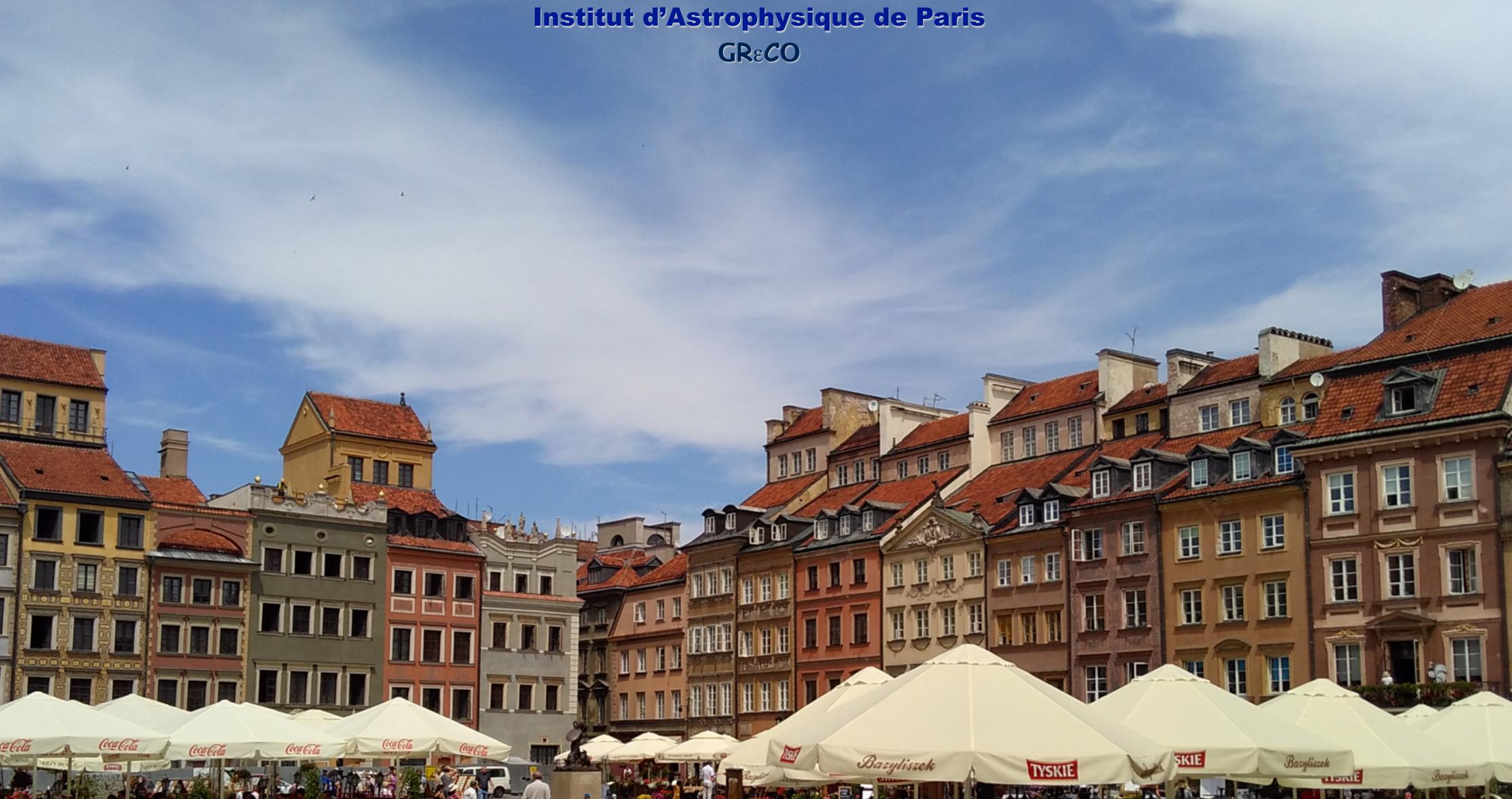


The trajectory approach of quantum mechanics

Patrick Peter



Motivations: (quantum) cosmology

Homogeneous & Isotropic metric (FLRW):

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - \mathcal{K}r^{2}} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\phi^{2} \right) \right]$$
Spatial curvature

Hubble rate
$$H \equiv \frac{\dot{a}}{a} = \frac{\mathrm{d}a}{a\,\mathrm{d}t}$$

<u>Matter component: perfect fluid:</u> $T_{\mu\nu} = pg_{\mu\nu} + (\rho + p)u_{\mu}u_{\nu}$

$$\begin{cases}
 w = 0 & \text{dust} \\
 w = \frac{1}{3} & \text{radiation}
 \end{cases}$$

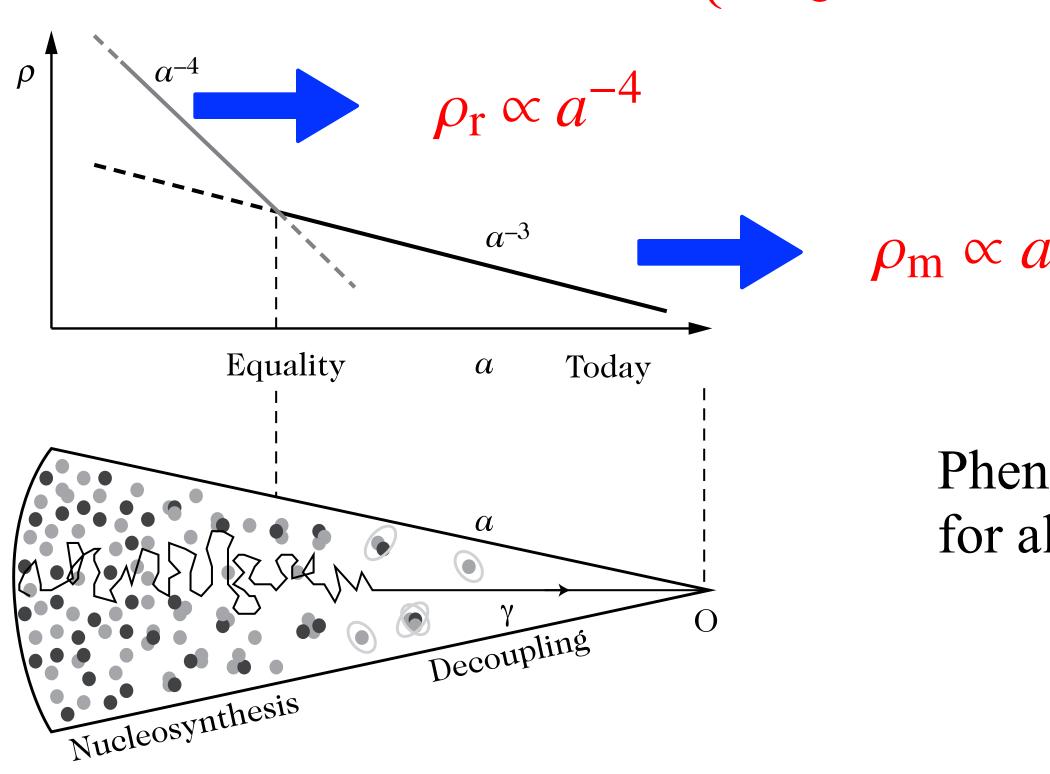
$$+ cosmological constant = Einstein equation: \qquad H^2 + \frac{\mathcal{K}}{a^2} = \frac{1}{3} \left(8\pi G_{\text{N}} \rho + \Lambda \right)$$

$$\frac{\ddot{a}}{a} = \frac{1}{3} \left[\Lambda - 4\pi G_{\text{N}} \left(\rho + 3p \right) \right]$$

Particular solution: matter & radiation

Integrate conservation equation:

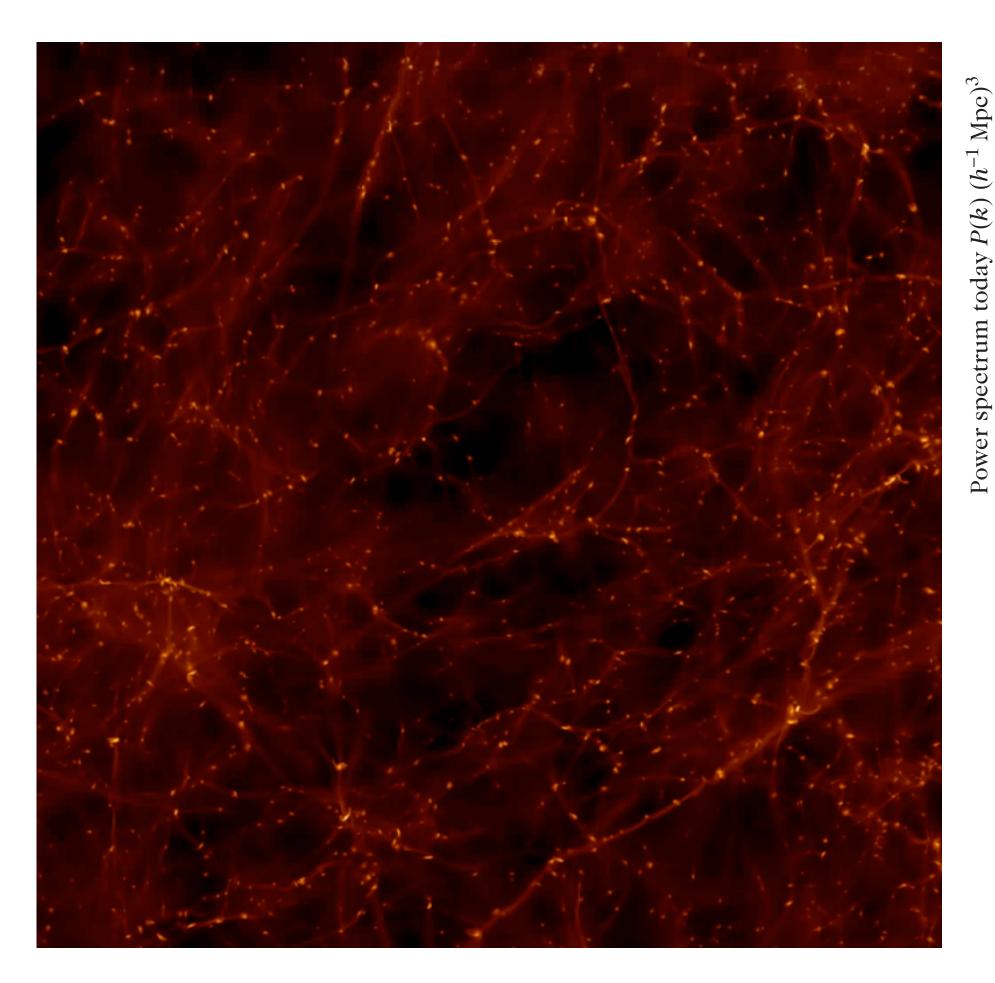
$$\rho[a(t)] = \rho_{\text{ini}} \exp\left\{-3 \int \left[1 + w(a)\right] d\ln a\right\} = \rho_{\text{ini}} \left(\frac{a}{a_{\text{ini}}}\right)^{-3(1+w)}$$

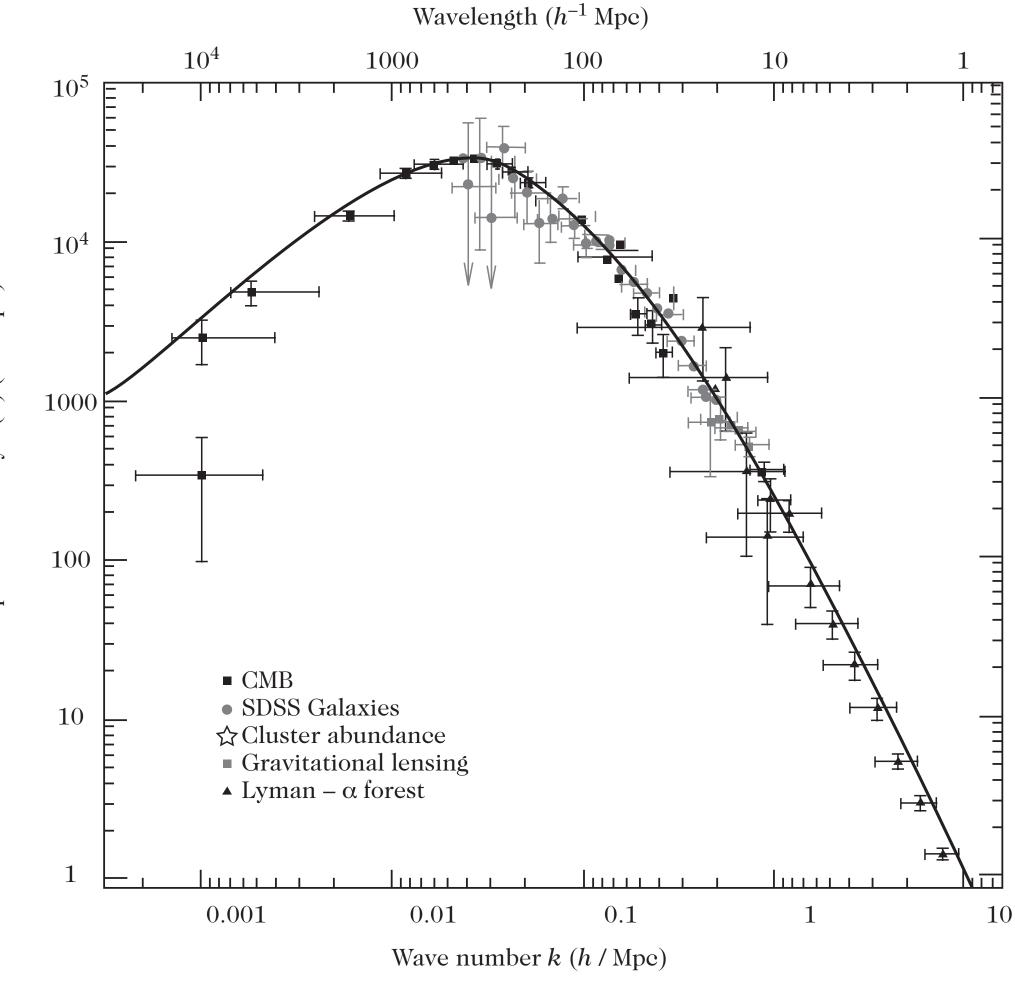


$$\rho_{\rm m} \propto a^{-3}$$

Phenomenologically valid description for almost 14 Gyrs!!!

Numerical simulation for large scale structure formation

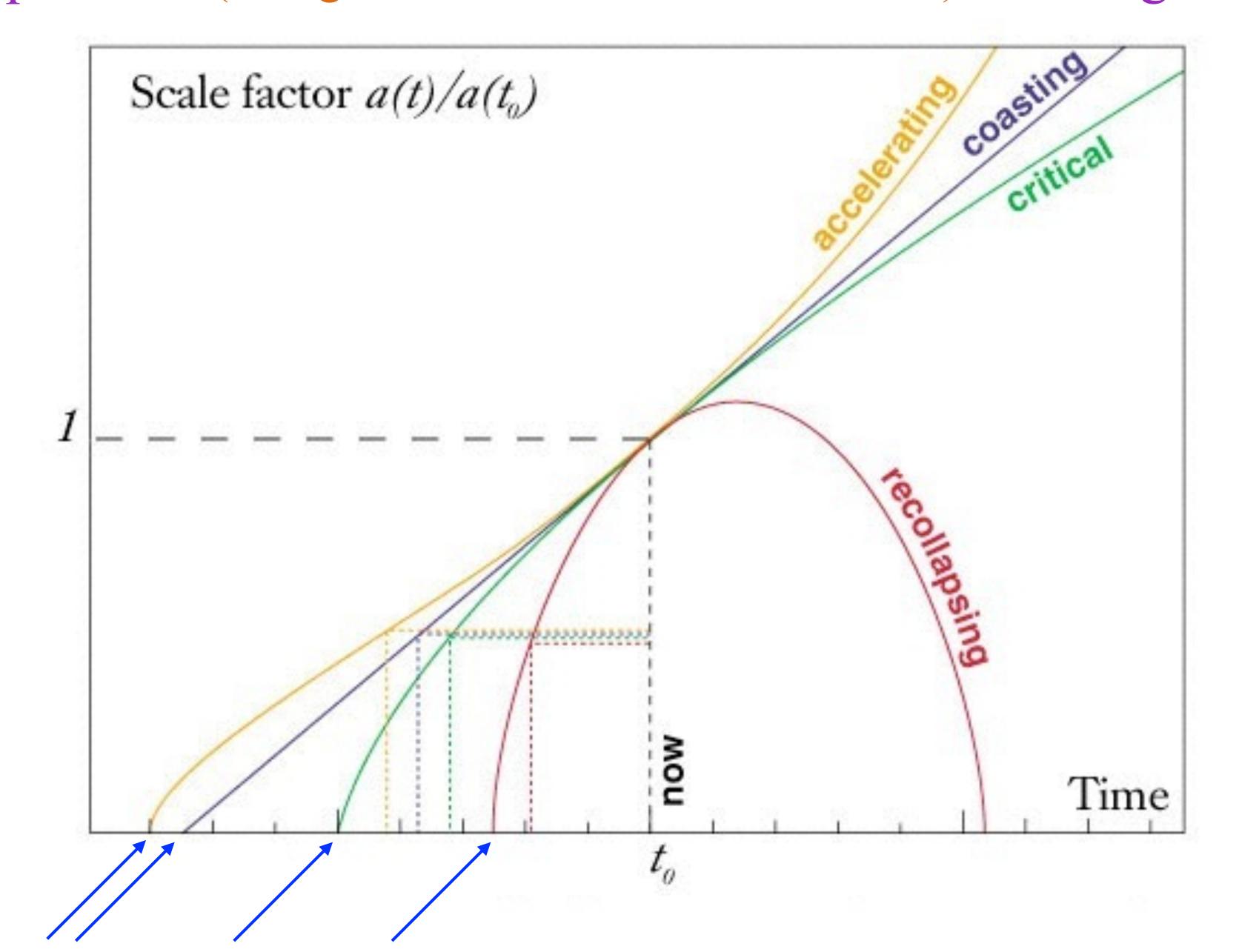




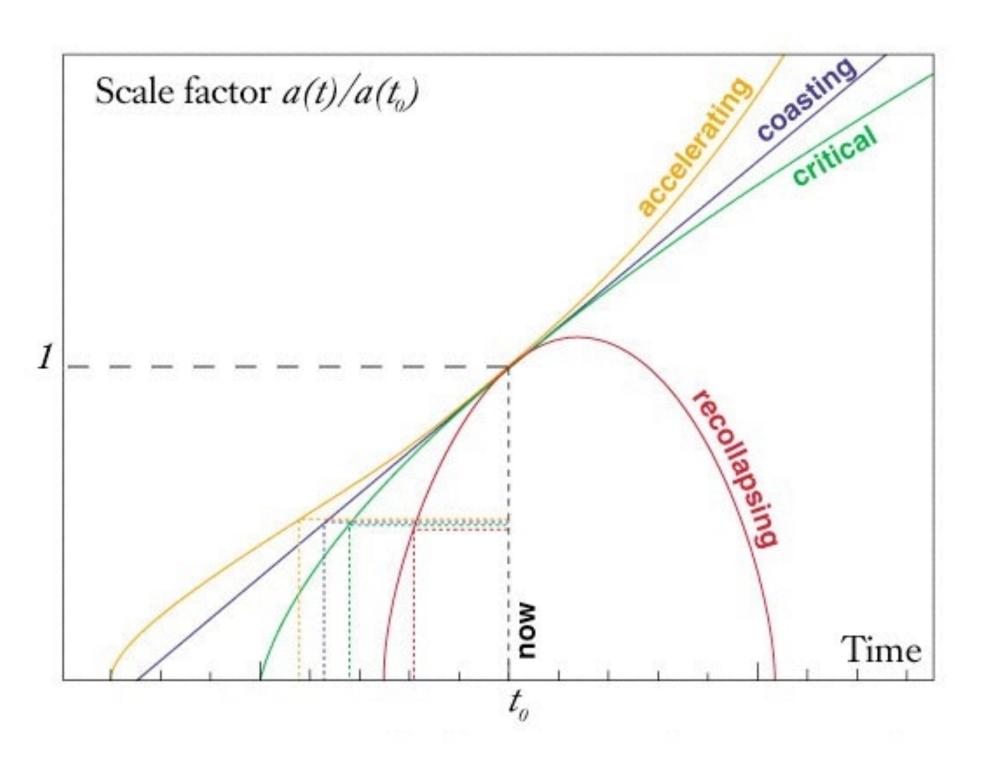
Comparison with observational data

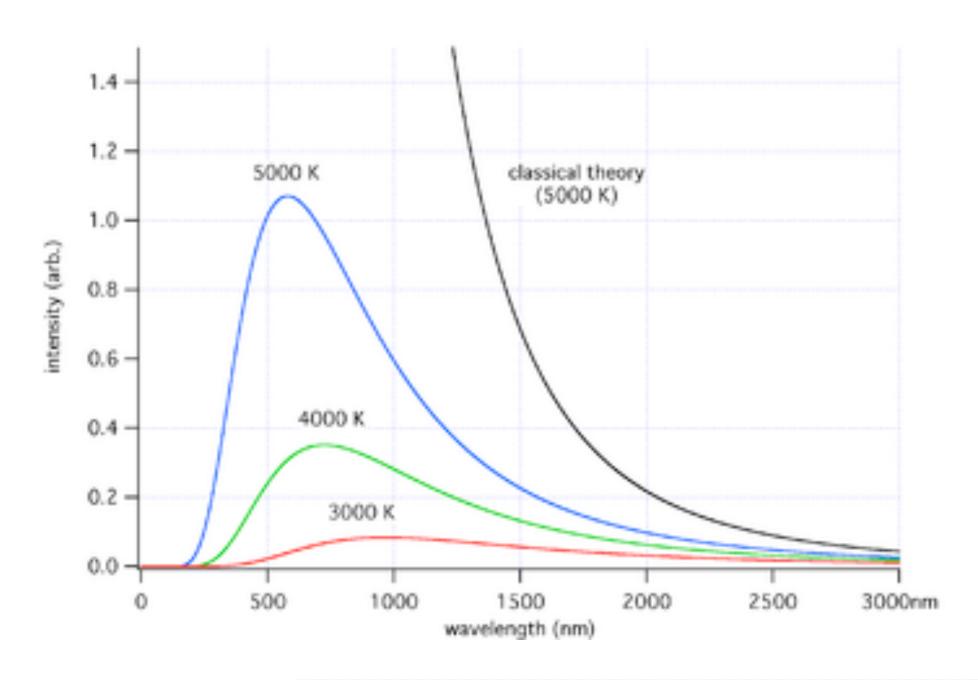
Numerical simulations: C. Pichon @ IAP

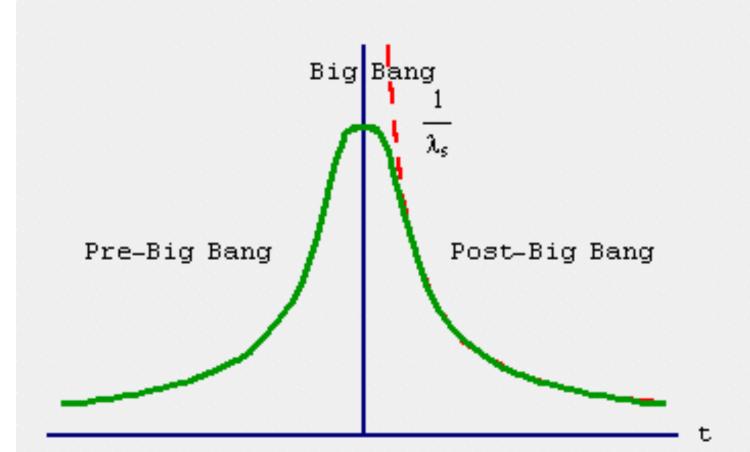
A central problem (though not often formulated thus...): the singularity

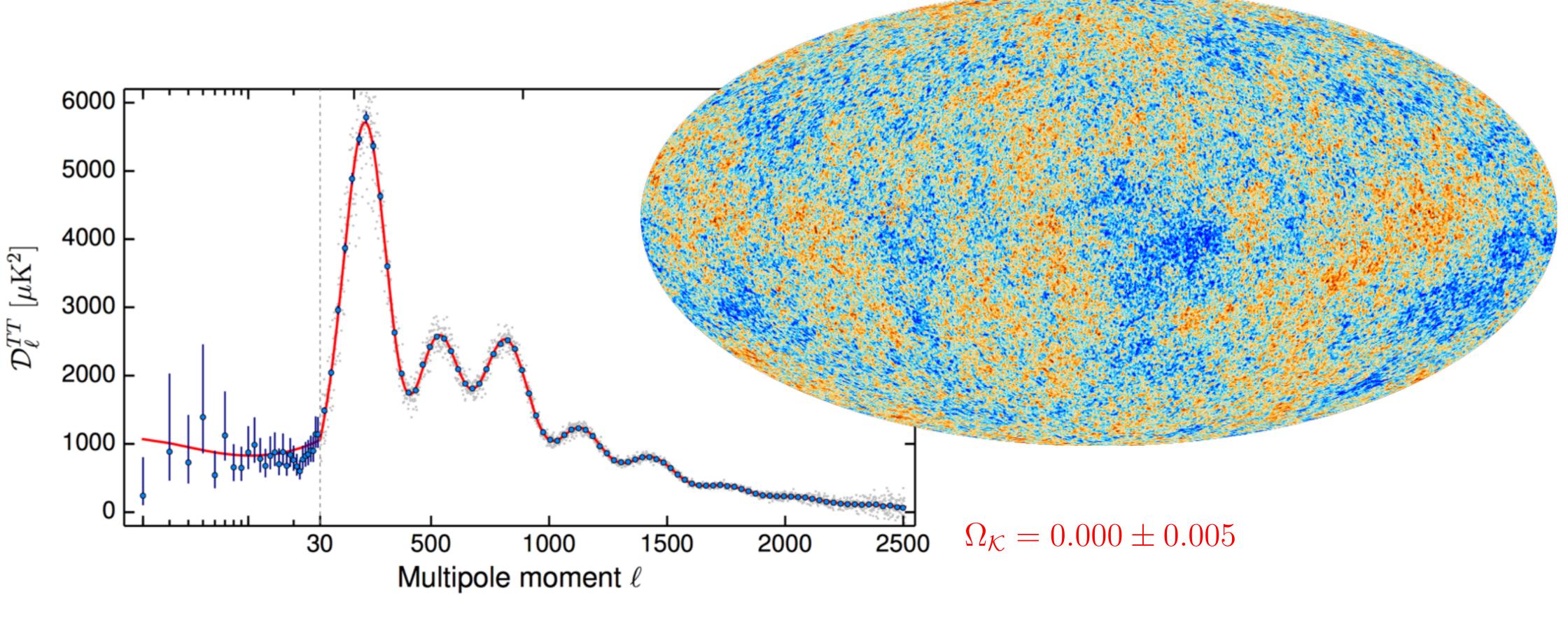


Singularity problem Quantum effect?









 $n_{\rm s} = 0.9639 \pm 0.0047$ almost scale invariant

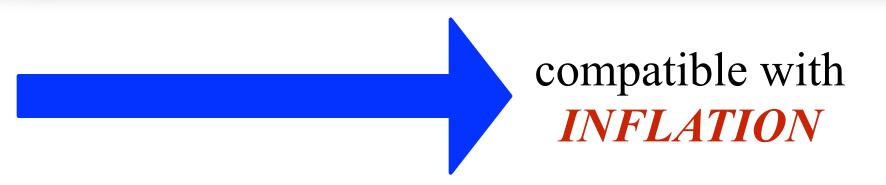
$$f_{
m NL}^{
m local}=0.71\pm5.1$$
 $f_{
m NL}^{
m equil}=-9.5\pm44$ gaussian signal $f_{
m NL}^{
m ortho}=-25\pm22$

r < 0.11

excluded

isocurvature $\lesssim 1\%$

quantum vacuum fluctuations of a single scalar d.o.f



Warsaw - Oct. 17, 2016

Quantum mechanics

Physical system = Hilbert space of configurations

State vectors

Observables = self-adjoint operators

Measurement = eigenvalue $A|a_n\rangle = a_n|a_n\rangle$

Evolution = Schrödinger equation (time translation invariance) $i\hbar \frac{d}{dt} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$

Hamiltonian

Born rule $\operatorname{Prob}[a_n;t] = |\langle a_n | \psi(t) \rangle|^2$

Collapse of the wavefunction: $|\psi(t)\rangle$ before measurement, $|a_n\rangle$ after

Schrödinger equation = linear (superposition principle) / unitary evolution

Wavepacket reduction = non linear / stochastic -

+ External observed

Mutually incompatible

Predictions for a quantum theory

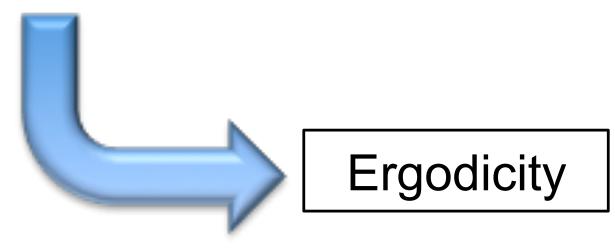
Calculated by quantum average $\langle \Psi | \hat{O} | \Psi \rangle$

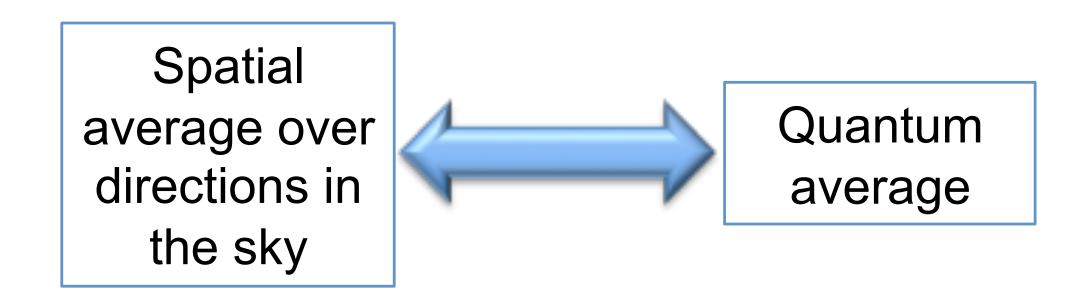
Usually in a lab: repeat the experiment

Ensemble average over experiments

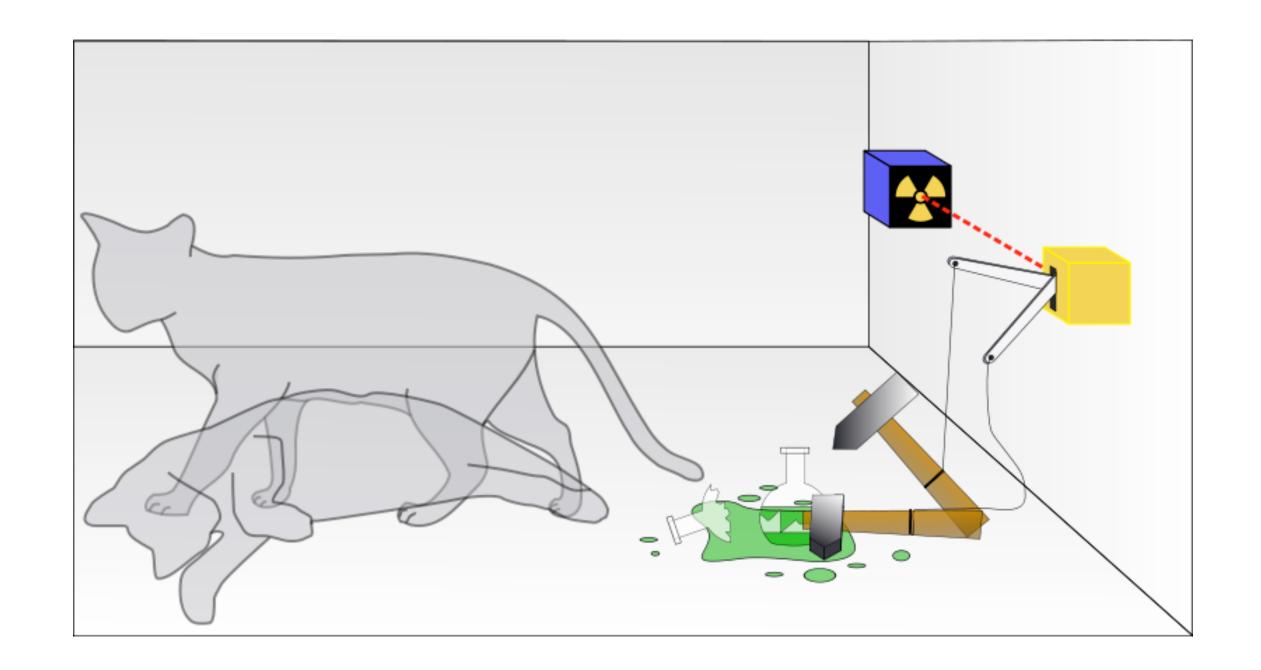
Quantum average

Here one has a single experiment (a single universe)





The measurement problem in quantum mechanics



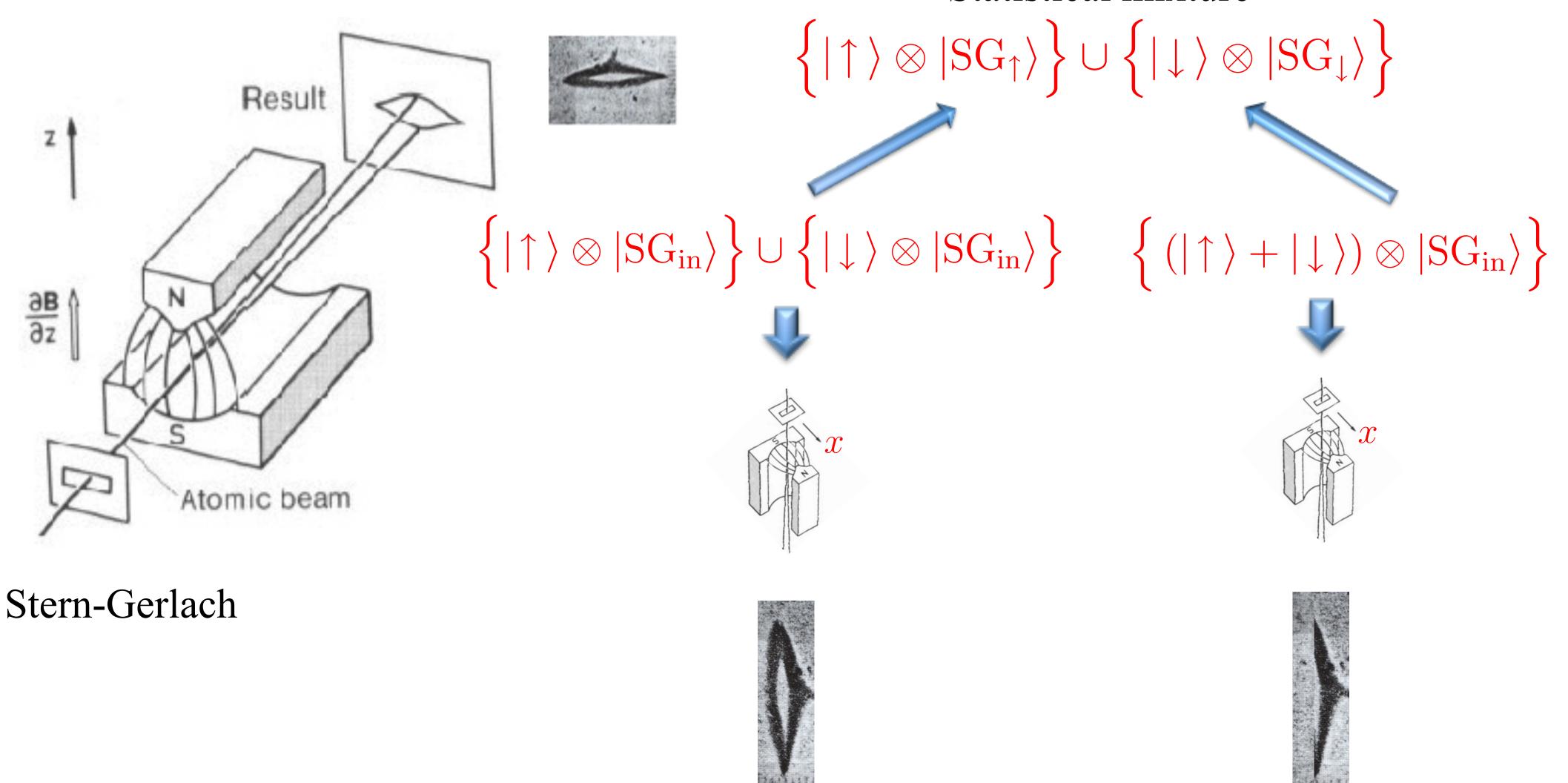
Preferred basis: no unique definition of measured observables

Definite outcome: we don't measure superpositions

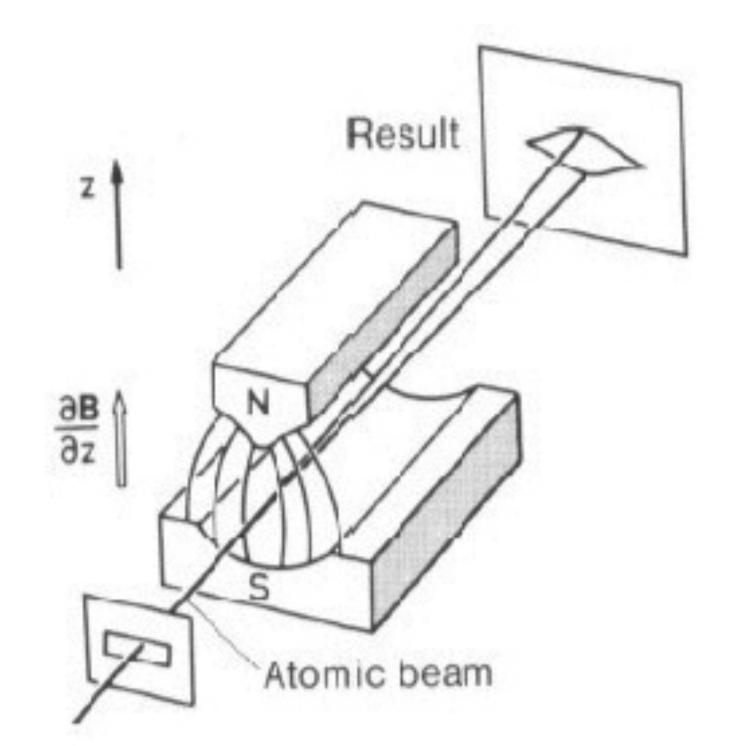
collapse of the wave function

The measurement problem in quantum mechanics

Statistical mixture



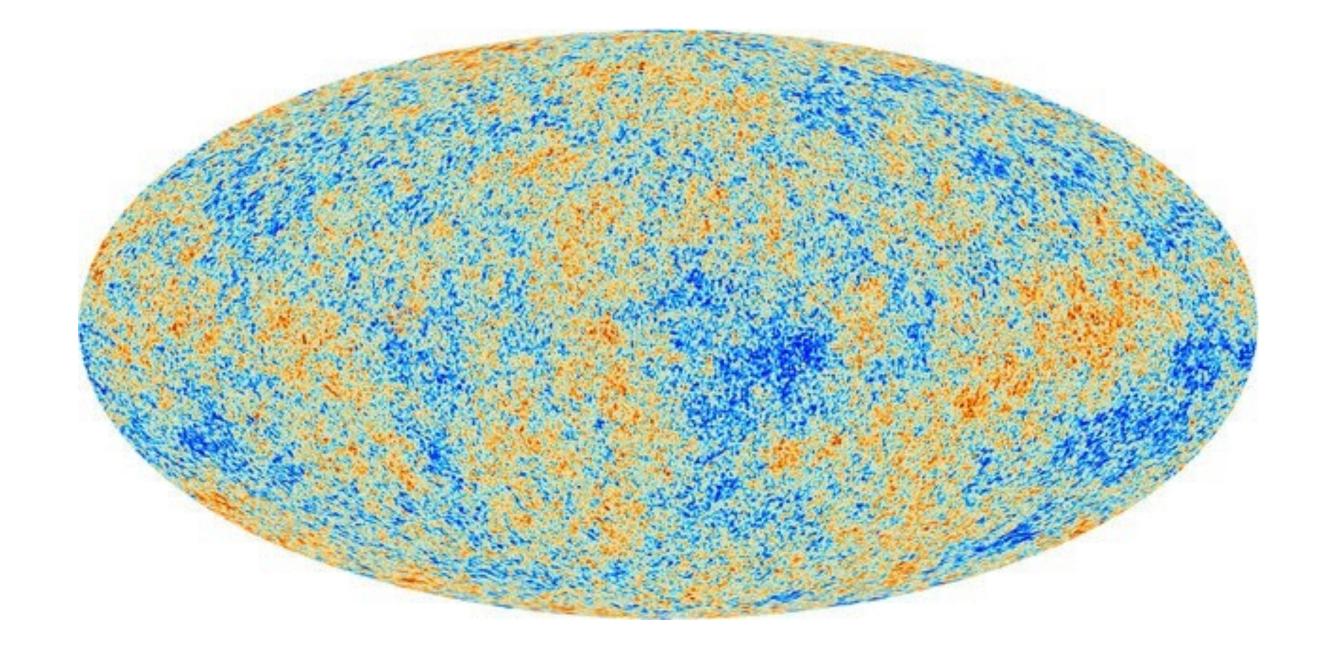
The measurement problem in quantum mechanics

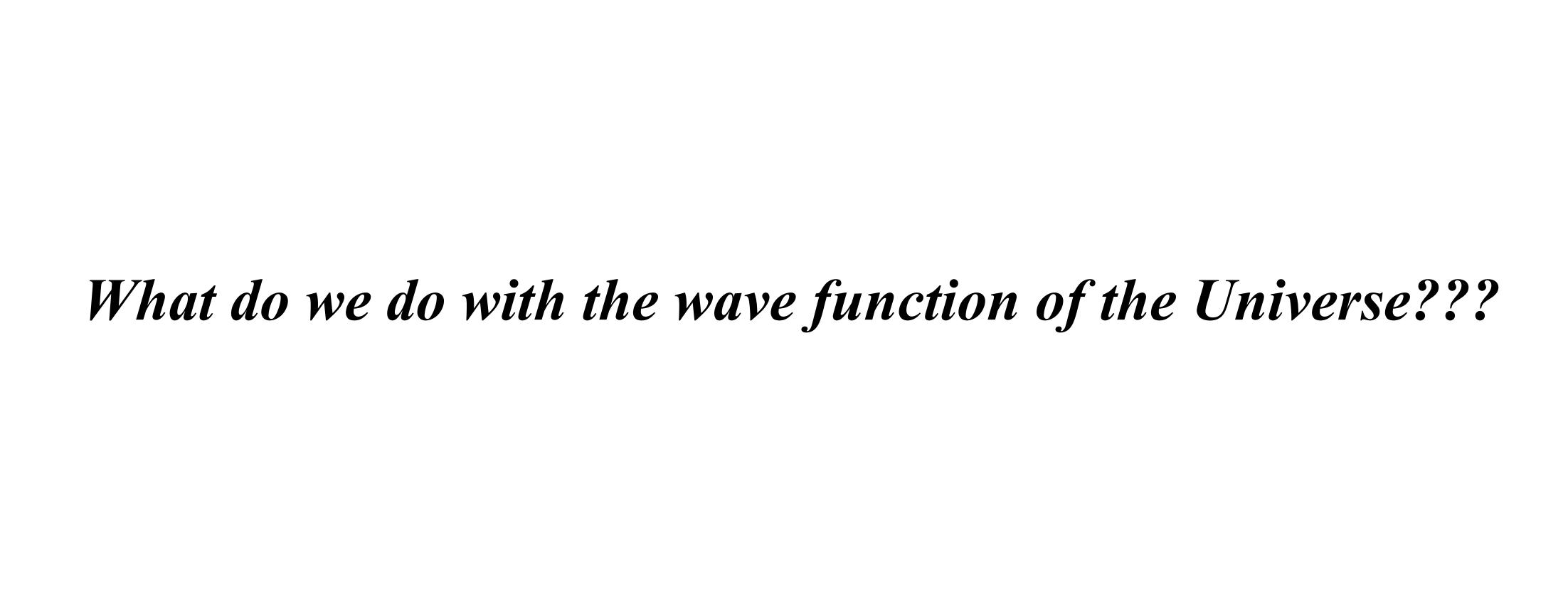


Stern-Gerlach

What about situations in which one has only one realization?

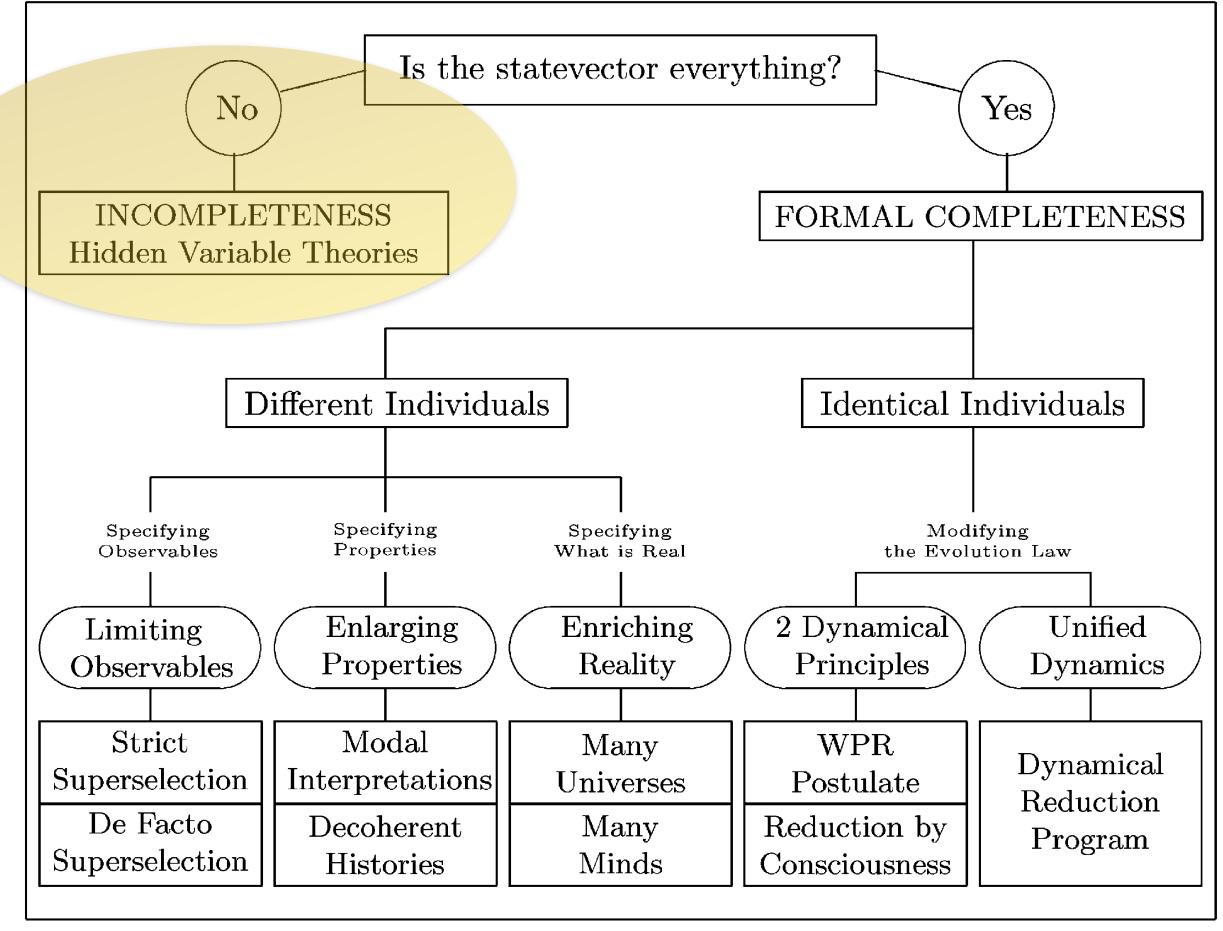
What about the Universe itself?





• Possible extensions and a criterion: the Born rule

- ▲ Modal interpretation
- ▲ Consistent histories
- ▲ Many worlds / many minds



A. Bassi & G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

▲ Hidden variables

▲ Modified Schrödinger dynamics

Born rule not put by hand!

+ TESTABLE!

Hidden Variable Theories

Schrödinger
$$i\frac{\partial\Psi}{\partial t} = \left[-\frac{\nabla^2}{2m} + V(\mathbf{r})\right]\Psi$$

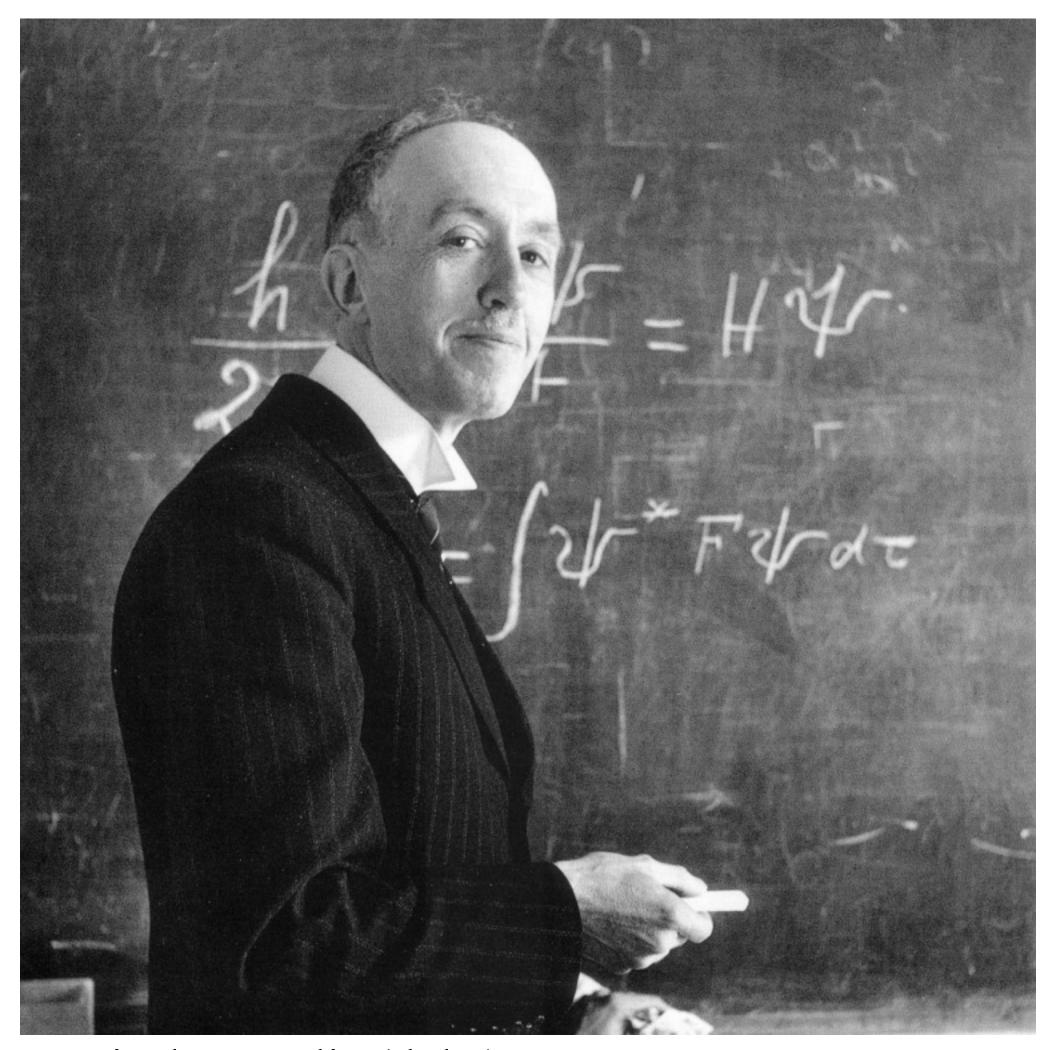
Polar form of the wave function $\Psi = A(\mathbf{r}, t) e^{iS(\mathbf{r}, t)}$

$$\Psi = A(\mathbf{r}, t) e^{iS(\mathbf{r}, t)}$$

$$\frac{\partial S}{\partial t} + \frac{(\nabla S)^2}{2m} + V(\mathbf{r}) + Q(\mathbf{r}, t) = 0$$

$$\begin{array}{c} \textbf{quantum} \\ \textbf{potential} \\ \equiv -\frac{1}{2m} \frac{\nabla^2 A}{A} \end{array}$$

Ontological formulation (dBB)



Louis de Broglie (duke)

David Bohm (communist)

1927 Solvay meeting and von Neuman mistake ... 'In 1952, I saw the impossible done' (J. Bell)

 $\Psi = A(\mathbf{r}, t) e^{iS(\mathbf{r}, t)}$

Trajectories satisfy (de Broglie)
$$m \frac{\mathrm{d} \boldsymbol{x}}{\mathrm{d} t} = \Im m \, \frac{\Psi^* \nabla \Psi}{|\Psi(\boldsymbol{x},t)|^2} = \boldsymbol{\nabla} S$$

 $\exists \, \boldsymbol{x}(t)$

 $\Psi = A(\mathbf{r}, t) e^{iS(\mathbf{r}, t)}$

Trajectories satisfy (Bohm)

$$m\frac{\mathrm{d}^2\boldsymbol{x}}{\mathrm{d}t^2} = -\boldsymbol{\nabla}(V+Q)$$
 $Q \equiv -\frac{1}{2m}\frac{\boldsymbol{\nabla}^2|\Psi|}{|\Psi|}$

 $\exists \, \boldsymbol{x}(t)$

$$\Psi = A(\mathbf{r}, t) e^{iS(\mathbf{r}, t)}$$

Ontological formulation (dBB)

$$\exists \, oldsymbol{x}(t)$$

Trajectories satisfy (de Broglie)
$$m \frac{\mathrm{d} \boldsymbol{x}}{\mathrm{d} t} = \Im m \, \frac{\Psi^* \nabla \Psi}{|\Psi(\boldsymbol{x},t)|^2} = \nabla S$$

strictly equivalent to Copenhagen QM

probability distribution (attractor)

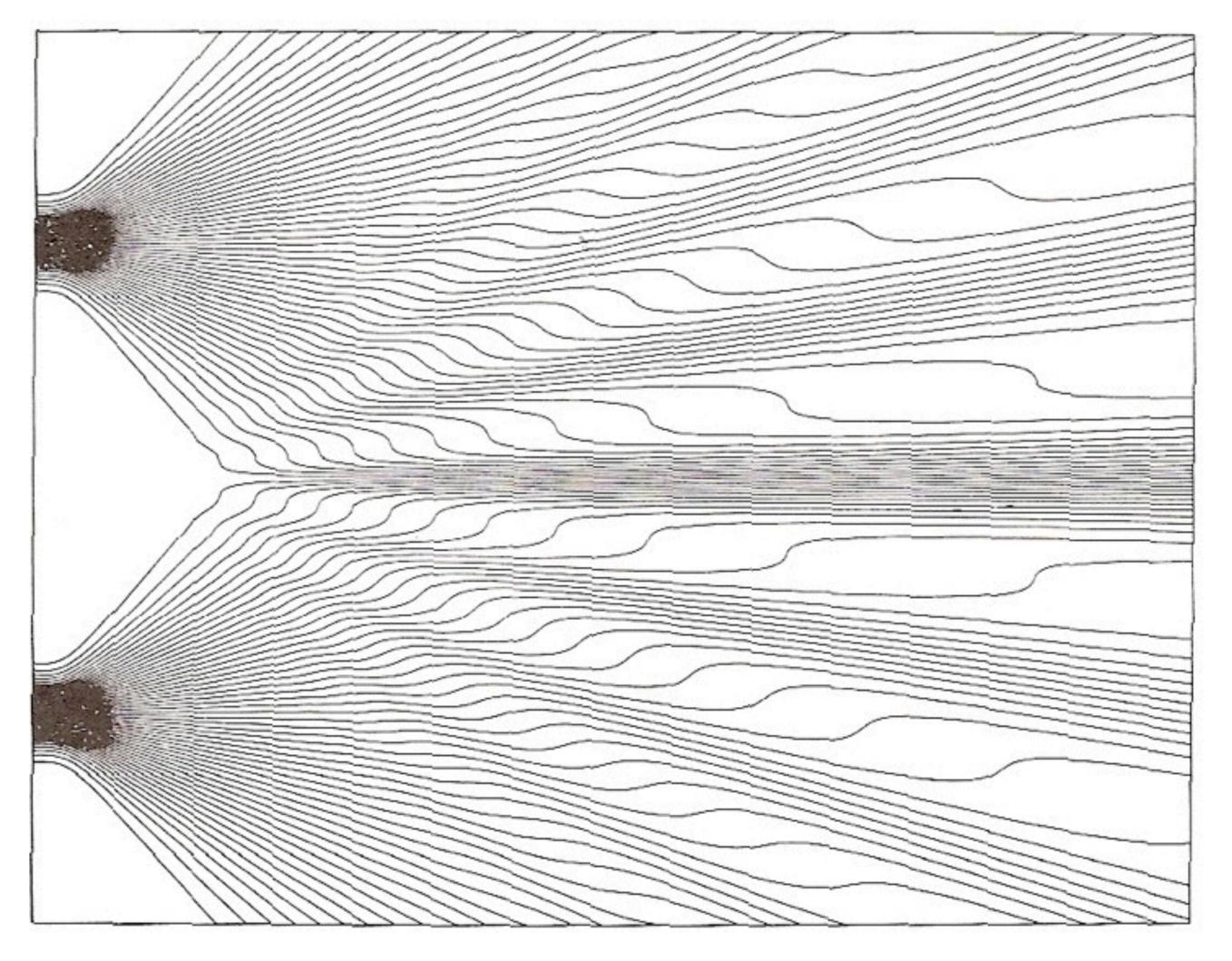
$$\exists t_0; \rho\left(\boldsymbol{x}, t_0\right) = \left|\Psi\left(\boldsymbol{x}, t_0\right)\right|^2$$

Properties:

classical limit well defined
$$Q \longrightarrow 0$$
 $Q \equiv -\frac{1}{2m} \frac{\nabla^2 |\Psi|}{|\Psi|}$

- state dependent
- intrinsic reality
 - non local ...
- no need for external classical domain/observer!

The two-slit experiment:



Surrealistic trajectories?

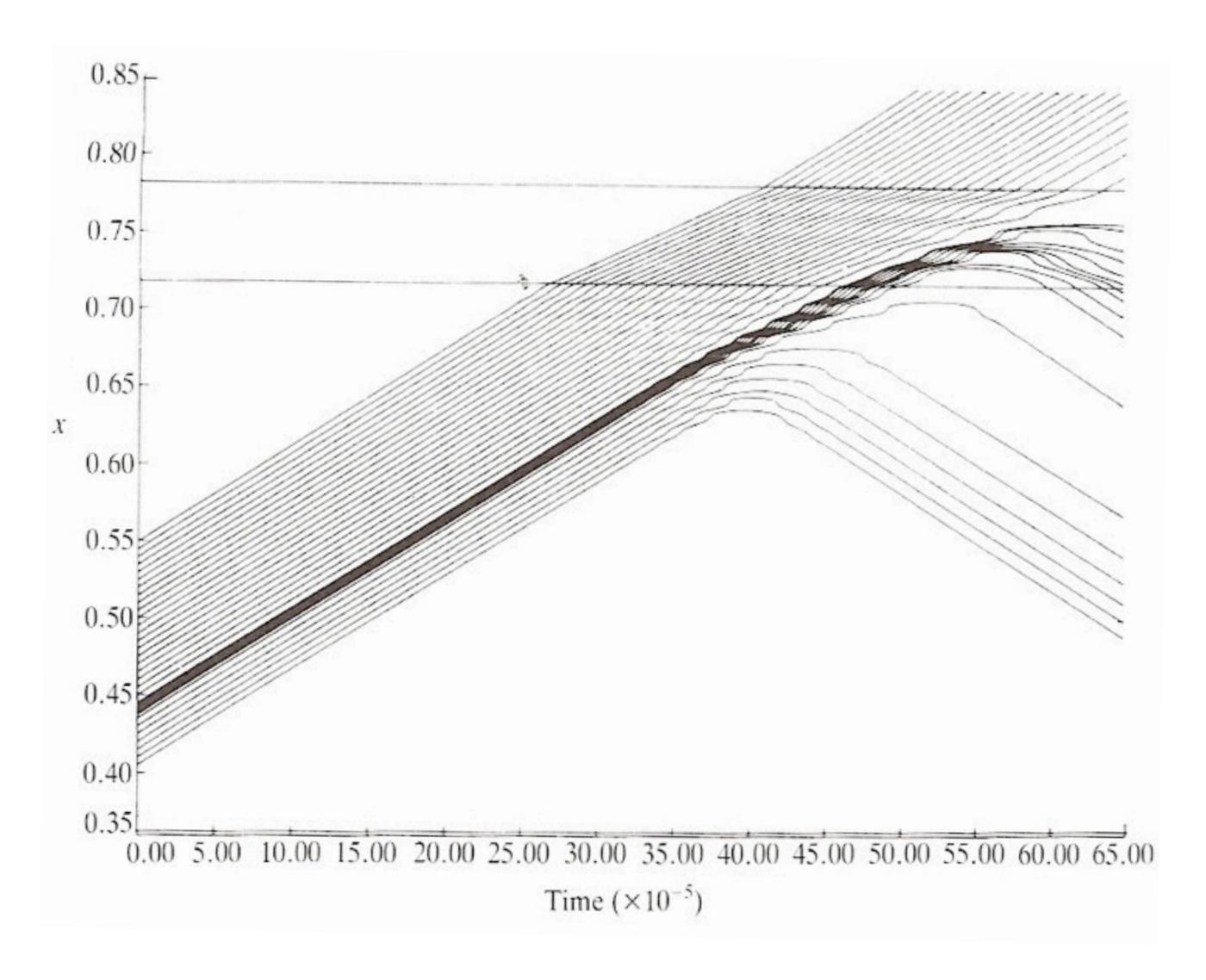
Non straight in vacuum...

$$m\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} = -\nabla (X + Q)$$

... a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics.

Diffraction by a potential

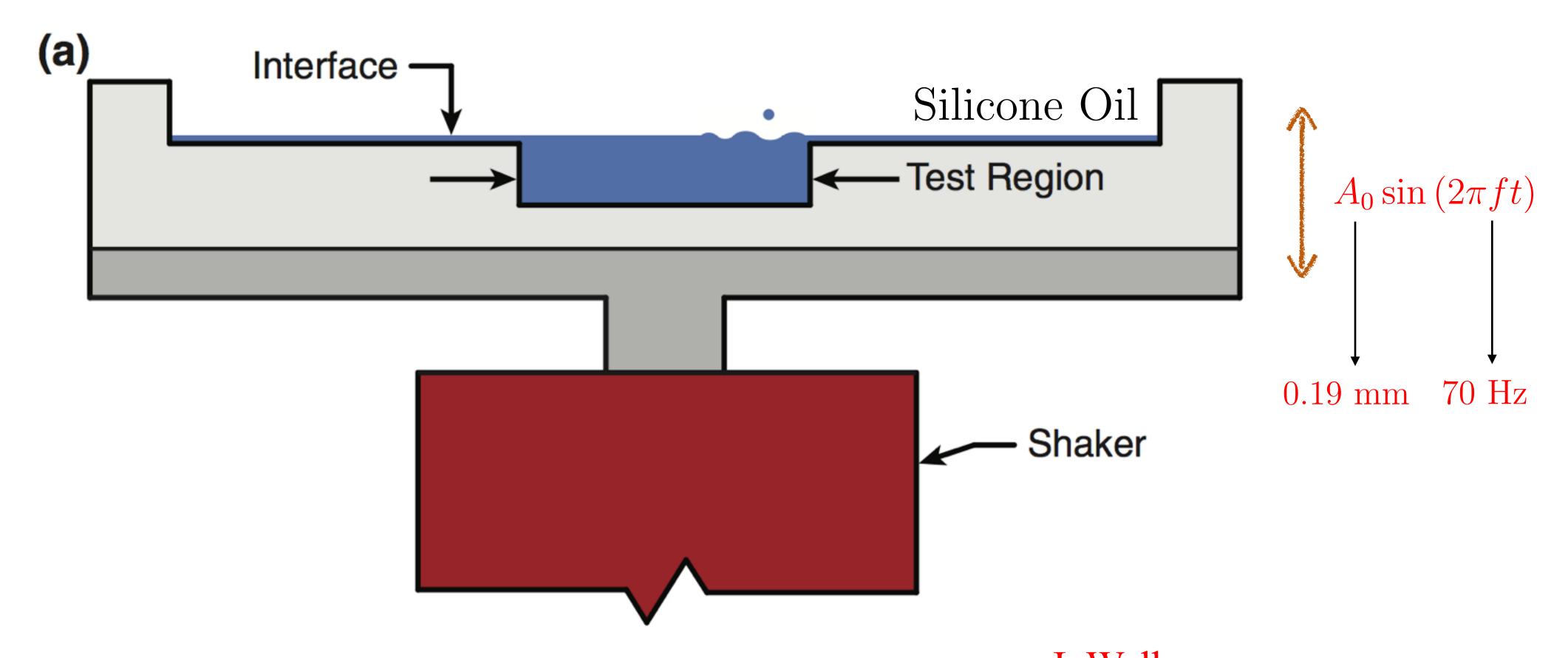
simple understanding of tunnelling ...



Aside: a nice hydrodynamical analogy

Faraday waves... (1831)

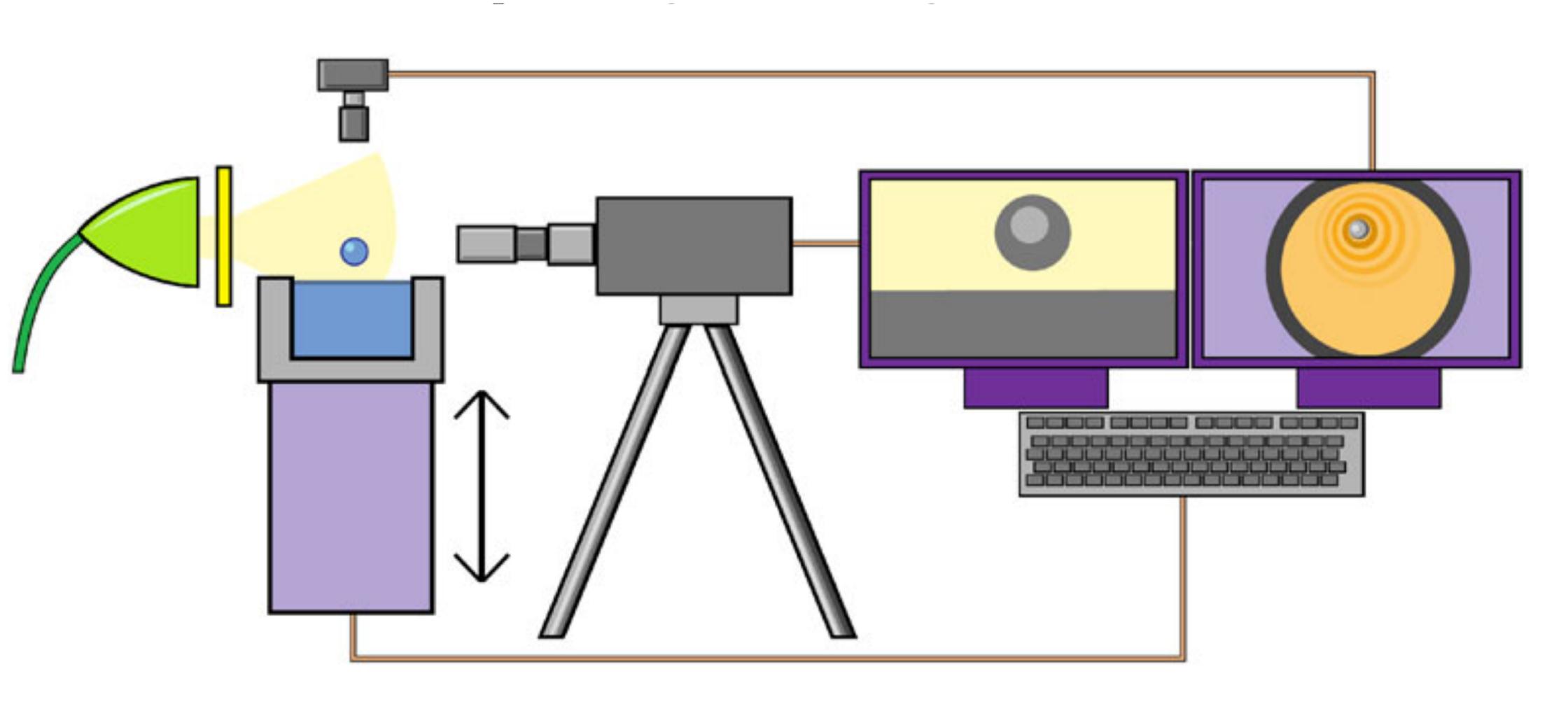
forced standing surface waves



Just above Faraday wave threshold

J. Walker (1978)
Y. Couder et al. (>2006)

http://math.mit.edu/~bush/?page_id=252

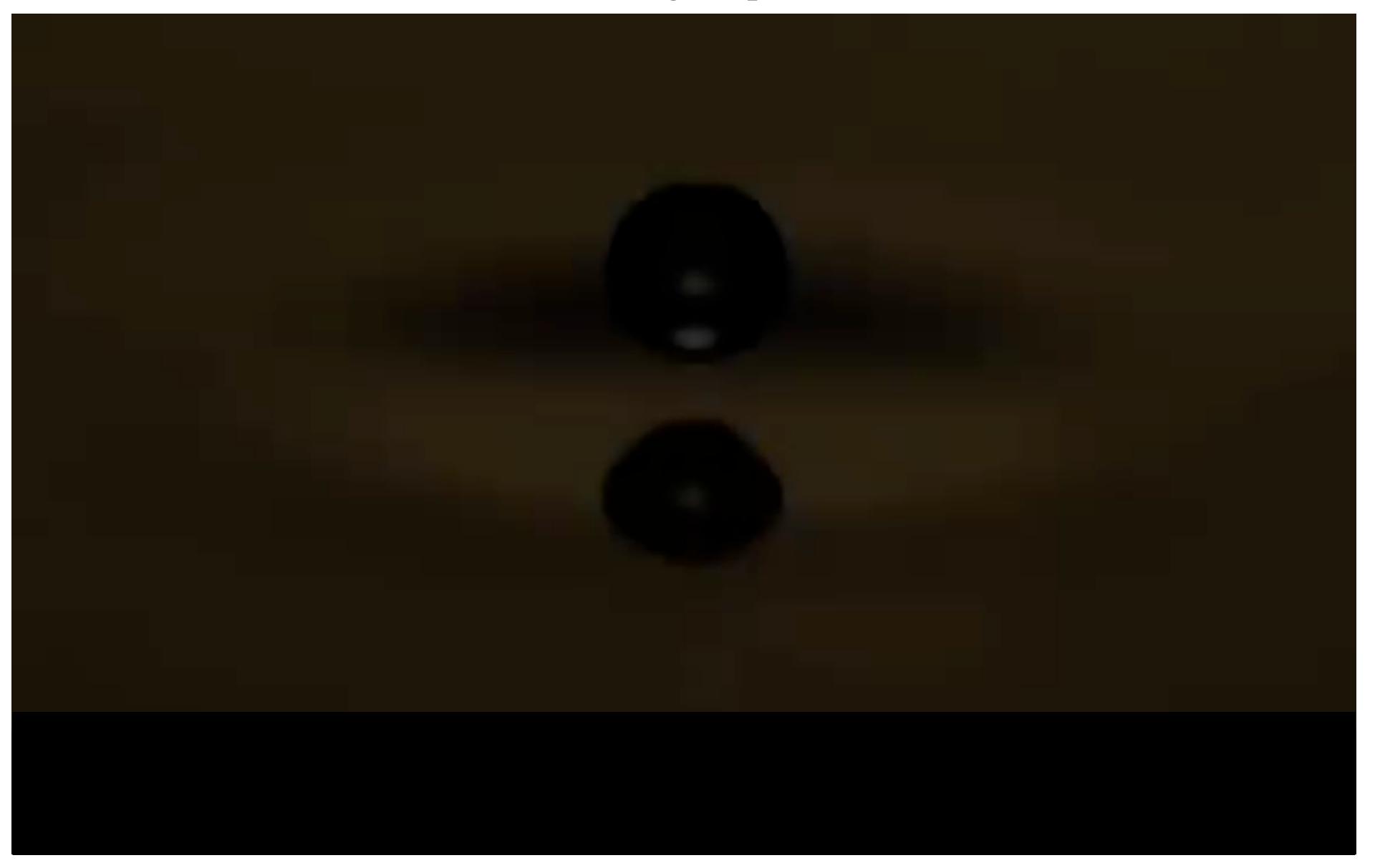


Typical
values
for the
experiment

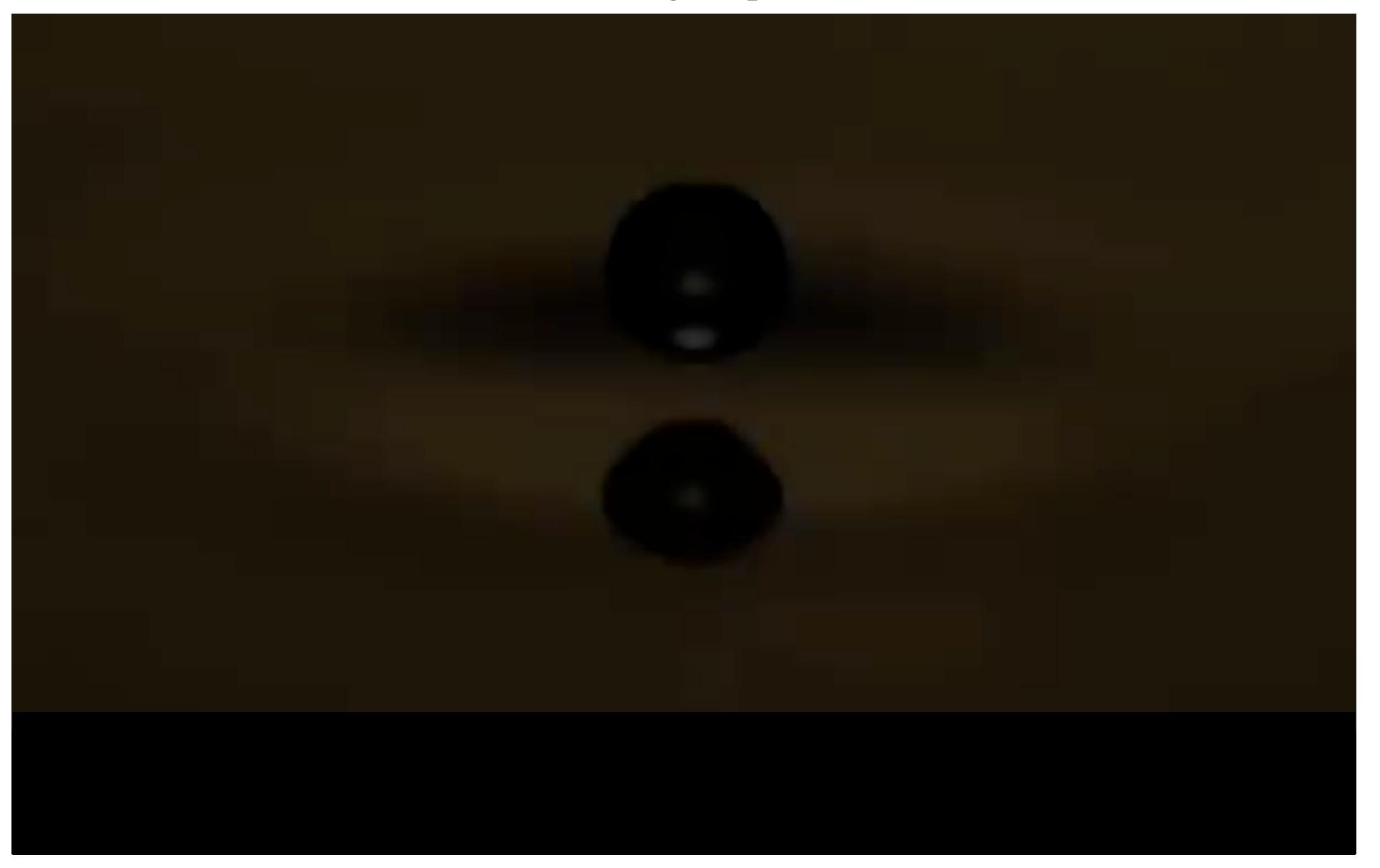
R_0	Drop radius	0.07-0.8 mm
ho	Silicone oil density	$949-960 \text{ kg m}^{-3}$
$ ho_a$	Air density	1.2 kg m^{-3}
σ	Drop surface tension	$20-21 \text{ mN m}^{-1}$
g	Gravitational acceleration	9.81 m s^{-2}
V_{in}	Drop incoming speed	$0.1-1 \text{ m s}^{-1}$
V_{out}	Drop outgoing speed	$0.01-1 \text{ m s}^{-1}$
μ	Drop dynamic viscosity	$10^{-3} - 10^{-1} \text{ kg m}^{-1} \text{ s}^{-1}$
μ_a	Air dynamic viscosity	$1.84 \times 10^{-5} \text{ kg m}^{-1} \text{ s}^{-1}$
ν	Drop kinematic viscosity	10–100 cSt
ν_a	Air kinematic viscosity	15 cSt
T_{C}	Contact time	1–20 ms
C_R	$=V_{in}/V_{out}$ Coefficient of restitution	0-0.4
f	Bath shaking frequency	40–200 Hz
γ	Peak bath acceleration	$0-70 \text{ m s}^{-2}$
ω	$=2\pi f$ Bath angular frequency	250–1250 rad s ⁻ 1
ω_D	$= (\sigma/\rho R_0^3)^{1/2}$ Characteristic drop oscillation	$300-5000 \text{ s}^{-1}$
	frequency	
We	$= \rho R_0 V_{in}^2 / \sigma$ Weber number	0.01-1
Bo	$= \rho g R_0^2 / \sigma$ Bond number	10^{-3} –0.4
Oh	$= \mu (\sigma \rho R_0)^{-1/2}$ Drop Ohnesorge number	0.004-2
Oh_a	$=\mu_a(\sigma\rho R_0)^{-1/2}$ Air Ohnesorge number	$10^{-4} - 10^{-3}$
Ω	$=2\pi f\sqrt{\rho R_0^3/\sigma}$ Vibration number	0-1.4
Γ	$= \gamma/g$ Peak non-dimensional bath acceleration	0–7
_	, , 6	

Warsaw - Oct. 17, 2016

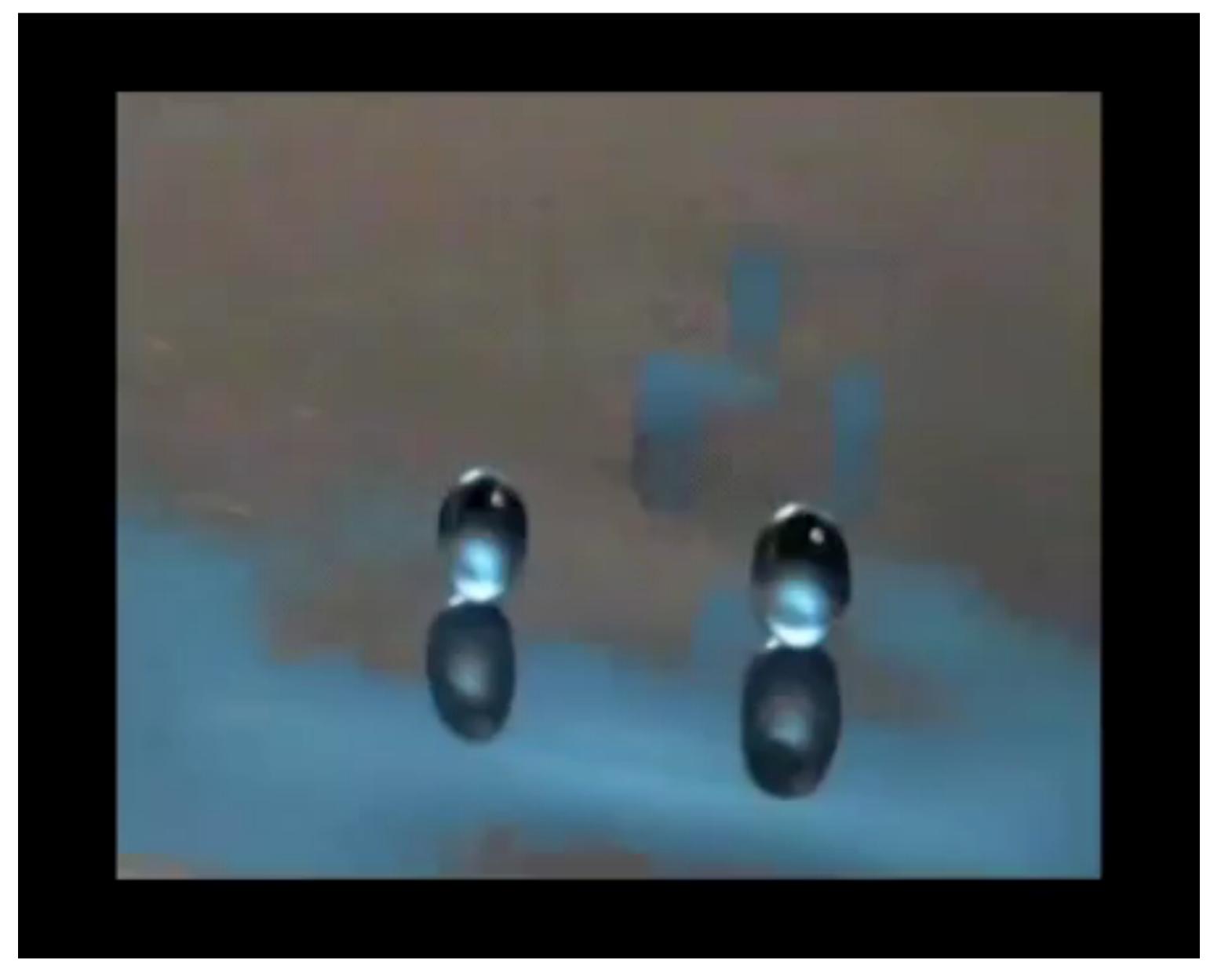
Bouncing droplet...



Bouncing droplet...



or bouncing droplets...

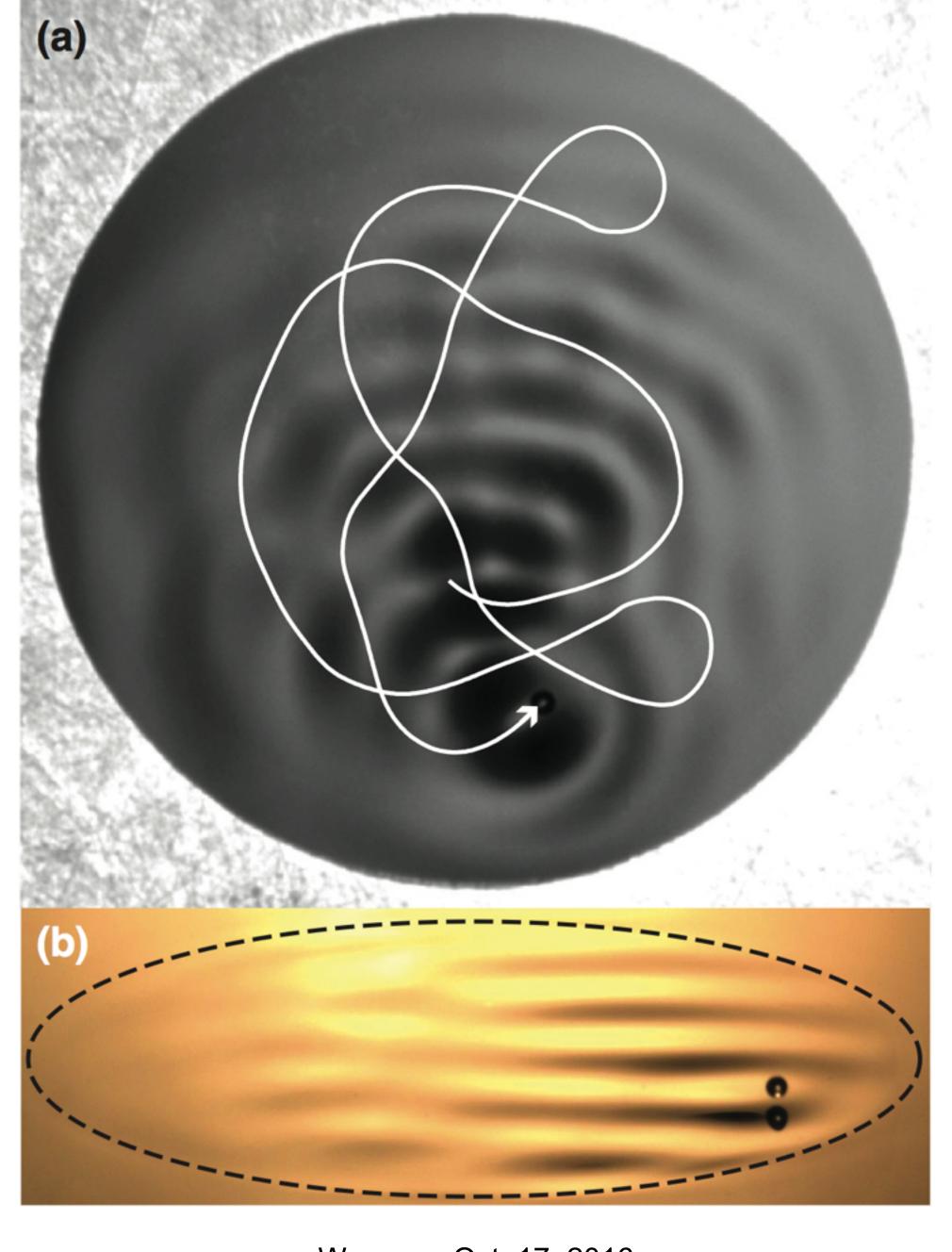


Warsaw - Oct. 17, 2016

+ subharmonic modulation (larger forcing amplitude) => instability => motion!!!

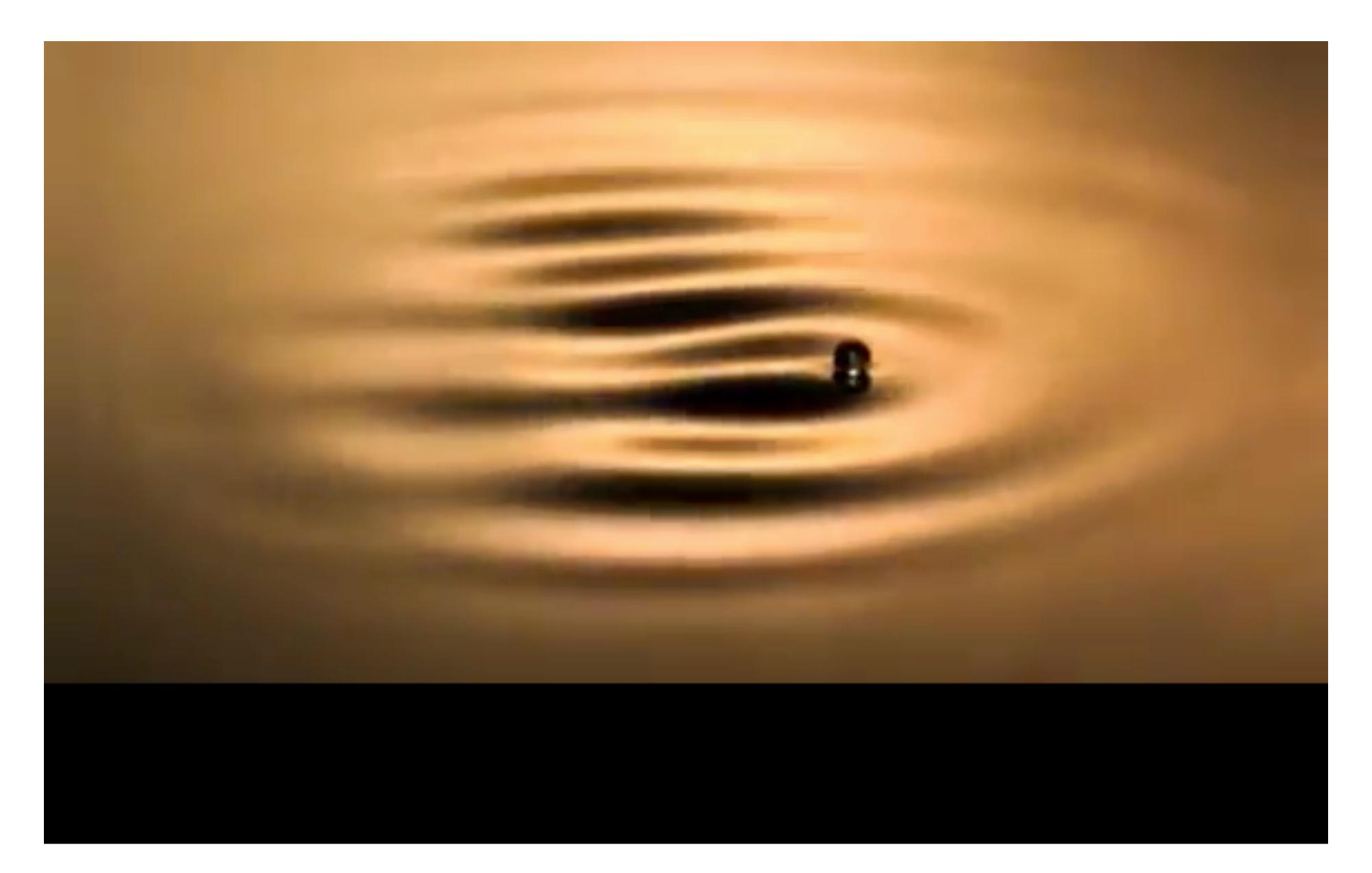


one image per bounce => suppress vertical motion => horizontal mode only

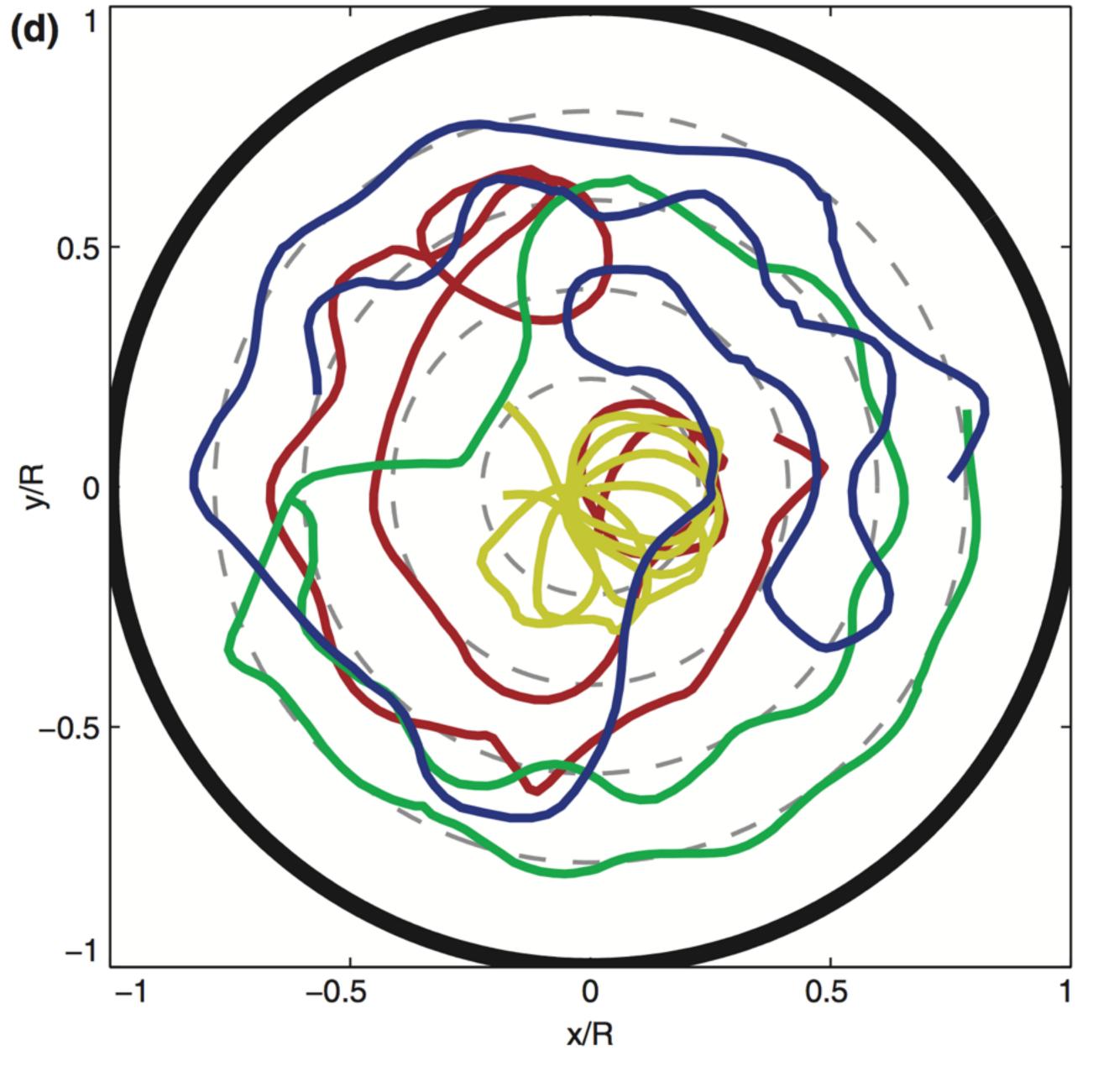


apparent randomness of the motion...

Warsaw - Oct. 17, 2016

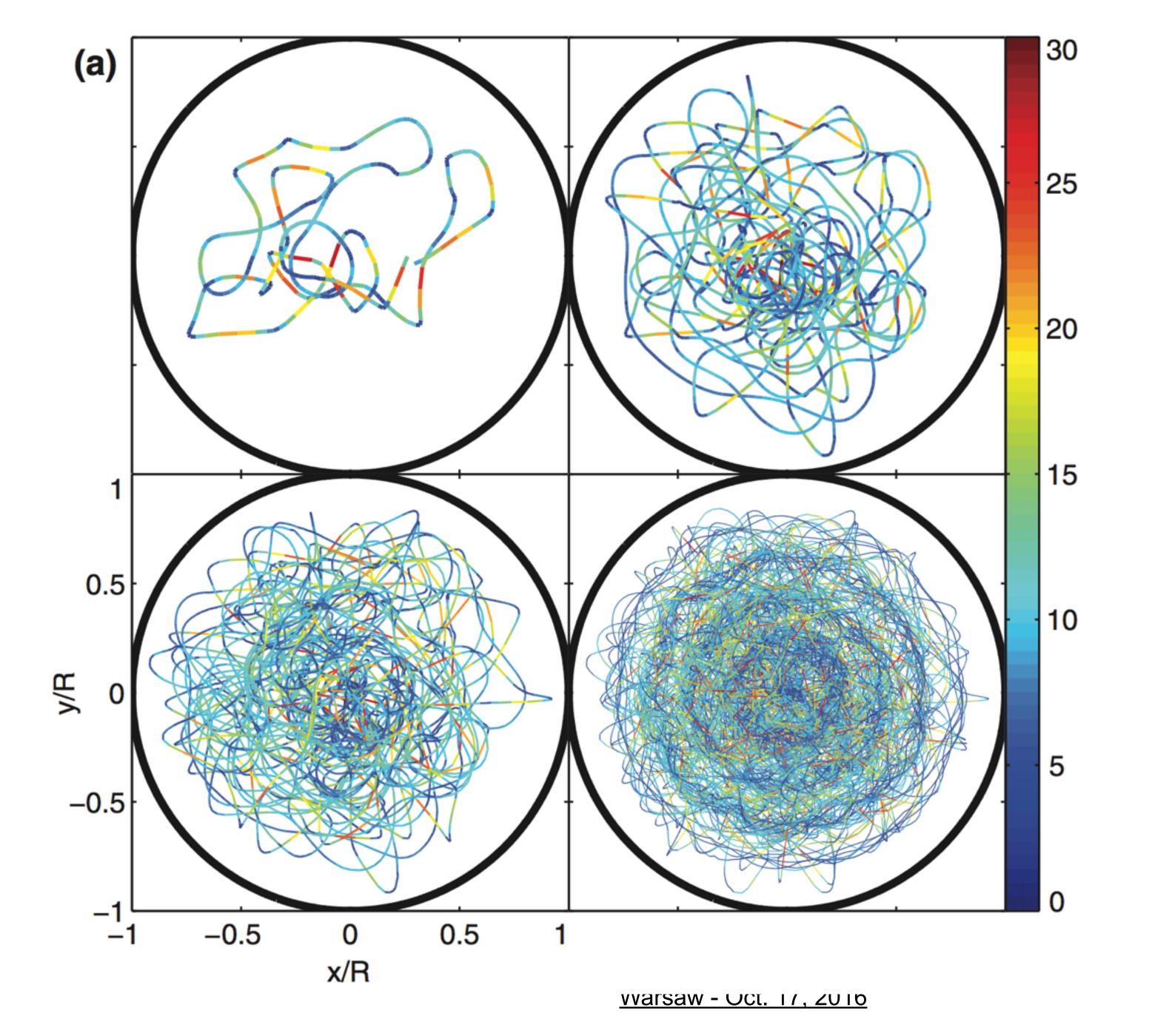


Warsaw - Oct. 17, 2016



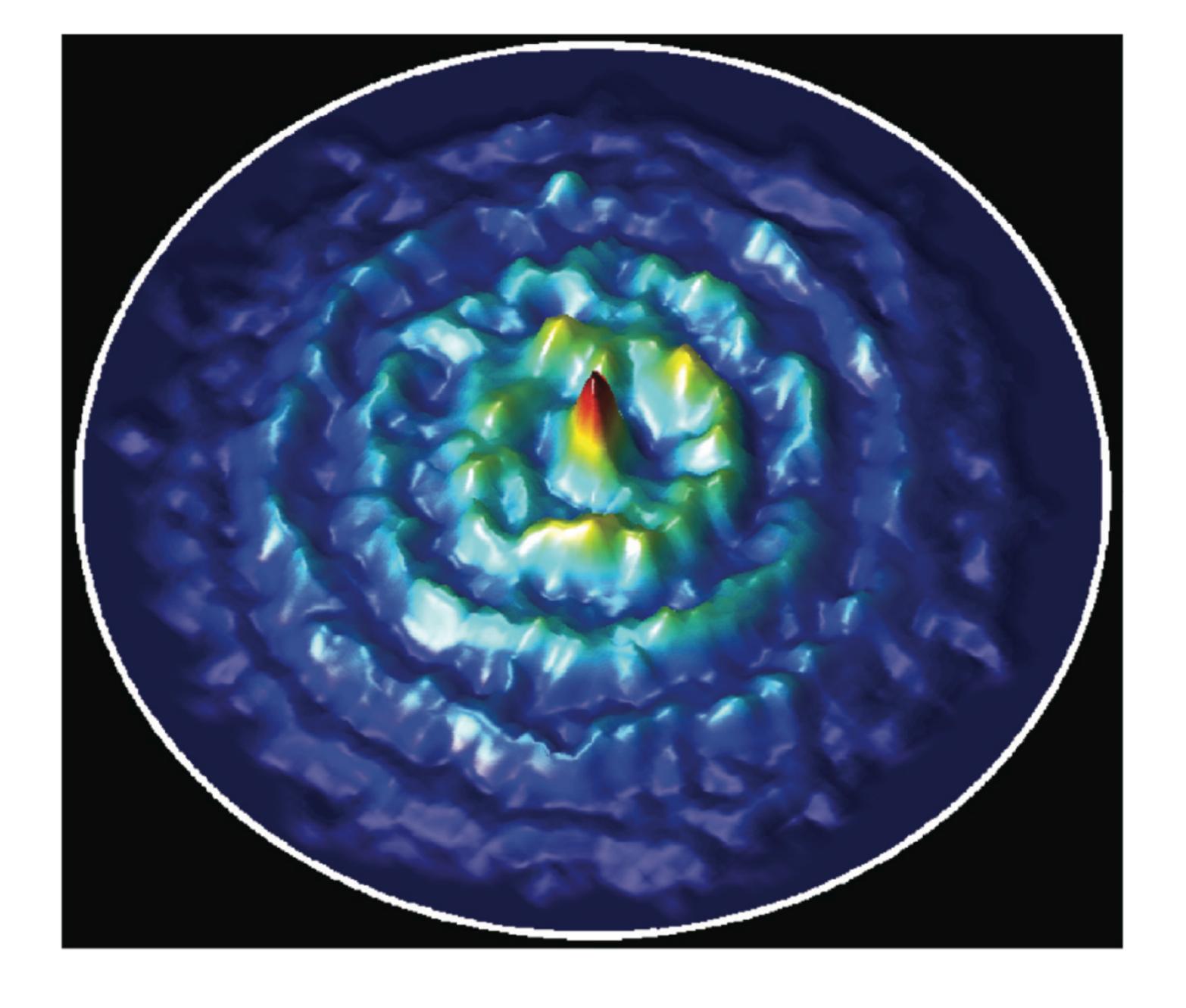
integrate over time...

Warsaw - Oct. 17, 2016

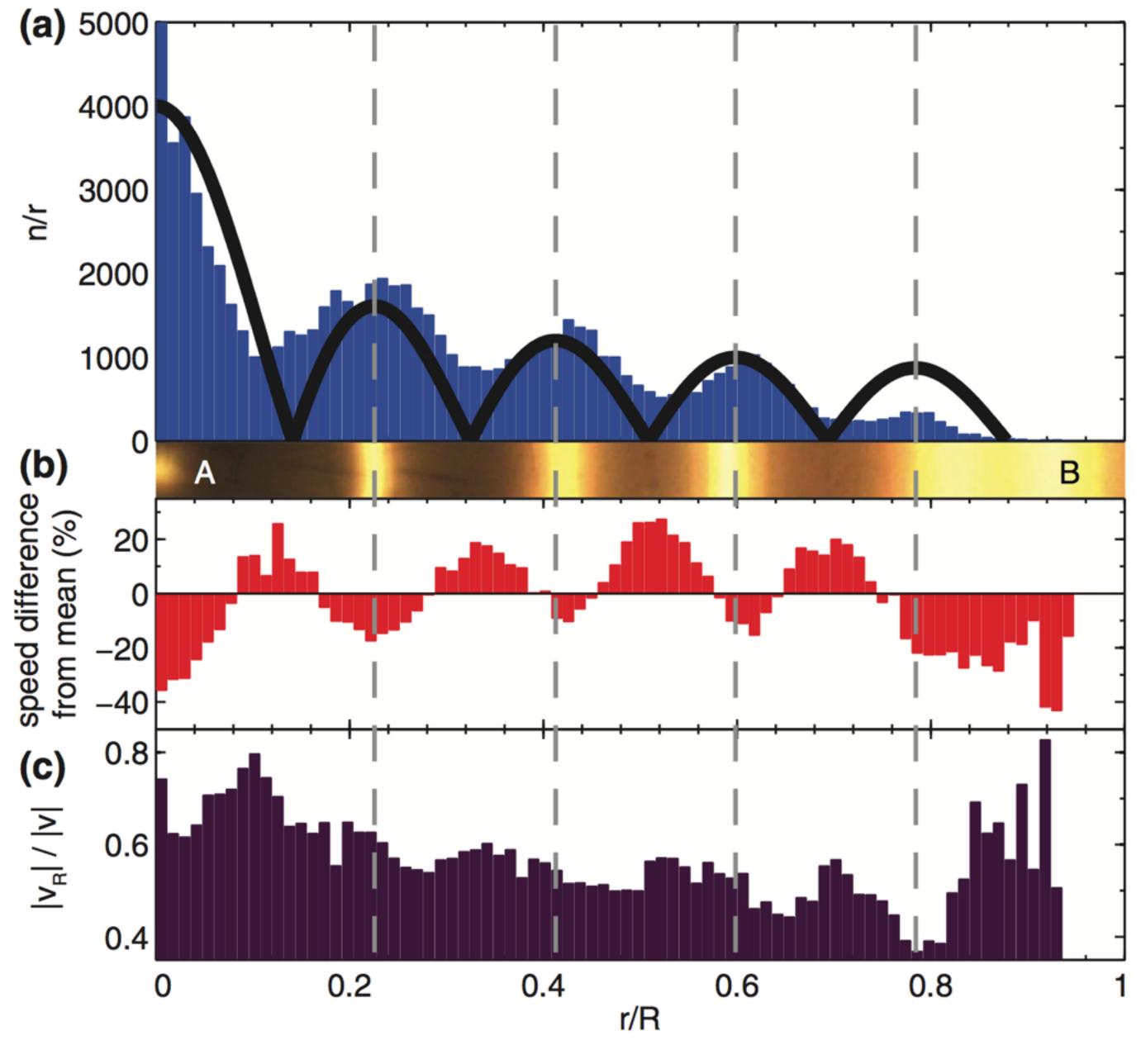


longer times...

and reconstruct the standing wave pattern!



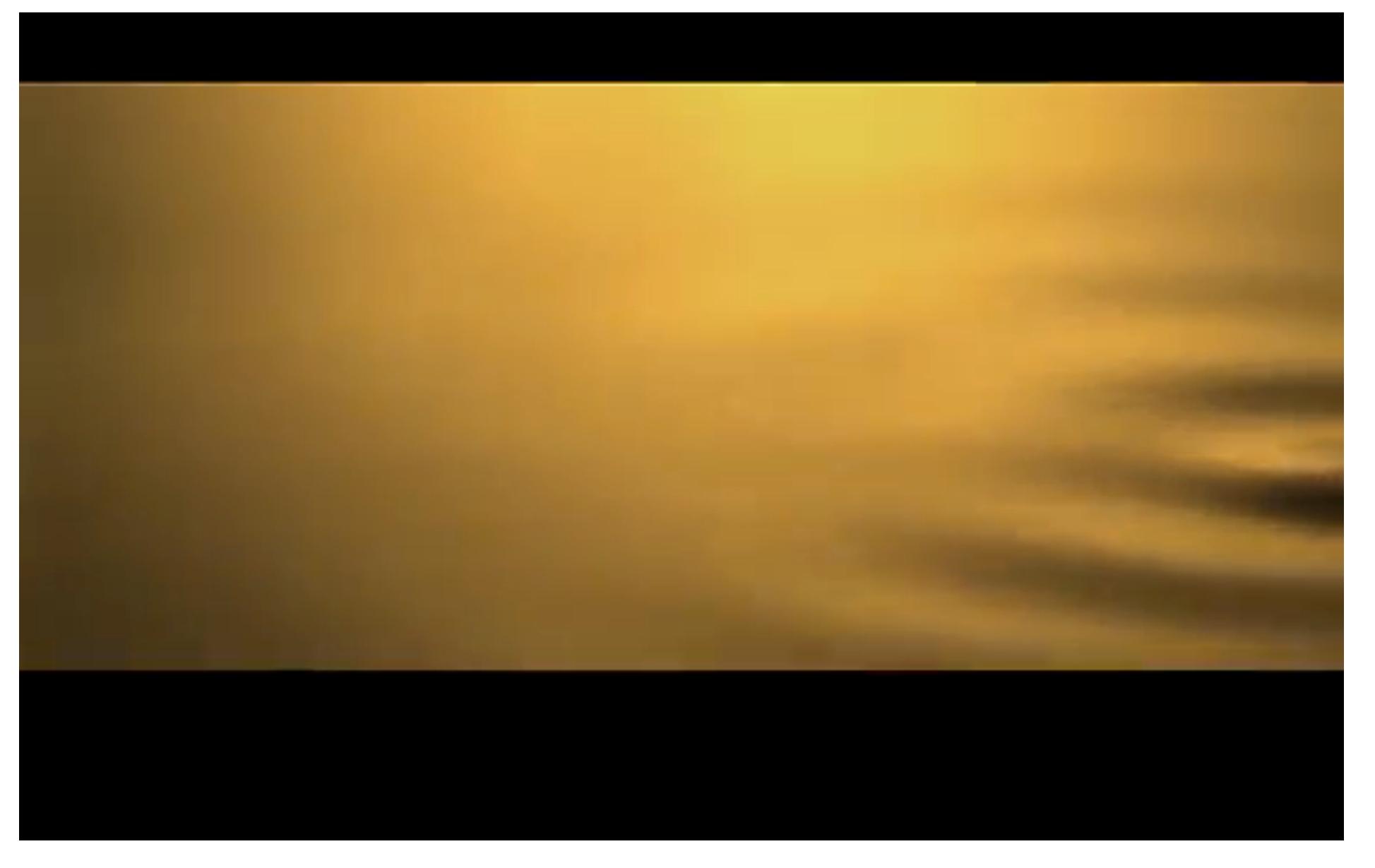
Probability
Distribution
Function



Comparison with actual Faraday wave pattern

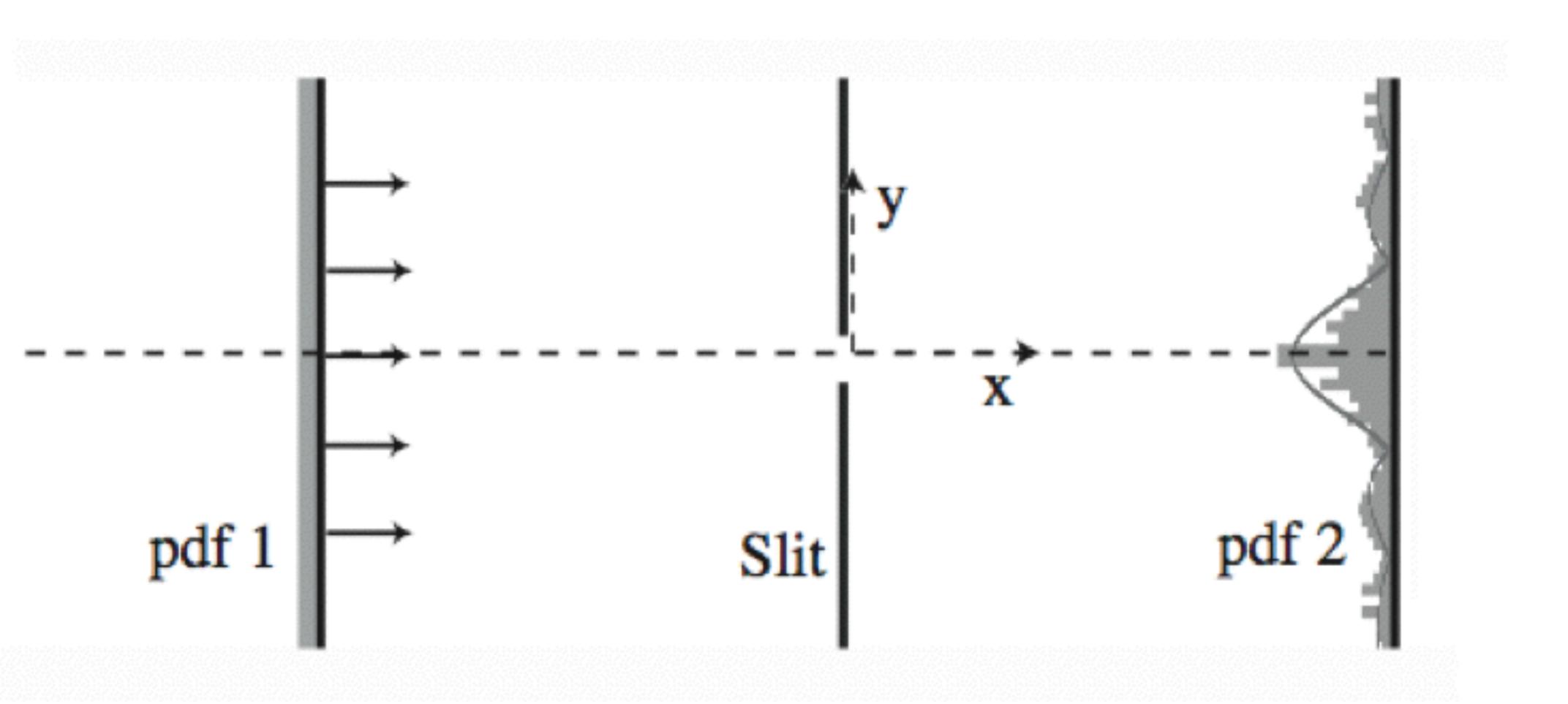
Warsaw - Oct. 17, 2016

forms quantised bound states

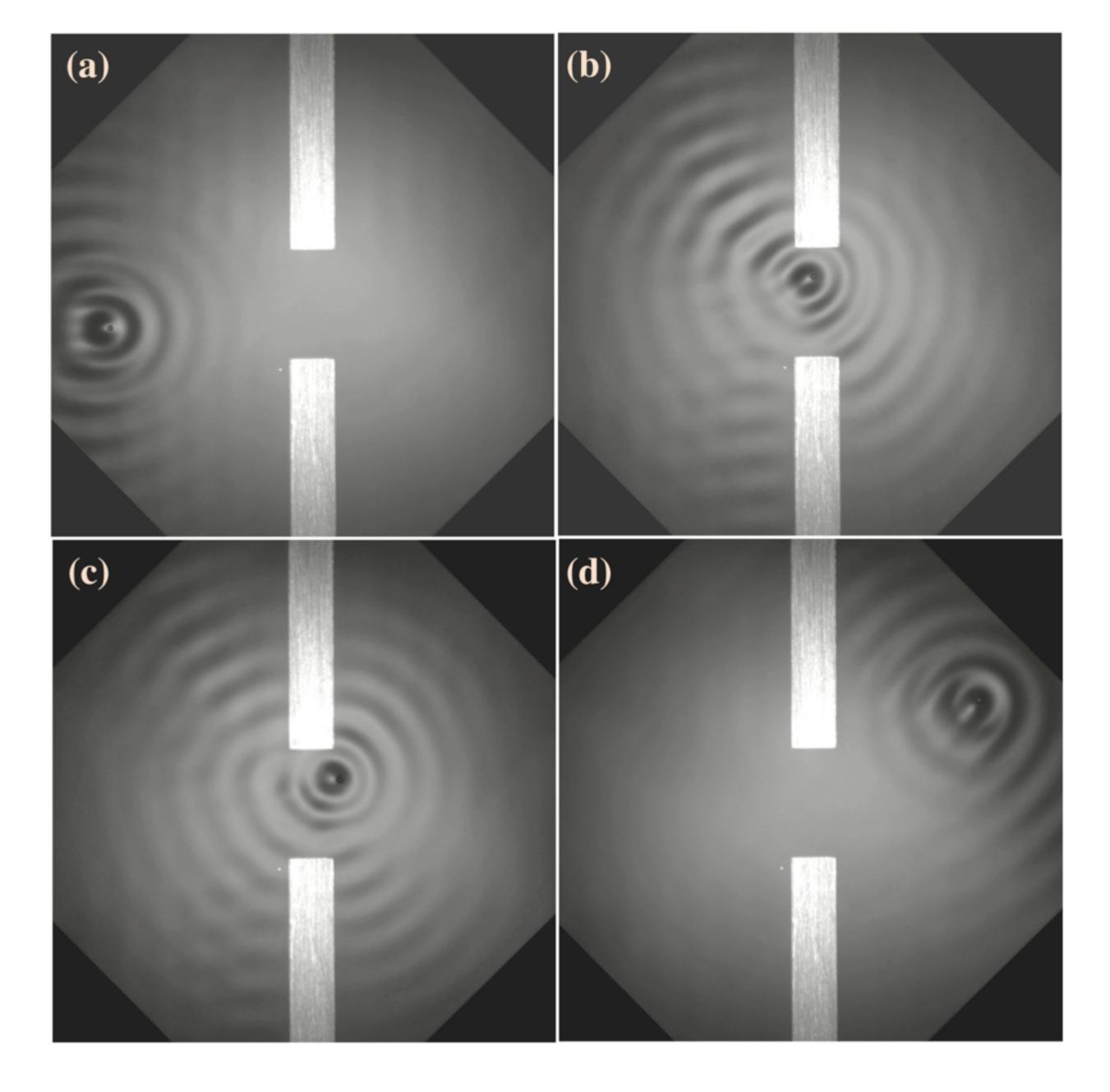




self-interfering classical particle!

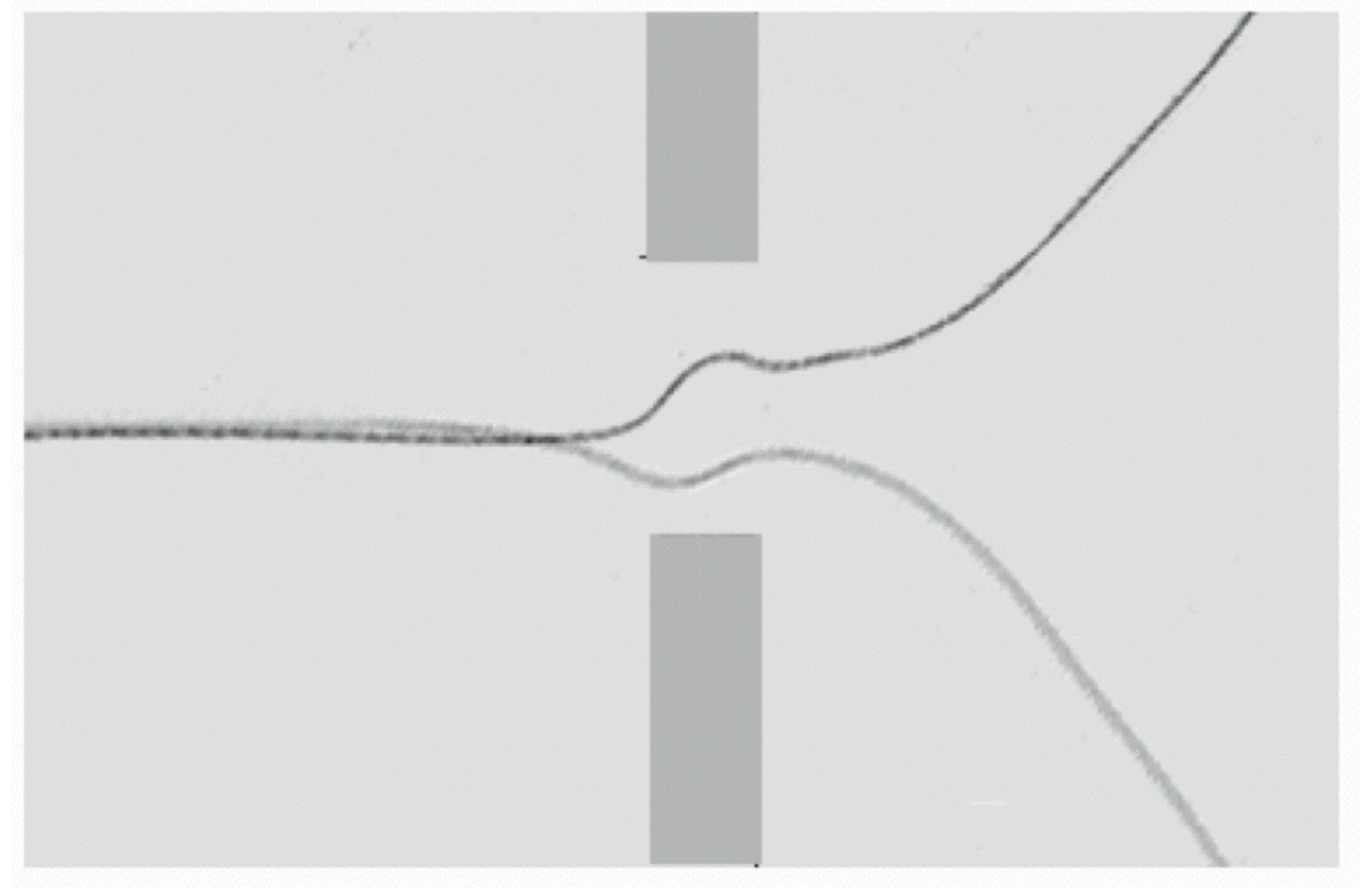


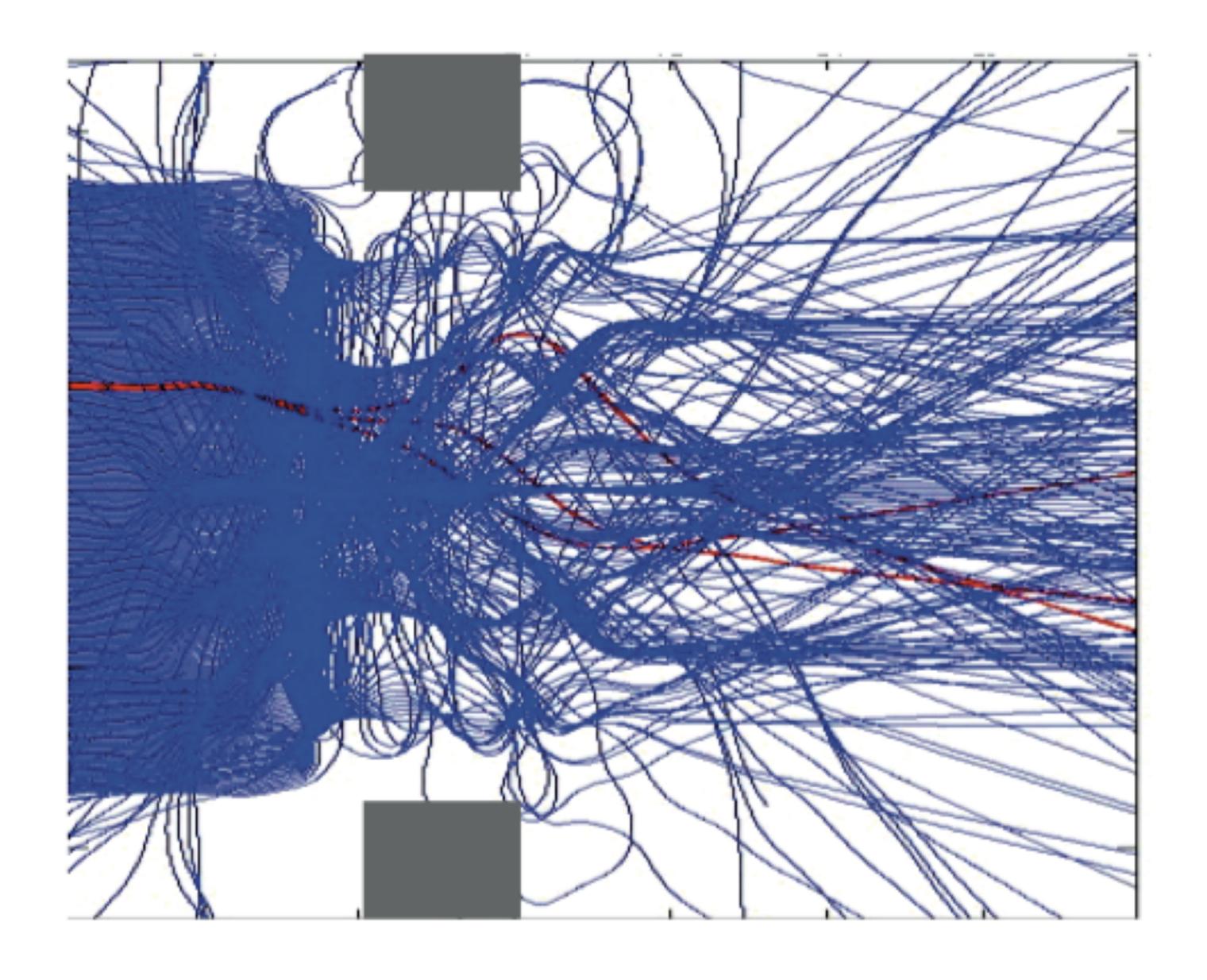
experimental setup



actual snapshots

Warsaw - Oct. 17, 2016

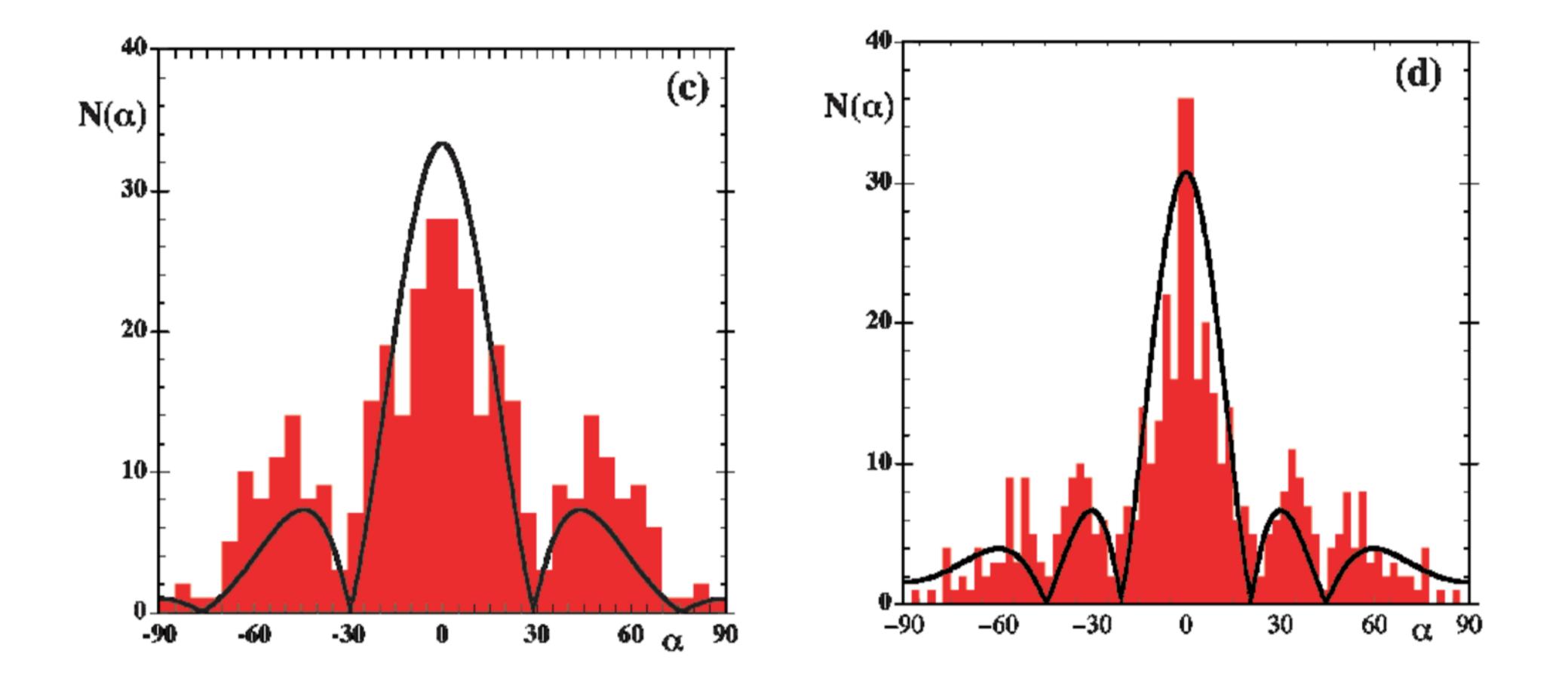




apparently random again

more trajectories!

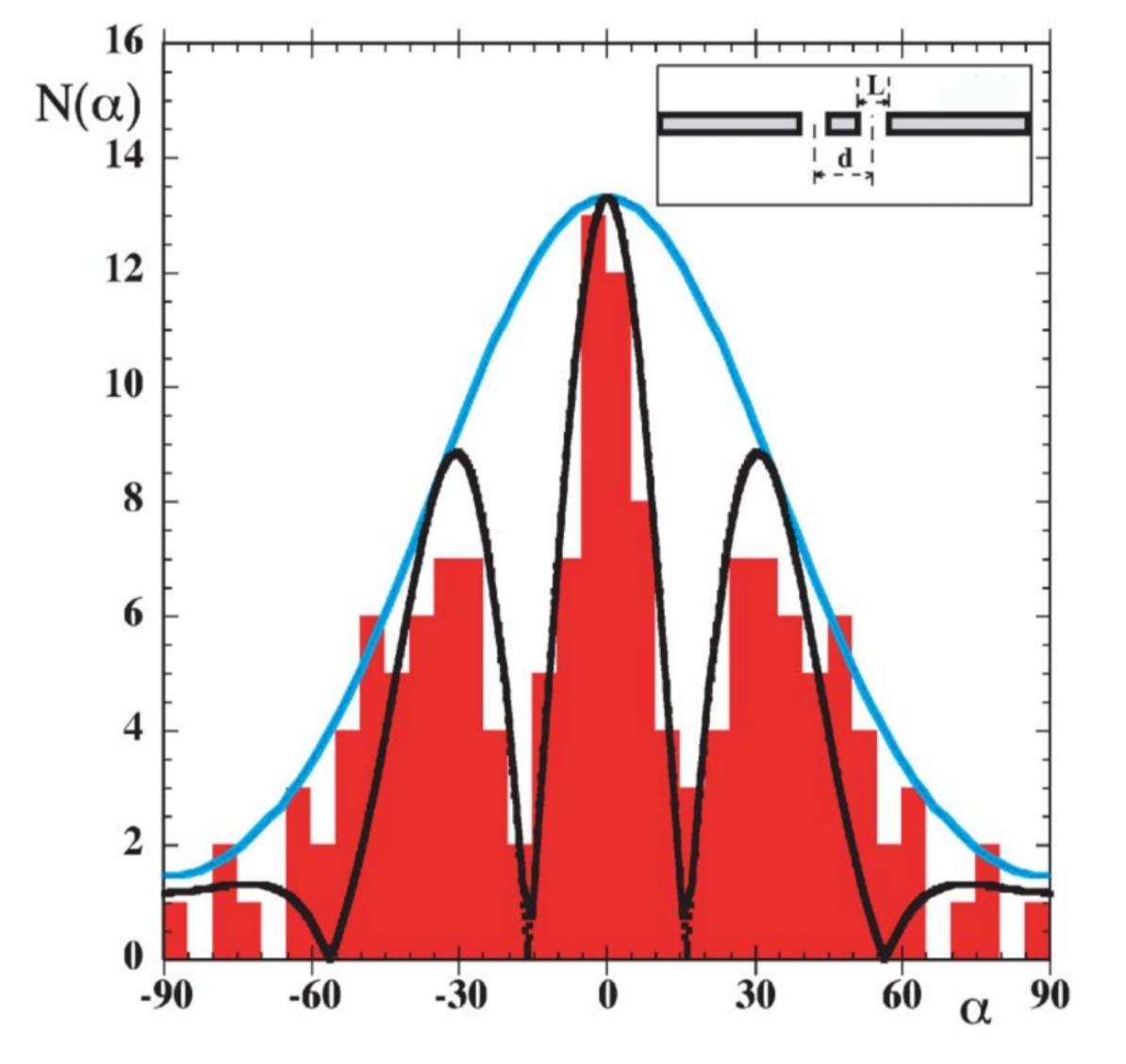




One slit + fit

Y. Couder and E. Fort, *Phys. Rev. Lett.* **97**, 154101 (2006)

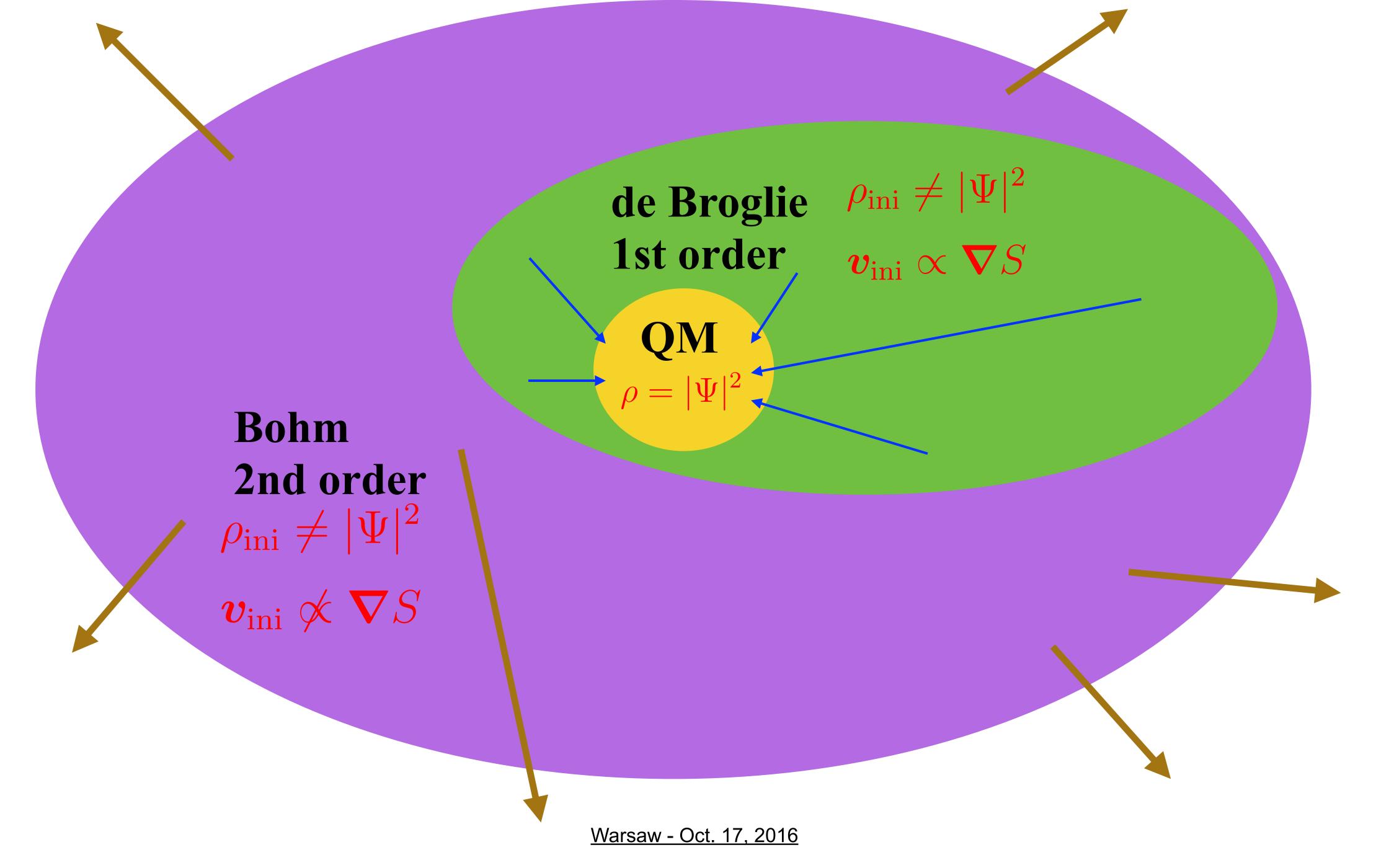
Warsaw - Oct. 17, 2016



Y. Couder and E. Fort, *Phys. Rev. Lett.* **97**, 154101 (2006)

Tao slit + fit

... a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics.



Quantum equilibrium

(Valentini & Westman, 2005)

$$i\frac{\mathrm{d}}{\mathrm{d}t}|\Psi\rangle = \hat{H}|\Psi\rangle$$

Particle in a box - 2D

$$i\frac{\partial\psi}{\partial t} = -\frac{1}{2}\frac{\partial^2\psi}{\partial x^2} - \frac{1}{2}\frac{\partial^2\psi}{\partial y^2} + V\psi$$

infinite square well - size π

Density of actual configurations

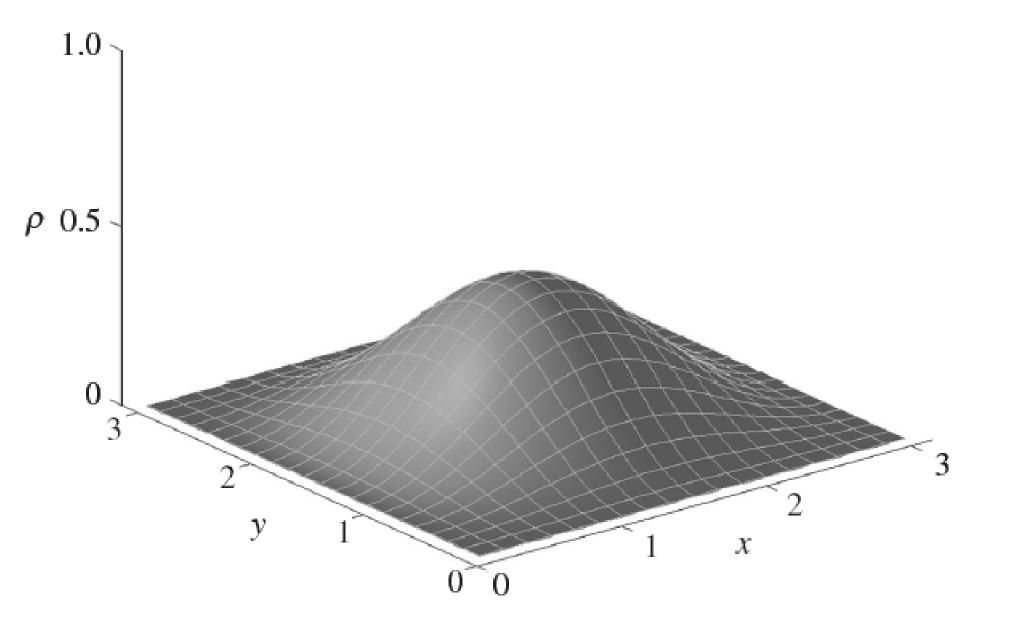
$$\rho(x,y,t) \implies \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho \dot{x}) + \frac{\partial}{\partial y}(\rho \dot{y}) = 0$$
 continuity equation

Energy eigenfunctions
$$\phi_{mn}(x,y) = \frac{2}{\pi}\sin(mx)\sin(ny)$$

Energy levels $E_{mn} = \frac{1}{2}(m^2 + n^2)$

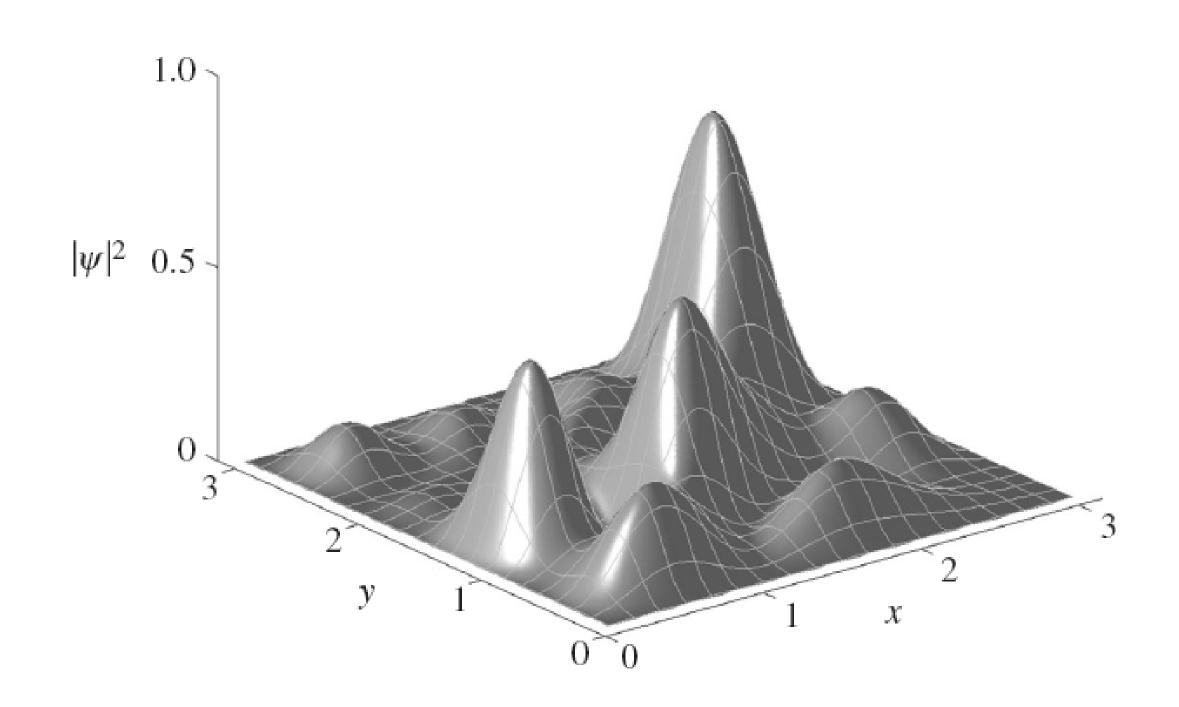
Initial configuration

$$\rho(x, y, 0) = |\phi_{11}(x, y)|^2$$

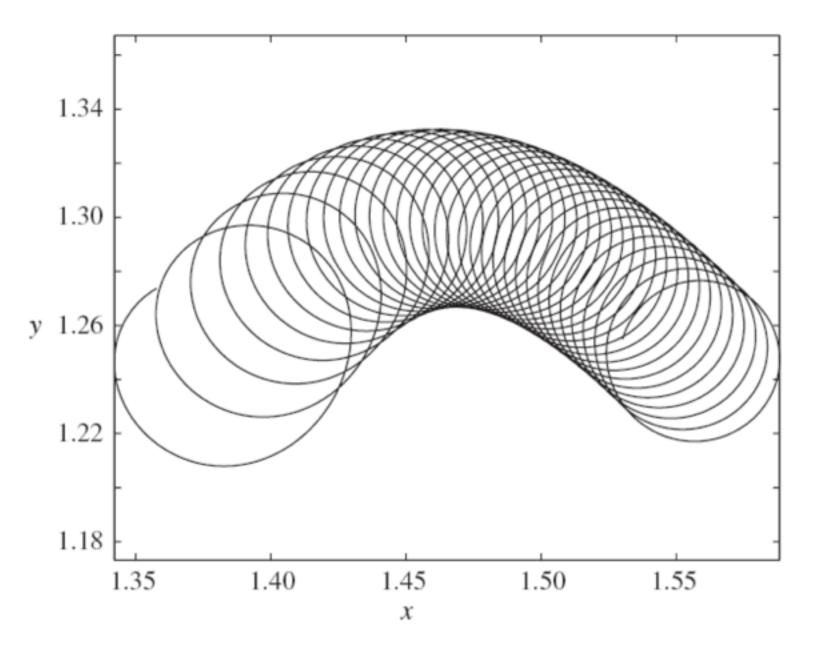


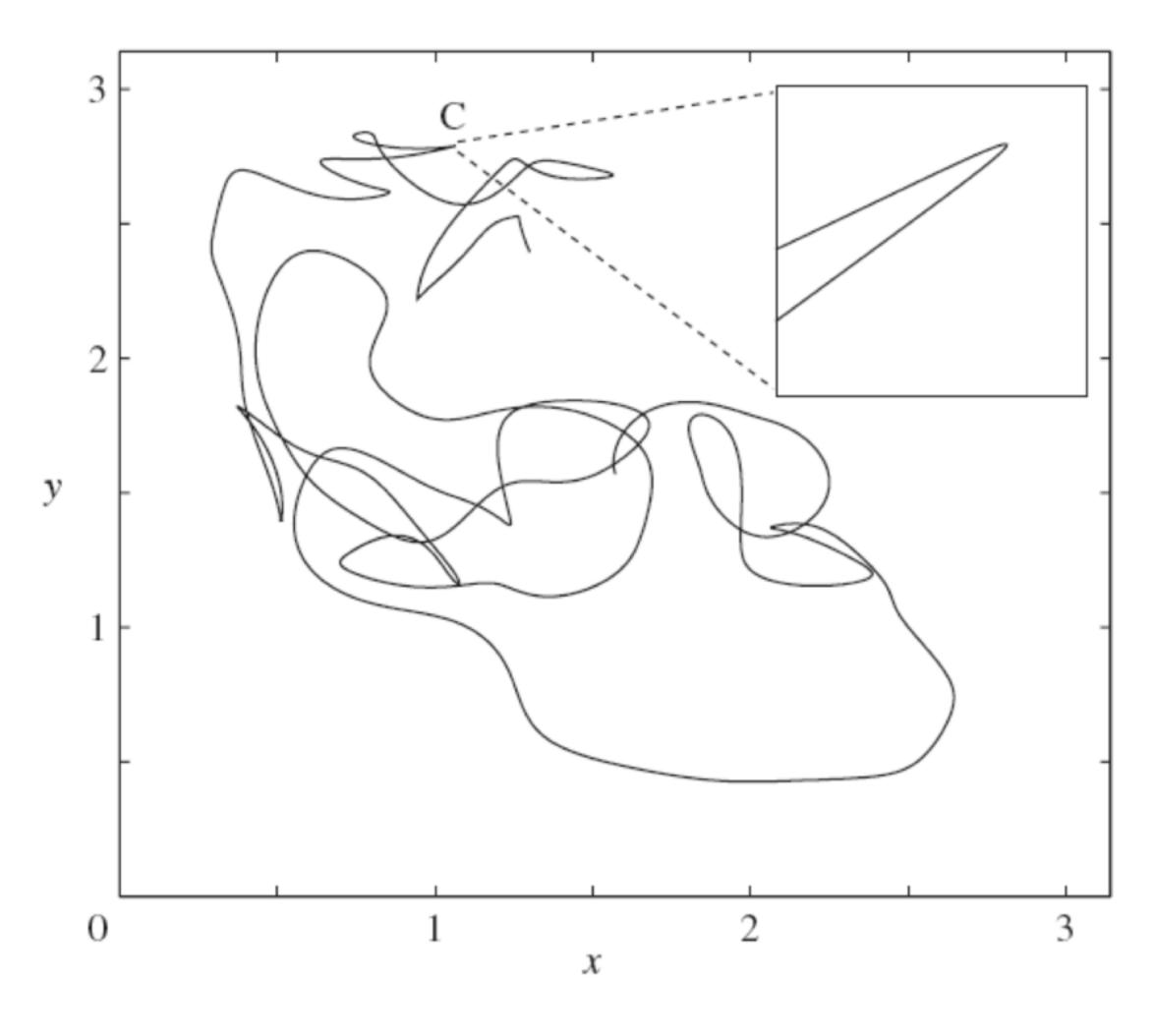
$$\psi(x, y, 0) = \sum_{m,n=1}^{4} \frac{1}{4} \phi_{mn}(x, y) \exp(i\theta_{mn})$$

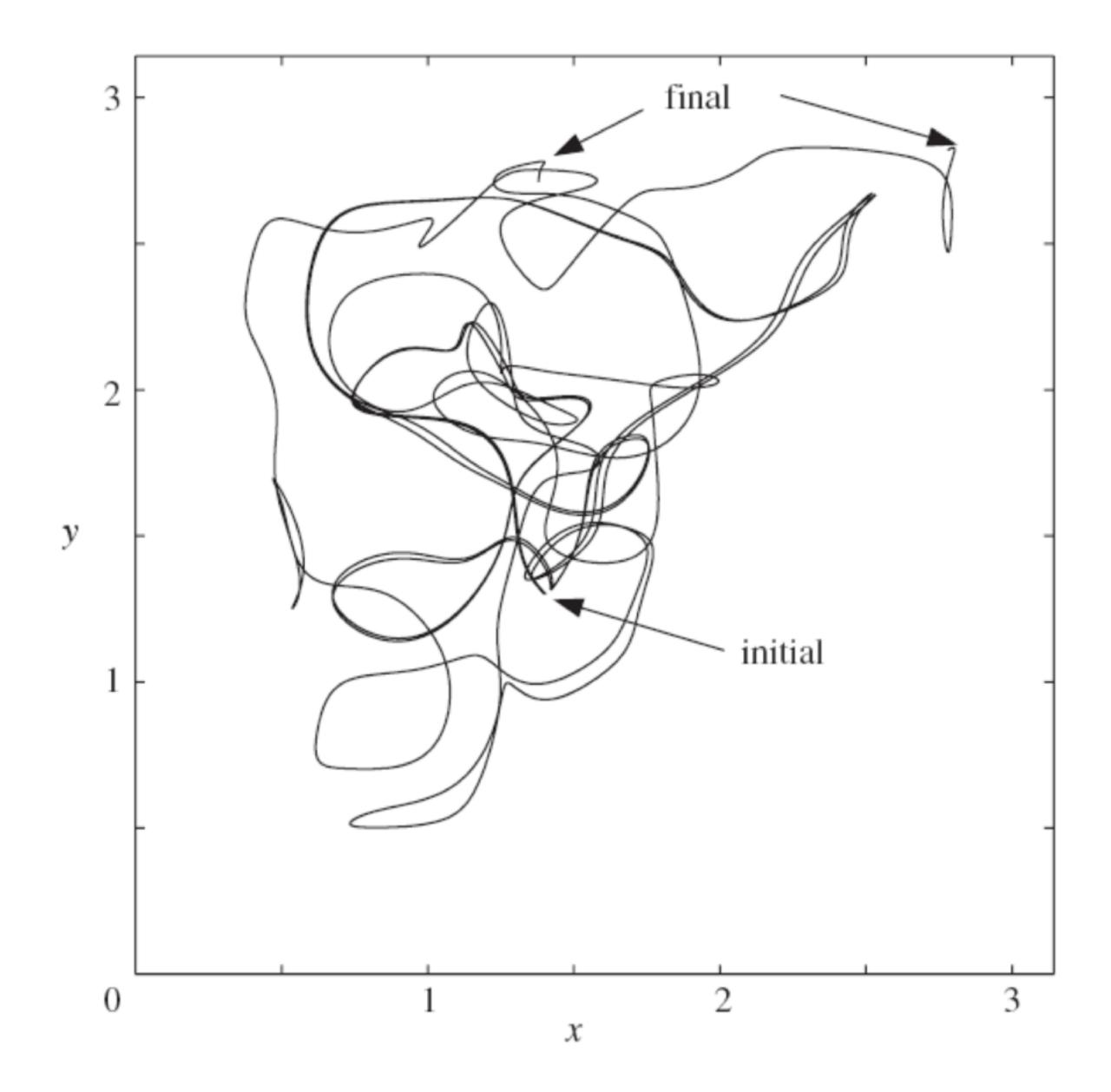
$$\psi(x, y, t) = \sum_{m,n=1}^{4} \frac{1}{4} \phi_{mn}(x, y) \exp i(\theta_{mn} - E_{mn}t)$$



Typical quantum trajectory...

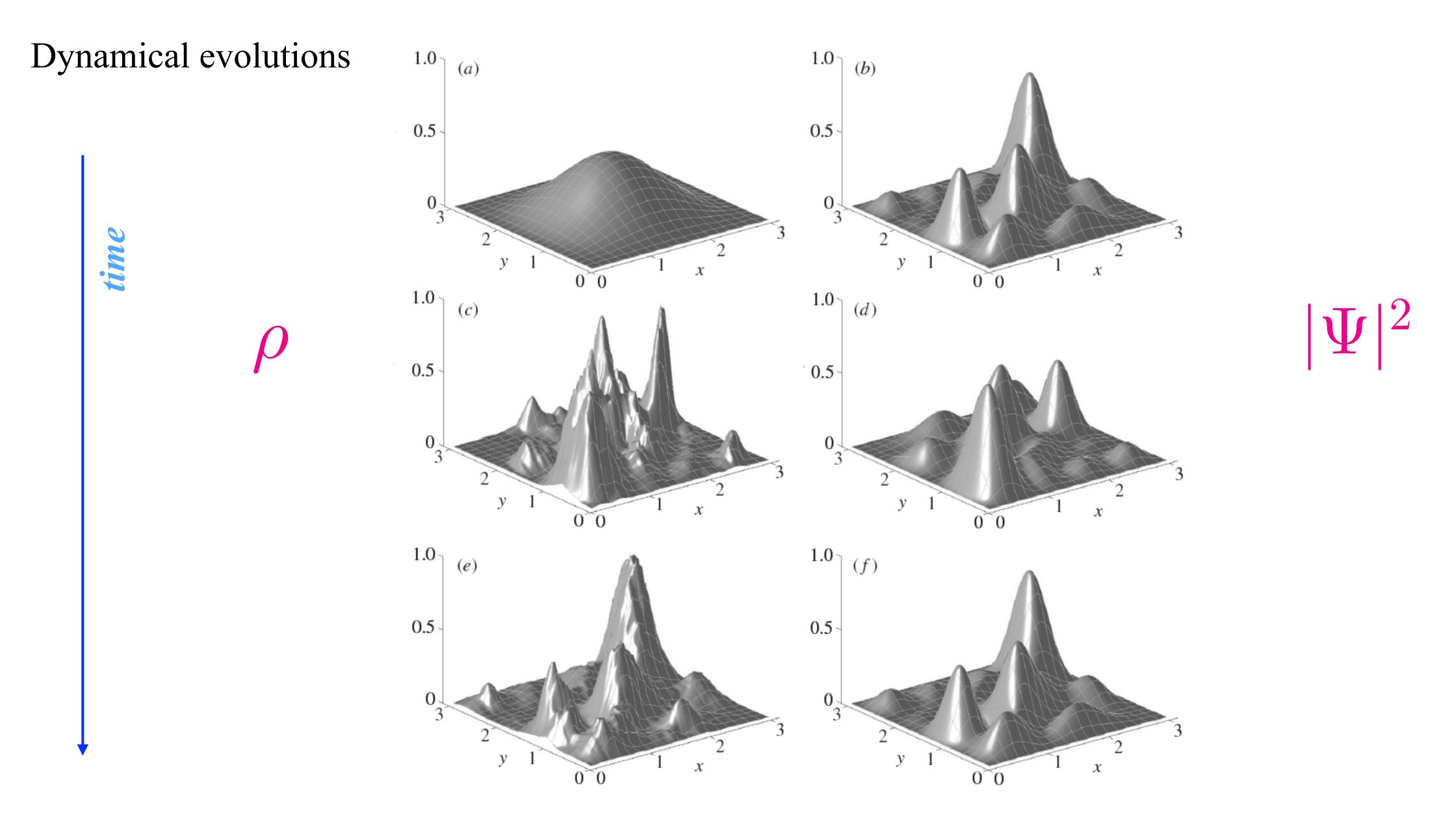




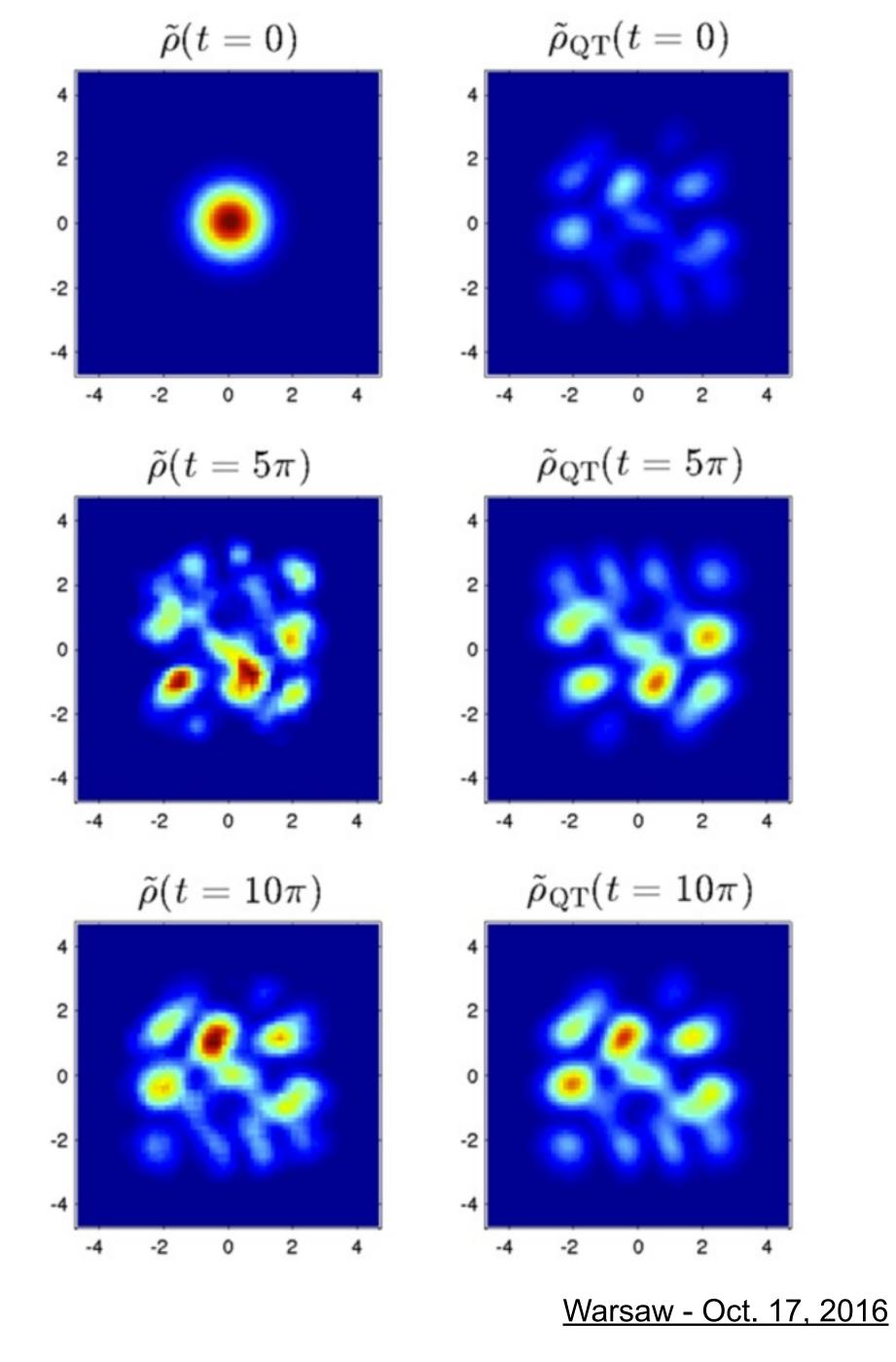


chaotic mixing...

Warsaw - Oct. 17, 2016



Warsaw - Oct. 17, 2016

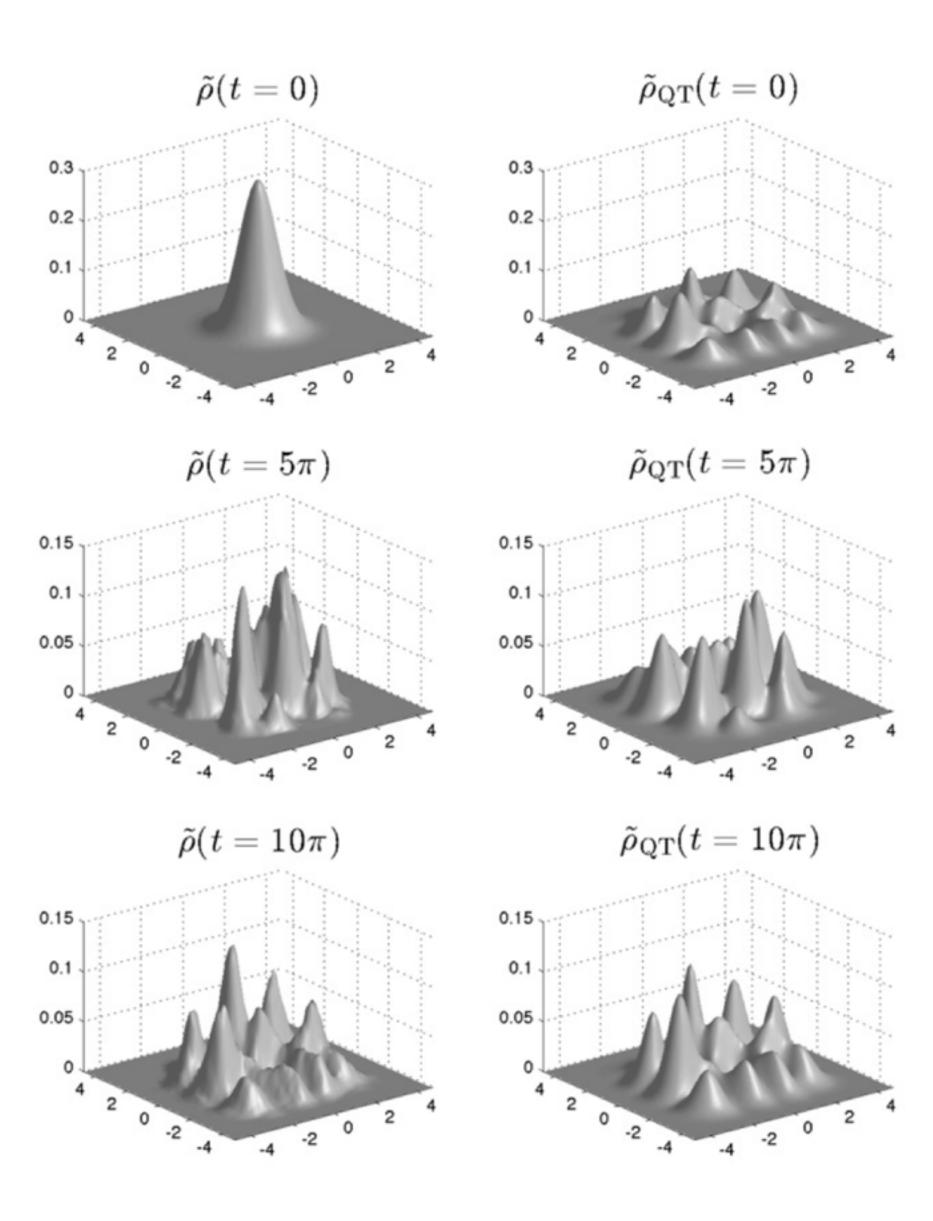


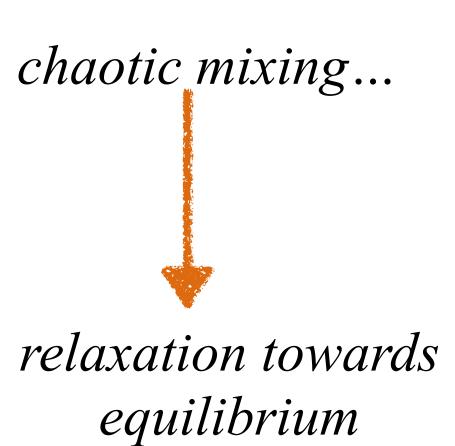
chaotic mixing...

relaxation towards

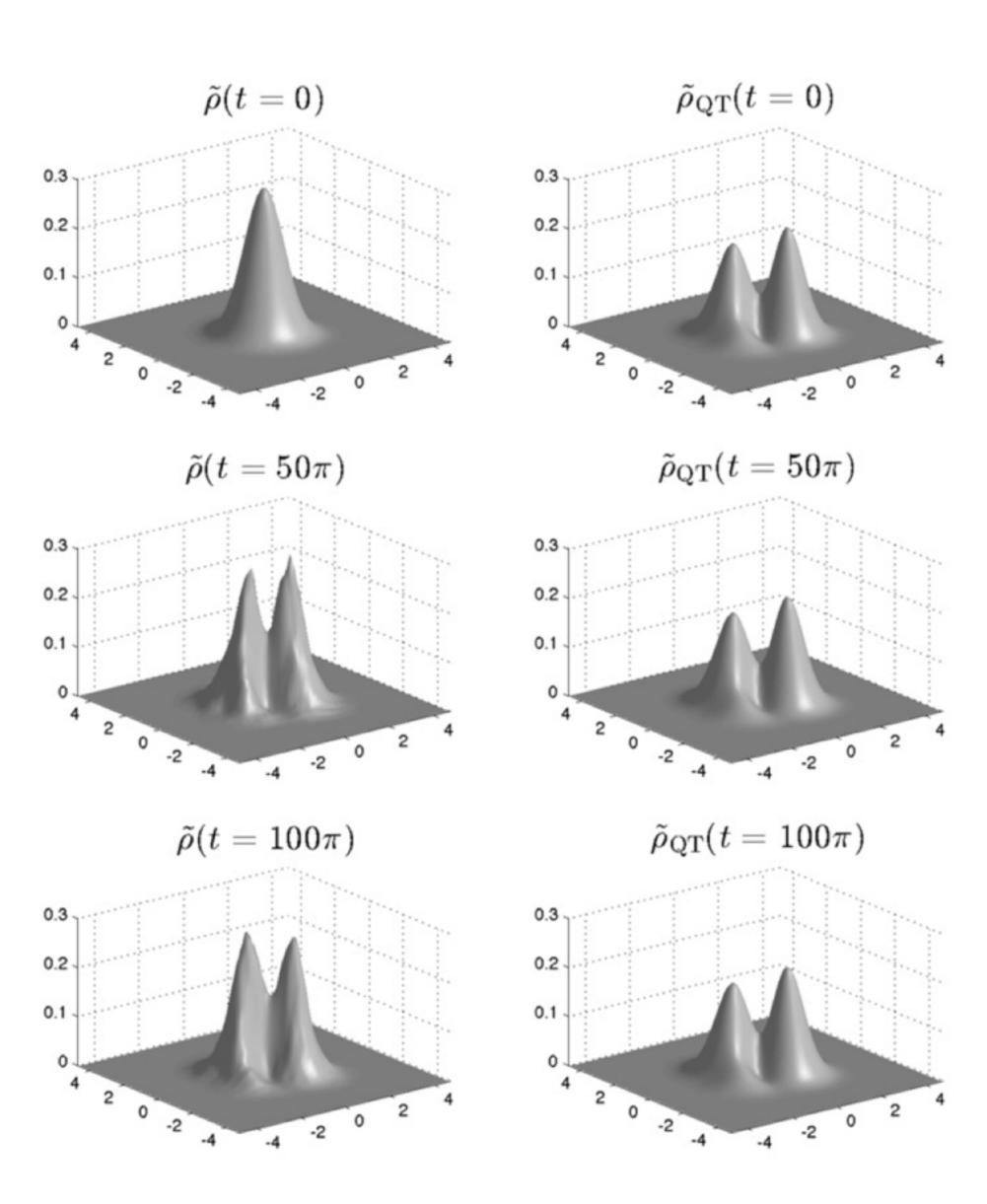
equilibrium

just like ordinary thermal equilibrium





just like ordinary thermal equilibrium

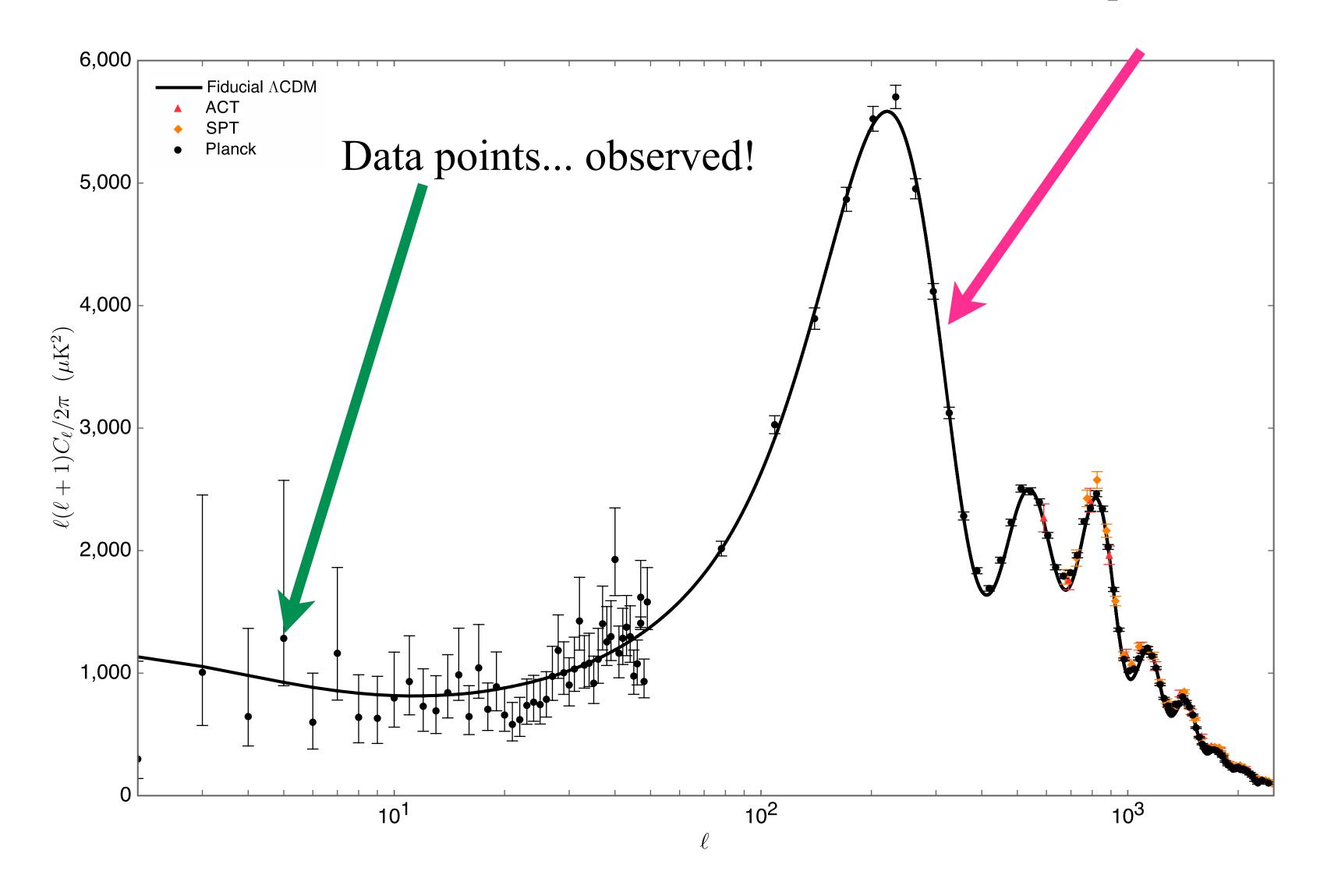


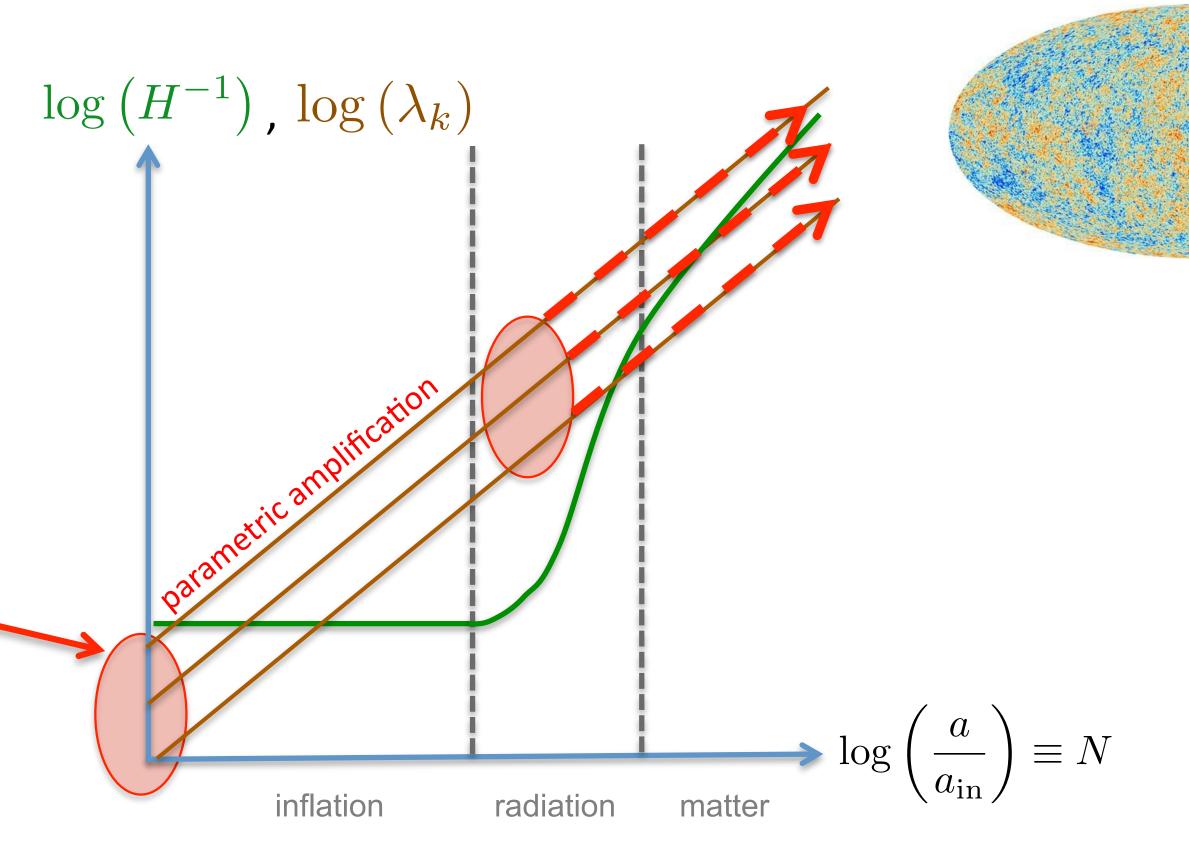
chaotic mixing...

relaxation towards

equilibrium

just like ordinary thermal equilibrium



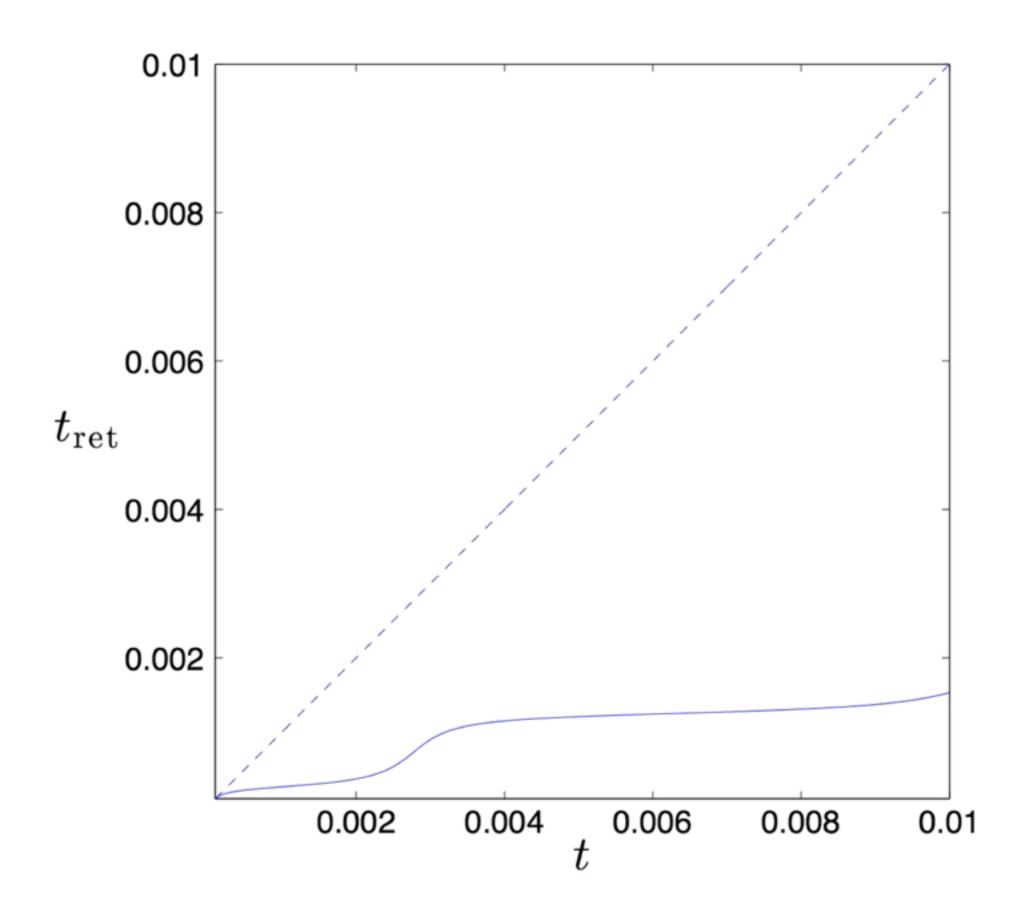


Harmonic oscillator fundamental state

$$\Psi_{\mathbf{k}} = \left(\frac{k}{\pi}\right)^{\frac{1}{4}} e^{-\frac{k}{2}v_{\mathbf{k}}^2}$$

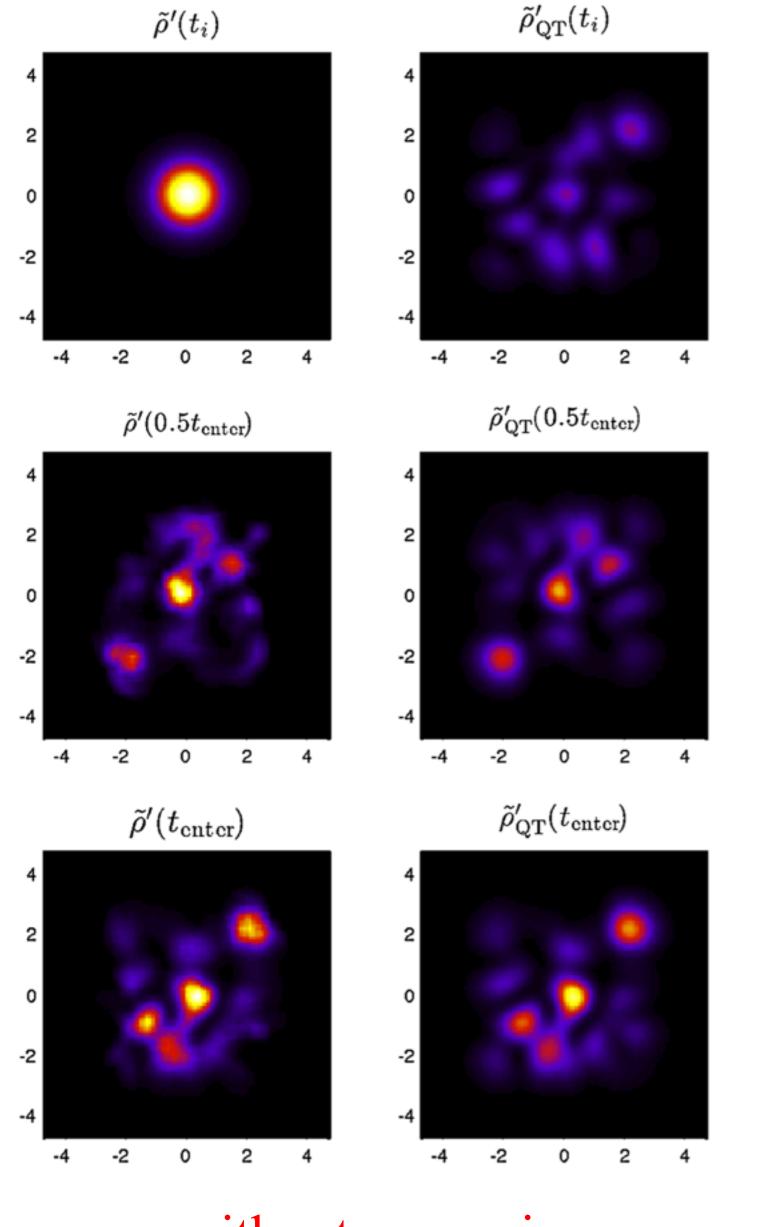
Out-of-equilibrium time evolution

- Usual behaviour = evolves towards equilibrium
 (Minkowski or slowly expanding Universe)
- Inflation: there is a retarded time…

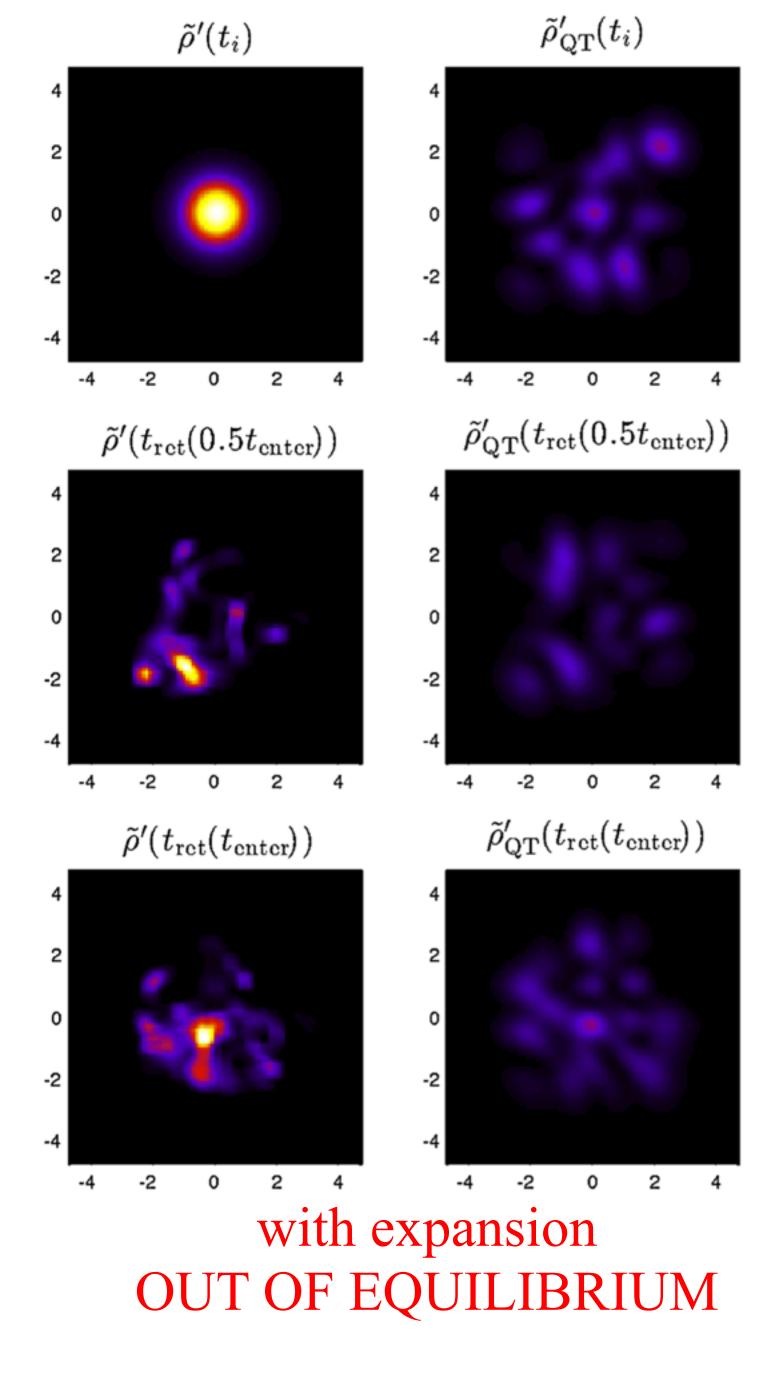


Freezing the pdf out of equilibrium

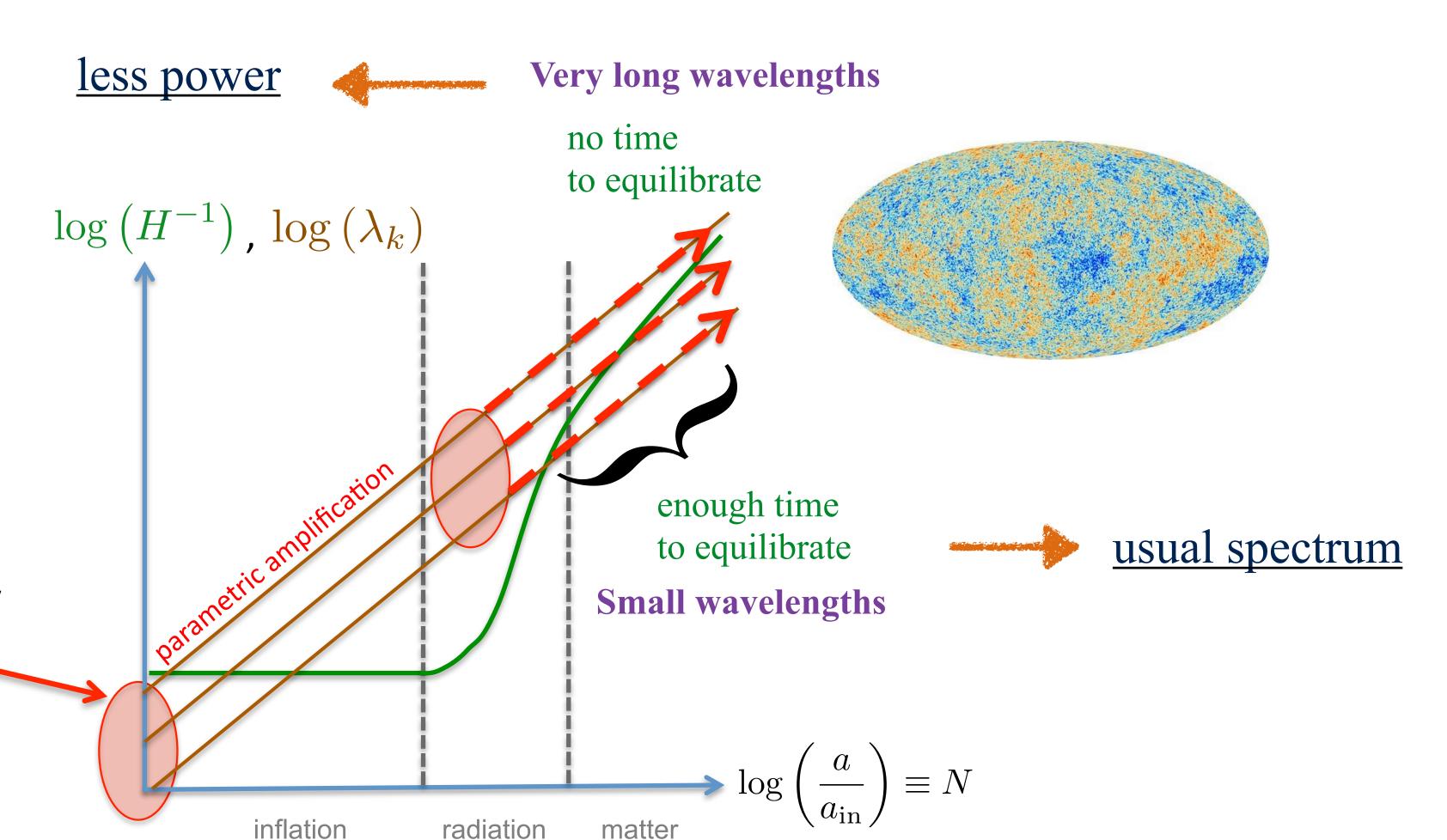
Warsaw - Oct. 17, 2016



without expansion EQUILIBRIUM



Warsaw - Oct. 17, 2016



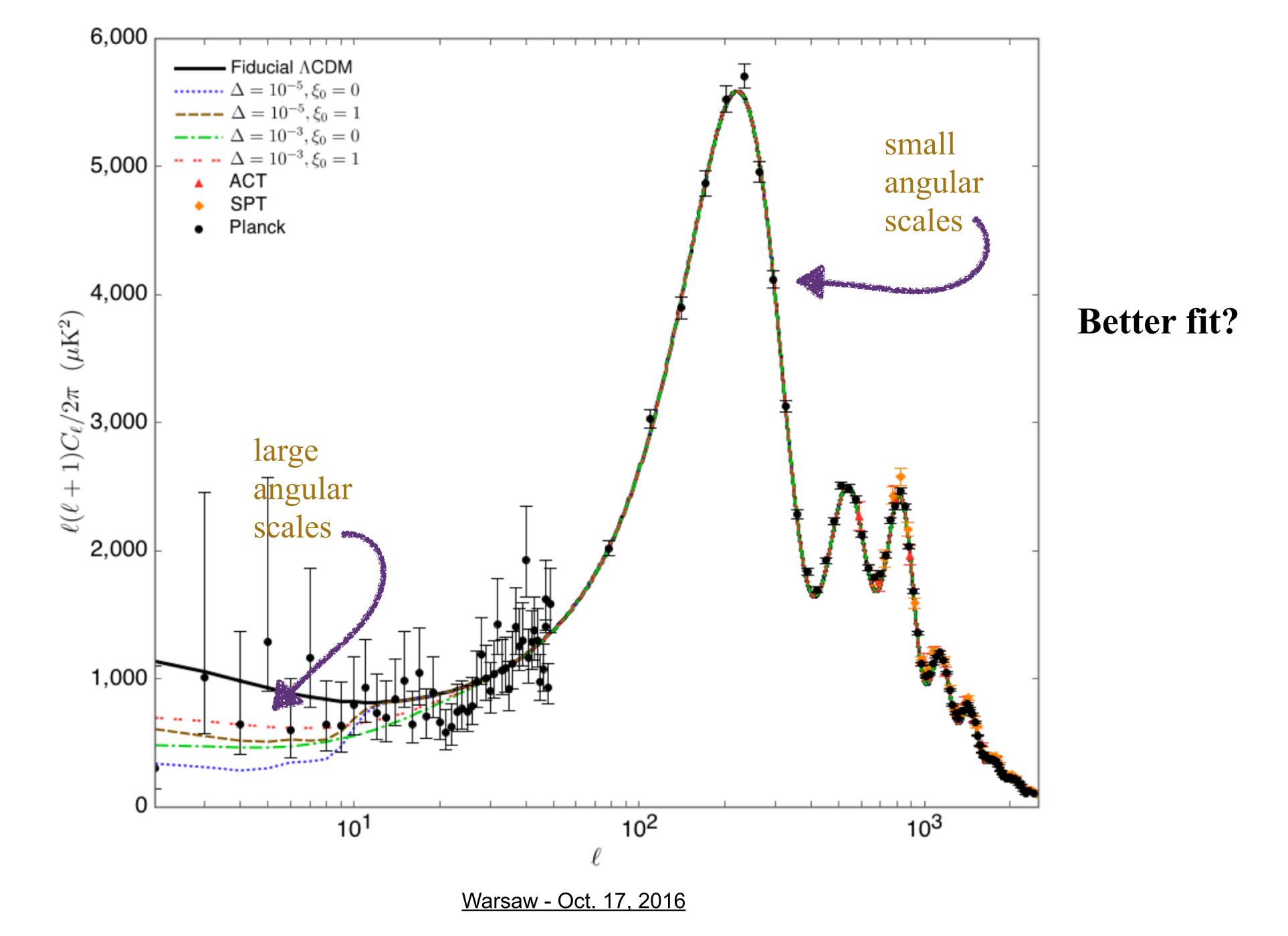
Harmonic oscillator fundamental state.

$$\Psi_{\mathbf{k}} = \left(\frac{k}{\pi}\right)^{\frac{1}{4}} e^{-\frac{k}{2}v_{\mathbf{k}}^2}$$

Out-of-Equilibrium initial density: less quantum noise

radiation

matter



Conclusions

- cosmology works amazingly well
- **perturbation theory fits the data**
- demands initial conditions from quantum vacuum fluctuations
- described by the Schrödinger equation
 - quantum mechanics works amazingly well
 - actual particle trajectories
 - there exists an analog hydrodynamical system
 - theory can be tested if out-of equilibrium
 - only known regime possible = cosmology
 - demands initial condition with less quantum noise
 - predicts less amplitude on large scales
 - TO BE CONTINUED...