Quantum droplets. New, interesting state of matter

Maciej Pylak

National Centre For Nuclear Research ul. Pasteura 7, 02-093 Warsaw, Poland

June 26, 2023

A small correction with huge consequences!

Energy density for Bose-Bose mixture:

$$\epsilon \left[\psi_{1},\psi_{2}\right] = \frac{\hbar^{2}}{2m_{1}} |\vec{\nabla}\psi_{1}|^{2} + \frac{\hbar^{2}}{2m_{2}} |\vec{\nabla}\psi_{2}|^{2} + V_{trap}(\vec{r})(|\psi_{1}|^{2} + |\psi_{2}|^{2}) + \frac{1}{2}g_{1}|\psi_{1}|^{4} + \frac{1}{2}g_{2}|\psi_{2}|^{4} + g_{12}|\psi_{1}|^{2}|\psi_{2}|^{2} + \epsilon_{LHY}[\psi_{1},\psi_{2}]$$

The addition of the repulsive Lee-Huang-Young term stabilizes our mixture, since it competes with the attractive inter-species interaction.¹

¹D. S. Petrov PRL 115, 155302 (2015)

A small correction with huge consequences!

Energy density for Bose-Bose mixture:

$$\epsilon \left[\psi_{1},\psi_{2}\right] = \frac{\hbar^{2}}{2m_{1}} |\vec{\nabla}\psi_{1}|^{2} + \frac{\hbar^{2}}{2m_{2}} |\vec{\nabla}\psi_{2}|^{2} + V_{trap}(\vec{r})(|\psi_{1}|^{2} + |\psi_{2}|^{2}) + \frac{1}{2}g_{1}|\psi_{1}|^{4} + \frac{1}{2}g_{2}|\psi_{2}|^{4} + g_{12}|\psi_{1}|^{2}|\psi_{2}|^{2} + \epsilon_{LHY}[\psi_{1},\psi_{2}]$$

The addition of the repulsive Lee-Huang-Young term stabilizes our mixture, since it competes with the attractive inter-species interaction.¹

$$\epsilon_{LHY} = \frac{8}{15\pi^2\hbar^3} m_1^{3/2} (g_1 n_1)^{5/2} f\left(\frac{m_2}{m_1}, \frac{g_{12}^2}{g_1 g_2}, \frac{g_2 n_2}{g_1 n_1}\right)$$

¹D. S. Petrov PRL 115, 155302 (2015)

Energy density for Bose-Bose mixture:

$$\epsilon \left[\psi_{1},\psi_{2}\right] = \frac{\hbar^{2}}{2m_{1}} |\vec{\nabla}\psi_{1}|^{2} + \frac{\hbar^{2}}{2m_{2}} |\vec{\nabla}\psi_{2}|^{2} + V_{trap}(\vec{r})(|\psi_{1}|^{2} + |\psi_{2}|^{2}) + \frac{1}{2}g_{1}|\psi_{1}|^{4} + \frac{1}{2}g_{2}|\psi_{2}|^{4} + g_{12}|\psi_{1}|^{2}|\psi_{2}|^{2} + \epsilon_{LHY}[\psi_{1},\psi_{2}]$$

The addition of the repulsive Lee-Huang-Young term stabilizes our mixture, since it competes with the attractive inter-species interaction. 1

$$\epsilon_{LHY} = \frac{8}{15\pi^2\hbar^3} m_1^{3/2} (g_1 n_1)^{5/2} f\left(\frac{m_2}{m_1}, \frac{g_{12}^2}{g_1 g_2}, \frac{g_2 n_2}{g_1 n_1}\right)$$

for $m_1 = m_2 = m$ function f is analytical $f(1, x, y) = \frac{1}{4\sqrt{2}} \sum_{\pm} \left(1 + y \pm \sqrt{(1 - y)^2 + 4xy}\right)^{5/2}$

¹D. S. Petrov PRL 115, 155302 (2015)

How to get a droplet?

We need to find a balance between intraspecies repulsion $(g_i > 0)$ and interaction g_{12} between different atoms!

Courtesy of F. Gampel

Convenient dimensionless units:

• length
$$\xi = \sqrt{\frac{3}{2} \frac{\sqrt{g_1}/m_1 + \sqrt{g_2}/m_2}{|\delta g|\sqrt{g_1}n_{10}}}, \ \delta g = g_{12} + \sqrt{g_1g_2}$$

• density $n_{10} = \frac{25\pi}{1024} \frac{\delta g^2}{a_1^3 g_1 g_2 f^2(m_2/m_1, 1, \sqrt{g_2/g_1})}$
• time $\tau = \frac{3}{2} \frac{\sqrt{g_1} + \sqrt{g_2}}{|\delta g|\sqrt{g_1}n_{10}}$

三日 のへで

メロト メロト メヨト メヨ

Convenient dimensionless units:

• length
$$\xi = \sqrt{\frac{3}{2} \frac{\sqrt{g_1}/m_1 + \sqrt{g_2}/m_2}{|\delta g| \sqrt{g_1} n_{10}}}$$
, $\delta g = g_{12} + \sqrt{g_1 g_2}$
• density $n_{10} = \frac{25\pi}{1024} \frac{\delta g^2}{a_1^3 g_1 g_2 f^2(m_2/m_1, 1, \sqrt{g_2/g_1})}$
• time $\tau = \frac{3}{2} \frac{\sqrt{g_1} + \sqrt{g_2}}{|\delta g| \sqrt{g_1} n_{10}}$

• and assuming that $n_i = |\phi_i|^2$

1= 9QC

Convenient dimensionless units:

• length
$$\xi = \sqrt{\frac{3}{2} \frac{\sqrt{g_1}/m_1 + \sqrt{g_2}/m_2}{|\delta g|\sqrt{g_1}n_{10}}}$$
, $\delta g = g_{12} + \sqrt{g_1g_2}$
• density $n_{10} = \frac{25\pi}{1024} \frac{\delta g^2}{a_1^3 g_1 g_2 f^2(m_2/m_1, 1, \sqrt{g_2/g_1})}$
• time $\tau = \frac{3}{2} \frac{\sqrt{g_1} + \sqrt{g_2}}{|\delta g|\sqrt{g_1}n_{10}}$
• and assuming that $n_i = |\phi_i|^2$

Gross-Pitaevskii equations

$$-\frac{1}{2}\nabla^{2}\phi_{1} + g(n_{1} - \sqrt{a}n_{2})\phi_{1} + \delta gn_{2}\phi_{1} + D(n_{1} + an_{2})^{\frac{3}{2}}\phi_{1} = \mu_{1}\phi_{1}$$
$$-\frac{1}{2}\nabla^{2}\phi_{2} + g\sqrt{a}(\sqrt{a}n_{2} - n_{1})\phi_{2} + \delta gn_{1}\phi_{2} + aD(n_{1} + an_{2})^{\frac{3}{2}}\phi_{2} = \mu_{2}\phi_{2}$$

where $g = \frac{3a_{11}(\sqrt{a}+1)}{2|\delta a|}$, $\delta g = -\frac{3}{2}(\sqrt{a}+1)$, $D = \frac{5}{2}\frac{1}{\sqrt{a}(1+\sqrt{a})^{3/2}}$, and $a = a_{22}/a_{11}$

maciej.pylak@ncbj.gov.pl (NCBJ)

Stability of the droplets: a = 2 vs. a = 4

Paweł Zin, MP, Mariusz Gajda, Phys. Rev. A, 103, 013312 (2021)

To evaporate or not to evaporate?

a = 2, "real" number of atoms $N_r \approx N \cdot 6300$

To find the interaction potential we follow the approach presented in [B. A. Malomed, Phys. Rev. E 58, 7928 (1998)]

To find the interaction potential we follow the approach presented in [B. A. Malomed, Phys. Rev. E 58, 7928 (1998)] Let's take two droplets distant by

 $\vec{R}=\vec{r}_R-\vec{r}_L.$

To find the interaction potential we follow the approach presented in [B. A. Malomed, Phys. Rev. E 58, 7928 (1998)] Let's take two droplets distant by $\vec{R} = \vec{r_R} - \vec{r_L}$. If $R \gg r_0$

$$\Psi_i(\vec{r}) = \sum_{\alpha=L,R} \psi_i(\vec{r} - \vec{r}_\alpha) e^{-i\phi_i^\alpha}$$

To find the interaction potential we follow the approach presented in [B. A. Malomed, Phys. Rev. E 58, 7928 (1998)]

Let's take two droplets distant by $\vec{R} = \vec{r_R} - \vec{r_L}$. If $R \gg r_0$

$$\Psi_i(\vec{r}) = \sum_{lpha=L,R} \psi_i(\vec{r}-\vec{r}_lpha) e^{-i\phi_i^lpha}$$

To find the interaction potential we follow the approach presented in [B. A. Malomed, Phys. Rev. E 58, 7928 (1998)]

Let's take two droplets distant by $\vec{R} = \vec{r}_R - \vec{r}_L.$ If $R \gg r_0$

$$\Psi_i(\vec{r}) = \sum_{\alpha=L,R} \psi_i(\vec{r}-\vec{r}_{\alpha})e^{-i\phi_i^{lpha}}$$

Energy functional

$$F[\Psi_1, \Psi_2] = \sqrt{\mathcal{B}_i} \sum_{i=1,2} (F_L + F_R + U_i(R, \Delta \phi_i))$$
$$U(R, \Delta \phi_1, \Delta \phi_2) = -\sum_i A_i^2 \frac{4\pi}{R} e^{-\lambda_i R} \cos(\Delta \phi_i)$$

where $\lambda_i = \sqrt{-2\mu_i}$

$$\mathcal{H} = \sum_{\alpha = L, R} \left(\frac{(\vec{p}_{\alpha})^2}{2M^{\alpha}} + \frac{(p_{H}^{\alpha})^2}{2M_{H}^{\alpha}} + \frac{(p_{S}^{\alpha})^2}{2M_{S}^{\alpha}} + U + \sum_{i=1,2} \mu_{i}^{\alpha} \delta N_{i}^{\alpha} \right)$$

²P.Zin, MP, M. Gajda, NJP 23, 033022 (2021)

maciej.pylak@ncbj.gov.pl (NCBJ)

Quantum droplets

June 26, 2023 8 / 21

= 990

$$\mathcal{H} = \sum_{\alpha = L, R} \left(\frac{(\vec{p}_{\alpha})^2}{2M^{\alpha}} + \frac{(p_{H}^{\alpha})^2}{2M_{H}^{\alpha}} + \frac{(p_{S}^{\alpha})^2}{2M_{S}^{\alpha}} + U + \sum_{i=1,2} \mu_{i}^{\alpha} \delta N_{i}^{\alpha} \right)$$

Kinetic momenta of hard and soft modes: $p_{S,H}^{\alpha} = (\sqrt{\mu_{1,1}^{\alpha}} \delta N_1^{\alpha} \pm \sqrt{\mu_{2,2}^{\alpha}} \delta N_2^{\alpha})/\sqrt{2}$, where $\mu_{i,j}^{\alpha} = \frac{\partial \mu_i^{\alpha}}{\partial N_j^{\alpha}}$ Coefficients $M^{\alpha} = N_1^{\alpha} + N_2^{\alpha}$ and $M_{S,H}^{\alpha} = \left(1 \pm \mu_{1,2}^{\alpha}/\sqrt{\mu_{1,1}^{\alpha}\mu_{2,2}^{\alpha}}\right)^{-1}$ are "masses" of translational mode and two phase-modes.

²P.Zin, MP, M. Gajda, NJP 23, 033022 (2021)

$$\mathcal{H} = \sum_{\alpha = L,R} \left(\frac{(\vec{p}_{\alpha})^2}{2M^{\alpha}} + \frac{(p_{H}^{\alpha})^2}{2M_{H}^{\alpha}} + \frac{(p_{S}^{\alpha})^2}{2M_{S}^{\alpha}} + U + \sum_{i=1,2} \mu_{i}^{\alpha} \delta N_{i}^{\alpha} \right)$$

Kinetic momenta of hard and soft modes: $p_{S,H}^{\alpha} = (\sqrt{\mu_{1,1}^{\alpha}} \delta N_{1}^{\alpha} \pm \sqrt{\mu_{2,2}^{\alpha}} \delta N_{2}^{\alpha}) / \sqrt{2}, \text{ where } \mu_{i,j}^{\alpha} = \frac{\partial \mu_{i}^{\alpha}}{\partial N_{j}^{\alpha}}$ Coefficients $M^{\alpha} = N_{1}^{\alpha} + N_{2}^{\alpha}$ and $M_{S,H}^{\alpha} = \left(1 \pm \mu_{1,2}^{\alpha} / \sqrt{\mu_{1,1}^{\alpha} \mu_{2,2}^{\alpha}}\right)^{-1}$ are "masses" of translational mode and two phase-modes. It can be shown², that $1/M_{H}^{\alpha} \sim 1$ while $1/M_{S}^{\alpha} \propto -|\delta a| / \sqrt{a_{11}a_{22}}.$

²P.Zin, MP, M. Gajda, NJP 23, 033022 (2021)

$$\mathcal{H} = \sum_{\alpha = L,R} \left(\frac{(\vec{p}_{\alpha})^2}{2M^{\alpha}} + \frac{(p_{H}^{\alpha})^2}{2M_{H}^{\alpha}} + \frac{(p_{S}^{\alpha})^2}{2M_{S}^{\alpha}} + U + \sum_{i=1,2} \mu_{i}^{\alpha} \delta N_{i}^{\alpha} \right)$$

Kinetic momenta of hard and soft modes: $p_{S,H}^{\alpha} = (\sqrt{\mu_{1,1}^{\alpha}} \delta N_{1}^{\alpha} \pm \sqrt{\mu_{2,2}^{\alpha}} \delta N_{2}^{\alpha}) / \sqrt{2}, \text{ where } \mu_{i,j}^{\alpha} = \frac{\partial \mu_{i}^{\alpha}}{\partial N_{j}^{\alpha}}$ Coefficients $M^{\alpha} = N_{1}^{\alpha} + N_{2}^{\alpha}$ and $M_{S,H}^{\alpha} = \left(1 \pm \mu_{1,2}^{\alpha} / \sqrt{\mu_{1,1}^{\alpha} \mu_{2,2}^{\alpha}}\right)^{-1}$ are "masses" of translational mode and two phase-modes. It can be shown², that $1/M_{H}^{\alpha} \sim 1$ while $1/M_{S}^{\alpha} \propto -|\delta a| / \sqrt{a_{11}a_{22}}$. Finally:

$$\begin{split} \dot{P} &= U_1'(R)\cos(\Delta\phi_1) + U_2'(R)\cos(\Delta\phi_2) \\ \dot{R} &= P/\mathcal{M}, \\ \delta \dot{N}_i^R &= -\delta \dot{N}_i^L = U_i(R)\sin(\Delta\phi_i), \\ \Delta \dot{\phi}_i &= \sum_j \left(\mu_{i,j}^R \delta N_j^R - \mu_{i,j}^L \delta N_j^L \right) + \Delta \mu_i, \end{split}$$

²P.Zin, MP, M. Gajda, NJP 23, 033022 (2021)

maciej.pylak@ncbj.gov.pl (NCBJ)

Quantum droplets

Small droplets: $\Delta \phi_1 = \Delta \phi_2 = 0$

Small droplets: $\Delta \phi_1 = \Delta \phi_2 = \pi/6$

Small droplets: $\Delta \phi_1 = 0$, $\Delta \phi_2 = \pi/6$

= 990

Small droplets:
$$\Delta \phi_1 = \Delta \phi_2 = 0$$
, $N_1^L = 25.4$, $N_1^R = 20.3$

Big droplets: $\Delta \phi_1 = \Delta \phi_2 = \pi/4$

Big droplets: $\Delta \phi_1 = \pi/4$, $\Delta \phi_2 = -\pi/4$

Big droplets: $\Delta \phi_1 = \Delta \phi_2 = \pi$, V = 1.5

For central collisions and $\Delta \phi_i = \pi$ reflection from the barrier What if the collision is not central?

 $\Delta = 10$ vs. $\Delta = 20$

Work in progress...

- the dynamics of inter-acting droplets and their ultimate fate depend crucially on the relative phases of their wavefunction,
- Two droplets, which constitute identical macroscopic objects, can be made to merge, repel or evaporate only by manipulating their phases

Work in progress...

- the dynamics of inter-acting droplets and their ultimate fate depend crucially on the relative phases of their wavefunction,
- Two droplets, which constitute identical macroscopic objects, can be made to merge, repel or evaporate only by manipulating their phases they are really quantum objects
- Our Josephson-junction equations do not have any free parameters, everything is from the solution of stationary GP equations,

Thank you for your attention...

Thank you for your attention... Any questions?

How to get a droplet? Some theoretical background

Within mean-field approximation

$$E[\psi,\psi^{\star}] = \frac{\hbar^2}{2m} \int |\nabla\psi(\vec{r})|^2 d^3r + \frac{1}{2} \int V_{int}(\vec{r}-\vec{r}')|\psi(\vec{r})|^2 |\psi(\vec{r}')|^2 d^3r d^3r' + \int V_{trap}(\vec{r})|\psi(\vec{r})|^2 d^3r d^3r'$$

For mixture of two Bose gases with contact interaction $V_{int}^{(i)}(\vec{r} - \vec{r}') = g_i \cdot \delta(\vec{r} - \vec{r}'):$ $E[\psi_1, \psi_2] = \frac{\hbar^2}{2m_1} \int |\vec{\nabla}\psi_1|^2 d^3r + \frac{\hbar^2}{2m_2} \int |\vec{\nabla}\psi_2|^2 d^3r + \frac{1}{2} \int (g_1|\psi_1|^4 + g_2|\psi_2|^4) d^3r + g_{12} \int |\psi_1|^2|\psi_2|^2 d^3r + \int V_{trap}(\vec{r})(|\psi_1|^2 + |\psi_2|^2) d^3r$

where

$$g_i = rac{4\pi\hbar^2 a_i}{m_i}, \; g_{12} = rac{2\pi\hbar^2 a_{12}}{m_{r+1}}$$

The droplet is stable if:

$$dE = \frac{\partial E}{\partial N_1} dN_1 + \frac{\partial E}{\partial N_2} dN_2 = \mu_1 dN_1 + \mu_2 dN_2 > 0$$

-

The droplet is stable if:

$$dE = \frac{\partial E}{\partial N_1} dN_1 + \frac{\partial E}{\partial N_2} dN_2 = \mu_1 dN_1 + \mu_2 dN_2 > 0$$

In a typical experimental situation the number of particles can only decrease $dN_1 \leq 0$, so $\mu_1 < 0$ and $\mu_2 < 0$.

The droplet is stable if:

$$dE = \frac{\partial E}{\partial N_1} dN_1 + \frac{\partial E}{\partial N_2} dN_2 = \mu_1 dN_1 + \mu_2 dN_2 > 0$$

In a typical experimental situation the number of particles can only decrease $dN_1 \le 0$, so $\mu_1 < 0$ and $\mu_2 < 0$.

Moreover, for uniform droplet (without a surface) we get an additional constraint: a droplet will stabilize its volume if internal pressure vanishes:

$$p = -\frac{\partial E}{\partial V} = \mu_1 n_1 + \mu_2 n_2 - \epsilon(n_1, n_2) = 0$$

• The potential depends not only on distance (of course)...

- The potential depends not only on distance (of course)...
- ... but also on the phase difference between the droplets
- and may be attractive or repulsive...

- The potential depends not only on distance (of course)...
- ... but also on the phase difference between the droplets
- $\bullet\,$ and may be attractive or repulsive. . . or much more interesting if $\Delta\phi_1\neq\Delta\phi_2$

- The potential depends not only on distance (of course)...
- ... but also on the phase difference between the droplets
- and may be attractive or repulsive. . . or much more interesting if $\Delta \phi_1 \neq \Delta \phi_2$ phase matters!
- it may be generalized to the situation in which there is a small population imbalance between the droplets:

$$U(R,\Delta\phi_1,\Delta\phi_2) = -\sum_i A_i^{(L)} A_i^{(R)} \frac{4\pi}{R} e^{-(\lambda_i^{(L)} + \lambda_i^{(R)})R/2} \cos{(\Delta\phi_i)}$$

• The exponential density tails overlap forming a weak link

³J. Dziarmaga, Phys. Rev. A 70, 063616 (2004)

⁴P. Zin, MP, and M. Gajda, New J. Phys. 23, 033022 (2021) - (2021)

maciej.pylak@ncbj.gov.pl (NCBJ)

Quantum droplets

= 200

- The exponential density tails overlap forming a weak link
- The phase difference between the left and right parts of the two wavefunctions will trigger a coherent flow of atoms between the droplets

³J. Dziarmaga, Phys. Rev. A 70, 063616 (2004)

⁴P. Zin, MP, and M. Gajda, New J. Phys. 23, 033022 (2021) = + < = + < =

maciej.pylak@ncbj.gov.pl (NCBJ)

Quantum droplets

- The exponential density tails overlap forming a weak link
- The phase difference between the left and right parts of the two wavefunctions will trigger a coherent flow of atoms between the droplets
- These are the Josephson-junction-like oscillations of particle number and relative phase

³J. Dziarmaga, Phys. Rev. A 70, 063616 (2004)

⁴P. Zin, MP, and M. Gajda, New J. Phys. 23, 033022 (2021) - (2021)

- The exponential density tails overlap forming a weak link
- The phase difference between the left and right parts of the two wavefunctions will trigger a coherent flow of atoms between the droplets
- These are the Josephson-junction-like oscillations of particle number and relative phase
- Instead of solving the full set of GP equations, the oscillations may be described adequately by only considering the zero-energy or Goldstone modes^{3,4}

- ³J. Dziarmaga, Phys. Rev. A 70, 063616 (2004)
- ⁴P. Zin, MP, and M. Gajda, New J. Phys. 23, 033022 (2021) → < = > < = >