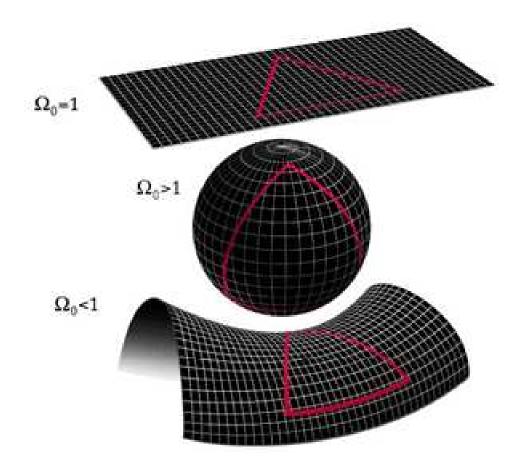
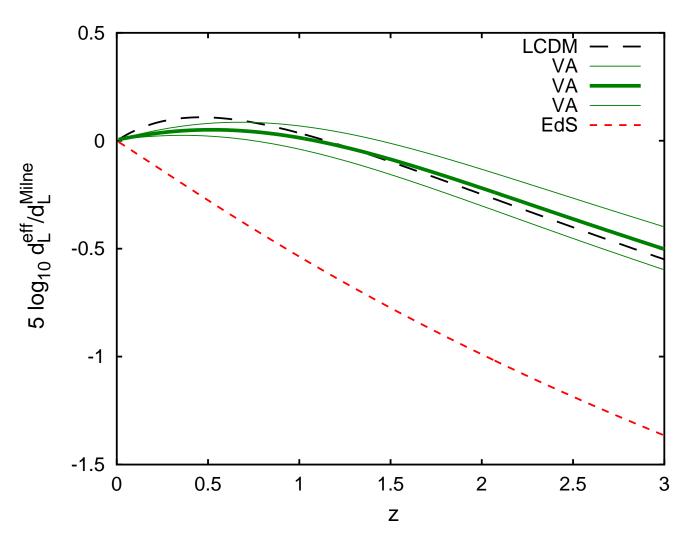

## **Curvature of the Universe**


Jan J. Ostrowski

National Centre for Nuclear Research, Warsaw Annual seminar of Department of Fundamental Research, 15-12-2020

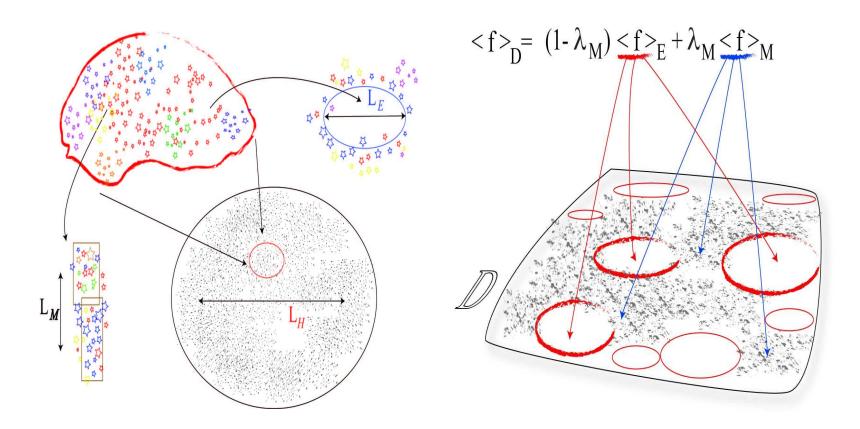


#### Spatial curvature in the FLRW universe


Cosmic triangle:  $1=\Omega_m+\Omega_k+\Omega_\Lambda$ 



We think that these order–of–magnitude estimates provide a strong call for a proper relativistic treatment of the underlying gravitational physics in these systems; spatial curvature is an inherently relativistic phenomenon, unknown to the Newtonian theory. The claim on the validity of a quasi–Newtonian metric (...) to describe gravitational physics on all scales in the observable Universe (...) is thus seriously called into question.


| Gravitating system /<br>Smoothing scale | Mass<br>M                                                                            | Diameters $D$ and $d$                                                           | D/d  | ε                     | $\varepsilon (D/d)^2$ |
|-----------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------|-----------------------|-----------------------|
| A1: Earth's orbit /<br>Sun              | $\begin{array}{c} \approx M_{\odot} \\ (1.99 \times 10^{30} \text{ kg}) \end{array}$ | $\begin{array}{l} 300\times10^6~{\rm km}\\ 1.39\times10^6~{\rm km} \end{array}$ | 216  | $4.24 \times 10^{-6}$ | 0.20                  |
| A2: Galaxy /<br>Open star cluster       | $\approx 10^{11} M_{\odot}$<br>(1.99 × 10 <sup>41</sup> kg)                          | 100000 ly<br>30 ly                                                              | 3333 | $6.23 	imes 10^{-7}$  | 6.92                  |
| A3: Cluster of galaxies /<br>Galaxy     | $\approx 10^{14} M_{\odot}$<br>(1.99 × 10 <sup>44</sup> kg)                          | 5 Mpc<br>0.03 Mpc                                                               | 167  | $3.82 \times 10^{-6}$ | 0.11                  |
| C1: Void /<br>Wall                      | $\approx (1/6)\pi \rho_m D^3$<br>(2.98 × 10 <sup>45</sup> kg)                        | $30h^{-1} \text{ Mpc}  3h^{-1} \text{ Mpc}$                                     | 10   | $6.78 \times 10^{-6}$ | $6.78 \times 10^{-4}$ |
| C2: Homogeneity scale /<br>Supercluster | $\approx (1/6)\pi\rho_m D^3$ $(2.98\times 10^{48} \text{ kg})$                       | $300h^{-1} \text{ Mpc}$<br>$30h^{-1} \text{ Mpc}$                               | 10   | $6.78 \times 10^{-4}$ | $6.78 \times 10^{-2}$ |
| C3: Hubble sphere /                     | $\approx (1/6)\pi\rho_m D^3$ $(2.38\times 10^{52} \text{ kg})$                       | $6000h^{-1}$ Mpc                                                                |      | 0.27                  |                       |

## Spatial curvature: observational effect



Roukema, Ostrowski, Buchert; JCAP 2013

# Partitioning approach



Buchert, Carfora; CQG 2002

#### Hamiltonian constraint, turnaround condition

Local Hamiltonian constraint:

$$3H^2 = 8\pi G\rho - 3k/a^2 + \Lambda \quad \Rightarrow \quad H^2 = 8\pi G\rho + \sigma^2 - \frac{1}{2}\mathcal{R} + \Lambda$$

Turnaround condition: H = 0

#### Hamiltonian constraint, turnaround condition

Local Hamiltonian constraint:

$$3H^2 = 8\pi G\rho - 3k/a^2 + \Lambda \quad \Rightarrow \quad H^2 = 8\pi G\rho + \sigma^2 - \frac{1}{2}\mathcal{R} + \Lambda$$

Turnaround condition: H = 0

Averaged Hamiltonian constraint:

$$H_{\mathcal{D}}^2 = 8\pi G \langle \rho \rangle_{\mathcal{D}} - \frac{1}{2} \mathcal{Q} - \frac{1}{2} \langle \mathcal{R} \rangle_{\mathcal{D}} + \Lambda$$

where Q contains kinematical effects from inhomogeneities

Turnaround condition:  $H_{\mathcal{D}} = 0$ 

## **Analytical results**

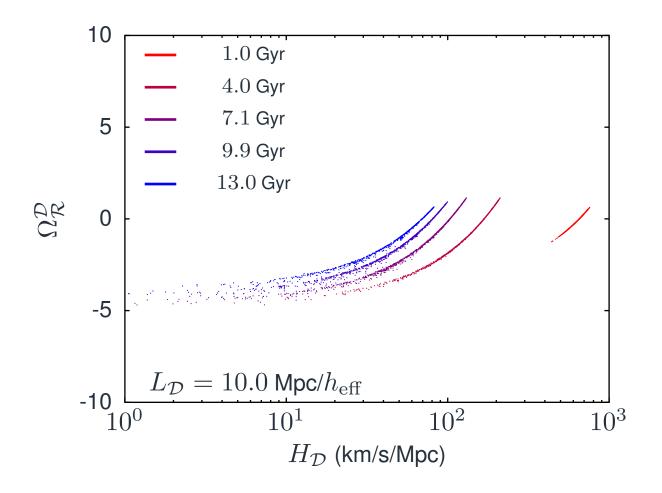
For the turnaround to occur:

 $\mathcal{R} > 0$ 

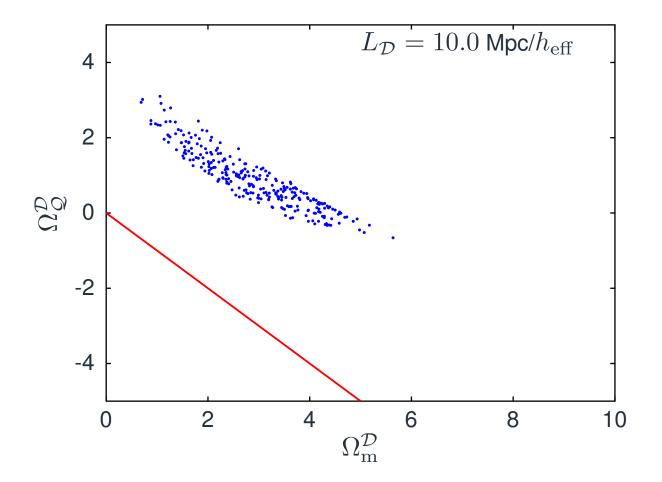
In the case of averaged equations, we have statistically:

 $\langle \mathcal{R} \rangle_{\mathcal{D}} > 0$ 

For Einstein de-Sitter background we have:


$$\Omega_{\mathcal{R}}^{\mathcal{D}} = -5 \; ; \; \Omega_{\mathcal{Q}}^{\mathcal{D}} = 1 \; ; \; \Omega_{m}^{\mathcal{D}} = 4 \; ; \; \frac{\langle \rho \rangle_{\mathcal{D}}}{\rho_{EdS}} = 4$$

## **Numerical methods**


General scheme:

- **MPGRAFIC** generate initial conditions
- DTFE calculate averaged initial conditions
- **INHOMOG** calculate evolution of the domains
- **RAMSES-SCALAV** single pipeline + additional options

#### **Curvature density**



## Averaged positive curvature



## Conclusions

- big positive spatial curvature is a generic feature of collapsing structures at the turnaround; both locally and on average
- $\Omega_R^D \approx -5$  remains an approximate lower bound for the averaged curvature functional for the wide range of initial conditions
- fluid parameters at the turnaround may provide an additional cosmological test
- details can be found in:
  - $\rightarrow$  'A few numbers from the turnaround epoch of collapse', Ostrowski J.J., Acta Phys. Pol. B Proc. Suppl. Vol. 13, p 177 (2020)
  - → 'Does spatial flatness forbid the turnaround epoch of collapsing structures?',
    Roukema B.F., Ostrowski J.J., Journal of Cosmology and Astroparticle Physics, Vol. 2019, 12 (2019)