta g)_{\sqrt{g_{1} n_{10}}}}$
- and assuming that $n_{i}=\left|\phi_{i}\right|^{2}$

Gross-Pitaevskii equations

$$
\begin{aligned}
-\frac{1}{2} \nabla^{2} \phi_{1}+g\left(n_{1}-\sqrt{a} n_{2}\right) \phi_{1}+\delta g n_{2} \phi_{1}+D\left(n_{1}+a n_{2}\right)^{\frac{3}{2}} \phi_{1} & =\mu_{1} \phi_{1} \\
-\frac{1}{2} \nabla^{2} \phi_{2}+g \sqrt{a}\left(\sqrt{a} n_{2}-n_{1}\right) \phi_{2}+\delta g n_{1} \phi_{2}+a D\left(n_{1}+a n_{2}\right)^{\frac{3}{2}} \phi_{2} & =\mu_{2} \phi_{2}
\end{aligned}
$$

where $g=\frac{3 a_{11}(\sqrt{a}+1)}{2|\delta a|}, \delta g=-\frac{3}{2}(\sqrt{a}+1), D=\frac{5}{2} \frac{1}{\sqrt{a}(1+\sqrt{a})^{3 / 2}}$, and $a=a_{22} / a_{11}$

Stability of the droplets: $a=2$ vs. $a=4$

Paweł Zin, MP, Mariusz Gajda, Phys. Rev. A, 103, 013312 (2021)

To evaporate or not to evaporate?

$a=2$, "real" number of atoms $N_{r} \approx N \cdot 6300$

Droplet-droplet interaction potential

To find the interaction potential we follow the approach presented in
[B. A. Malomed, Phys. Rev. E 58, 7928 (1998)]

Droplet-droplet interaction potential

To find the interaction potential we follow the approach presented in
[B. A. Malomed, Phys. Rev. E 58, 7928 (1998)]
Let's take two droplets distant by
$\vec{R}=\vec{r}_{R}-\vec{r}_{L}$.

Droplet-droplet interaction potential

To find the interaction potential we follow the approach presented in
[B. A. Malomed, Phys. Rev. E 58, 7928 (1998)]
Let's take two droplets distant by
$\vec{R}=\vec{r}_{R}-\vec{r}_{L}$.
If $R>r_{0}$

$$
\Psi_{i}(\vec{r})=\sum_{\alpha=L, R} \psi_{i}\left(\vec{r}-\vec{r}_{\alpha}\right) e^{-i \phi_{i}^{\alpha}}
$$

Droplet-droplet interaction potential

To find the interaction potential we follow the approach presented in
[B. A. Malomed, Phys. Rev. E 58, 7928 (1998)]
Let's take two droplets distant by $\vec{R}=\vec{r}_{R}-\vec{r}_{L}$.
If $R \gg r_{0}$

$$
\Psi_{i}(\vec{r})=\sum_{\alpha=L, R} \psi_{i}\left(\vec{r}-\vec{r}_{\alpha}\right) e^{-i \phi_{i}^{\alpha}}
$$

Droplet-droplet interaction potential

To find the interaction potential we follow the approach presented in [B. A. Malomed, Phys. Rev. E 58, 7928 (1998)]
Let's take two droplets distant by $\vec{R}=\vec{r}_{R}-\vec{r}_{L}$.
If $R \gg r_{0}$

$$
\Psi_{i}(\vec{r})=\sum_{\alpha=L, R} \psi_{i}\left(\vec{r}-\vec{r}_{\alpha}\right) e^{-i \phi_{i}^{\alpha}}
$$

Energy functional

$$
\begin{aligned}
& F\left[\Psi_{1}, \Psi_{2}\right]=\sqrt{\mathcal{B}_{i}} \sum_{i=1,2}\left(F_{L}+F_{R}+U_{i}\left(R, \Delta \phi_{i}\right)\right) \\
& U\left(R, \Delta \phi_{1}, \Delta \phi_{2}\right)=-\sum_{i} A_{i}^{2} \frac{4 \pi}{R} e^{-\lambda_{i} R} \cos \left(\Delta \phi_{i}\right)
\end{aligned}
$$

where $\lambda_{i}=\sqrt{-2 \mu_{i}}$

$$
\mathcal{H}=\sum_{\alpha=L, R}\left(\frac{\left(\vec{p}_{\alpha}\right)^{2}}{2 M^{\alpha}}+\frac{\left(p_{H}^{\alpha}\right)^{2}}{2 M_{H}^{\alpha}}+\frac{\left(p_{S}^{\alpha}\right)^{2}}{2 M_{S}^{\alpha}}+U+\sum_{i=1,2} \mu_{i}^{\alpha} \delta N_{i}^{\alpha}\right)
$$

[^3]$$
\mathcal{H}=\sum_{\alpha=L, R}\left(\frac{\left(\vec{p}_{\alpha}\right)^{2}}{2 M^{\alpha}}+\frac{\left(p_{H}^{\alpha}\right)^{2}}{2 M_{H}^{\alpha}}+\frac{\left(p_{S}^{\alpha}\right)^{2}}{2 M_{S}^{\alpha}}+U+\sum_{i=1,2} \mu_{i}^{\alpha} \delta N_{i}^{\alpha}\right)
$$

Kinetic momenta of hard and soft modes: $p_{S, H}^{\alpha}=\left(\sqrt{\mu_{1,1}^{\alpha}} \delta N_{1}^{\alpha} \pm \sqrt{\mu_{2,2}^{\alpha}} \delta N_{2}^{\alpha}\right) / \sqrt{2}$, where $\mu_{i, j}^{\alpha}=\frac{\partial \mu_{i}^{\alpha}}{\partial N_{j}^{\alpha}}$
Coefficients $M^{\alpha}=N_{1}^{\alpha}+N_{2}^{\alpha}$ and $M_{S, H}^{\alpha}=\left(1 \pm \mu_{1,2}^{\alpha} / \sqrt{\mu_{1,1}^{\alpha} \mu_{2,2}^{\alpha}}\right)^{-1}$ are " masses" of translational mode and two phase-modes.

[^4]$$
\mathcal{H}=\sum_{\alpha=L, R}\left(\frac{\left(\vec{p}_{\alpha}\right)^{2}}{2 M^{\alpha}}+\frac{\left(p_{H}^{\alpha}\right)^{2}}{2 M_{H}^{\alpha}}+\frac{\left(p_{S}^{\alpha}\right)^{2}}{2 M_{S}^{\alpha}}+U+\sum_{i=1,2} \mu_{i}^{\alpha} \delta N_{i}^{\alpha}\right)
$$

Kinetic momenta of hard and soft modes: $p_{S, H}^{\alpha}=\left(\sqrt{\mu_{1,1}^{\alpha}} \delta N_{1}^{\alpha} \pm \sqrt{\mu_{2,2}^{\alpha}} \delta N_{2}^{\alpha}\right) / \sqrt{2}$, where $\mu_{i, j}^{\alpha}=\frac{\partial \mu_{i}^{\alpha}}{\partial N_{j}^{\alpha}}$
Coefficients $M^{\alpha}=N_{1}^{\alpha}+N_{2}^{\alpha}$ and $M_{S, H}^{\alpha}=\left(1 \pm \mu_{1,2}^{\alpha} / \sqrt{\mu_{1,1}^{\alpha} \mu_{2,2}^{\alpha}}\right)^{-1}$ are "masses" of translational mode and two phase-modes. It can be shown ${ }^{2}$, that $1 / M_{H}^{\alpha} \sim 1$ while $1 / M_{S}^{\alpha} \propto-|\delta a| / \sqrt{a_{11} a_{22}}$.

[^5]$$
\mathcal{H}=\sum_{\alpha=L, R}\left(\frac{\left(\vec{p}_{\alpha}\right)^{2}}{2 M^{\alpha}}+\frac{\left(p_{H}^{\alpha}\right)^{2}}{2 M_{H}^{\alpha}}+\frac{\left(p_{S}^{\alpha}\right)^{2}}{2 M_{S}^{\alpha}}+U+\sum_{i=1,2} \mu_{i}^{\alpha} \delta N_{i}^{\alpha}\right)
$$

Kinetic momenta of hard and soft modes:
$p_{S, H}^{\alpha}=\left(\sqrt{\mu_{1,1}^{\alpha}} \delta N_{1}^{\alpha} \pm \sqrt{\mu_{2,2}^{\alpha}} \delta N_{2}^{\alpha}\right) / \sqrt{2}$, where $\mu_{i, j}^{\alpha}=\frac{\partial \mu_{i}^{\alpha}}{\partial N_{j}^{\alpha}}$
Coefficients $M^{\alpha}=N_{1}^{\alpha}+N_{2}^{\alpha}$ and $M_{S, H}^{\alpha}=\left(1 \pm \mu_{1,2}^{\alpha} / \sqrt{\mu_{1,1}^{\alpha} \mu_{2,2}^{\alpha}}\right)^{-1}$ are " masses" of translational mode and two phase-modes. It can be shown ${ }^{2}$, that $1 / M_{H}^{\alpha} \sim 1$ while $1 / M_{S}^{\alpha} \propto-|\delta a| / \sqrt{a_{11} a_{22}}$. Finally:

$$
\begin{aligned}
& \dot{P}=U_{1}^{\prime}(R) \cos \left(\Delta \phi_{1}\right)+U_{2}^{\prime}(R) \cos \left(\Delta \phi_{2}\right), \\
& \dot{R}=P / \mathcal{M} \\
& \delta \dot{N}_{i}^{R}=-\delta \dot{N}_{i}^{L}=U_{i}(R) \sin \left(\Delta \phi_{i}\right), \\
& \Delta \dot{\phi}_{i}=\sum_{j}\left(\mu_{i, j}^{R} \delta N_{j}^{R}-\mu_{i, j}^{L} \delta N_{j}^{L}\right)+\Delta \mu_{i},
\end{aligned}
$$

Small droplets: $\Delta \phi_{1}=\Delta \phi_{2}=0$

Small droplets: $\Delta \phi_{1}=\Delta \phi_{2}=\pi / 6$

Small droplets: $\Delta \phi_{1}=0, \Delta \phi_{2}=\pi / 6$

Small droplets: $\Delta \phi_{1}=\Delta \phi_{2}=0, N_{1}^{L}=25.4, N_{1}^{R}=20.3$

Big droplets: $\Delta \phi_{1}=\Delta \phi_{2}=\pi / 4$

Big droplets: $\Delta \phi_{1}=\pi / 4, \Delta \phi_{2}=-\pi / 4$

$\begin{array}{lllllll}0 & 50 & 100 & 150 & 200 & 250 & 300\end{array}$

Big droplets: $\Delta \phi_{1}=\Delta \phi_{2}=\pi, V=1.5$

For central collisions and $\Delta \phi_{i}=\pi$ reflection from the barrier What if the collision is not central?

$\Delta=10$ vs. $\Delta=20$

Conclusions

Work in progress...

- the dynamics of inter-acting droplets and their ultimate fate depend crucially on the relative phases of their wavefunction,
- Two droplets, which constitute identical macroscopic objects, can be made to merge, repel or evaporate only by manipulating their phases

Conclusions

Work in progress...

- the dynamics of inter-acting droplets and their ultimate fate depend crucially on the relative phases of their wavefunction,
- Two droplets, which constitute identical macroscopic objects, can be made to merge, repel or evaporate only by manipulating their phases they are really quantum objects
- Our Josephson-junction equations do not have any free parameters, everything is from the solution of stationary GP equations,

Thank you for your

attention...

Thank you for your attention. . Any questions?

How to get a droplet? Some theoretical background

Within mean-field approximation

$$
\begin{array}{r}
E\left[\psi, \psi^{\star}\right]=\frac{\hbar^{2}}{2 m} \int|\nabla \psi(\vec{r})|^{2} d^{3} r+\frac{1}{2} \int V_{\text {int }}\left(\vec{r}-\vec{r}^{\prime}\right)|\psi(\vec{r})|^{2}\left|\psi\left(\vec{r}^{\prime}\right)\right|^{2} d^{3} r d^{3} r^{\prime}+ \\
+\int V_{\text {trap }}(\vec{r})|\psi(\vec{r})|^{2} d^{3} r
\end{array}
$$

For mixture of two Bose gases with contact interaction
$V_{i n t}^{(i)}\left(\vec{r}-\vec{r}^{\prime}\right)=g_{i} \cdot \delta\left(\vec{r}-\vec{r}^{\prime}\right):$

$$
\begin{array}{r}
E\left[\psi_{1}, \psi_{2}\right]=\frac{\hbar^{2}}{2 m_{1}} \int\left|\vec{\nabla} \psi_{1}\right|^{2} d^{3} r+\frac{\hbar^{2}}{2 m_{2}} \int\left|\vec{\nabla} \psi_{2}\right|^{2} d^{3} r+ \\
+\frac{1}{2} \int\left(g_{1}\left|\psi_{1}\right|^{4}+g_{2}\left|\psi_{2}\right|^{4}\right) d^{3} r+g_{12} \int\left|\psi_{1}\right|^{2}\left|\psi_{2}\right|^{2} d^{3} r+ \\
+\int V_{\text {trap }}(\vec{r})\left(\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}\right) d^{3} r
\end{array}
$$

where

$$
g_{i}=\frac{4 \pi \hbar^{2} a_{i}}{m_{i}}, g_{12}=\frac{2 \pi \hbar^{2} a_{12}}{m_{r}}
$$

Stability of the droplets

The droplet is stable if:

$$
d E=\frac{\partial E}{\partial N_{1}} d N_{1}+\frac{\partial E}{\partial N_{2}} d N_{2}=\mu_{1} d N_{1}+\mu_{2} d N_{2}>0
$$

Stability of the droplets

The droplet is stable if:

$$
d E=\frac{\partial E}{\partial N_{1}} d N_{1}+\frac{\partial E}{\partial N_{2}} d N_{2}=\mu_{1} d N_{1}+\mu_{2} d N_{2}>0
$$

In a typical experimental situation the number of particles can only decrease $d N_{1} \leqslant 0$, so $\mu_{1}<0$ and $\mu_{2}<0$.

Stability of the droplets

The droplet is stable if:

$$
d E=\frac{\partial E}{\partial N_{1}} d N_{1}+\frac{\partial E}{\partial N_{2}} d N_{2}=\mu_{1} d N_{1}+\mu_{2} d N_{2}>0
$$

In a typical experimental situation the number of particles can only decrease $d N_{1} \leqslant 0$, so $\mu_{1}<0$ and $\mu_{2}<0$.
Moreover, for uniform droplet (without a surface) we get an additional constraint: a droplet will stabilize its volume if internal pressure vanishes:

$$
p=-\frac{\partial E}{\partial V}=\mu_{1} n_{1}+\mu_{2} n_{2}-\epsilon\left(n_{1}, n_{2}\right)=0
$$

Droplet-droplet interaction potential

- The potential depends not only on distance (of course)...

Droplet-droplet interaction potential

- The potential depends not only on distance (of course)...
- ... but also on the phase difference between the droplets
- and may be attractive or repulsive...

Droplet-droplet interaction potential

- The potential depends not only on distance (of course)...
- ... but also on the phase difference between the droplets
- and may be attractive or repulsive... or much more interesting if $\Delta \phi_{1} \neq \Delta \phi_{2}$

Droplet-droplet interaction potential

- The potential depends not only on distance (of course)...
- ... but also on the phase difference between the droplets
- and may be attractive or repulsive. .. or much more interesting if $\Delta \phi_{1} \neq \Delta \phi_{2}$ phase matters!
- it may be generalized to the situation in which there is a small population imbalance between the droplets:

$$
U\left(R, \Delta \phi_{1}, \Delta \phi_{2}\right)=-\sum_{i} A_{i}^{(L)} A_{i}^{(R)} \frac{4 \pi}{R} e^{-\left(\lambda_{i}^{(L)}+\lambda_{i}^{(R)}\right) R / 2} \cos \left(\Delta \phi_{i}\right)
$$

Josephson junction-like equation

- The exponential density tails overlap forming a weak link

[^6]
Josephson junction-like equation

- The exponential density tails overlap forming a weak link
- The phase difference between the left and right parts of the two wavefunctions will trigger a coherent flow of atoms between the droplets

[^7]
Josephson junction-like equation

- The exponential density tails overlap forming a weak link
- The phase difference between the left and right parts of the two wavefunctions will trigger a coherent flow of atoms between the droplets
- These are the Josephson-junction-like oscillations of particle number and relative phase

[^8]
Josephson junction-like equation

- The exponential density tails overlap forming a weak link
- The phase difference between the left and right parts of the two wavefunctions will trigger a coherent flow of atoms between the droplets
- These are the Josephson-junction-like oscillations of particle number and relative phase
- Instead of solving the full set of GP equations, the oscillations may be described adequately by only considering the zero-energy or Goldstone modes ${ }^{3,4}$

[^9]
[^0]: ${ }^{1}$ D. S. Petrov PRL 115, 155302 (2015)

[^1]: ${ }^{1}$ D. S. Petrov PRL 115, 155302 (2015)

[^2]: ${ }^{1}$ D. S. Petrov PRL 115, 155302 (2015)

[^3]: ${ }^{2}$ P.Zin, MP, M. Gajda, NJP 23, 033022 (2021)

[^4]: ${ }^{2}$ P. Zin, MP, M. Gajda, NJP 23, 033022 (2021)

[^5]: ${ }^{2}$ P. Zin, MP, M. Gajda, NJP 23, 033022 (2021)

[^6]: ${ }^{3}$ J. Dziarmaga, Phys. Rev. A 70, 063616 (2004)
 ${ }^{4}$ P. Zin, MP, and M. Gajda, New J. Phys. 23, 033022 (2021)

[^7]: ${ }^{3}$ J. Dziarmaga, Phys. Rev. A 70, 063616 (2004)
 ${ }^{4}$ P. Zin, MP, and M. Gajda, New J. Phys. 23, 033022 (2021)

[^8]: ${ }^{3}$ J. Dziarmaga, Phys. Rev. A 70, 063616 (2004)
 ${ }^{4}$ P. Zin, MP, and M. Gajda, New J. Phys. 23, 033022 (2021)

[^9]: ${ }^{3}$ J. Dziarmaga, Phys. Rev. A 70, 063616 (2004)
 ${ }^{4}$ P. Zin, MP, and M. Gajda, New J. Phys. 23, 033022 (2021)

