The Higgs boson in the mirror

Measurement of the CP structure of the tau lepton Yukawa coupling with the CMS experiment

Michał Bluj

High Energy Physics Division (BP3)
The CMS experiment group

Annual seminar of Department of Fundamental Research 29 December 2021

Introduction

- The Higgs boson thoroughly studied after its discovery
 - Deviations from Standard Model exceptions looked for => window for New Physics (NP)

Standard Model predicts the Higgs boson with spin-parity 0⁺, i.e. CP even scalar particle – it is the case? Have to be checked in a CP mirror (in experiment) => swap particles with anti-particles (C) and invert spacial coordinates (P)

- CP-violation in the Higgs couplings can occur (and be accessed experimentally) in:
 - HVV couplings
 H → ZZ / WW decays, W/Z H production
 - Yukawa (to fermion) couplings

H → TT decays

ttH production (and gg → H production occurring via t-quark loop)

Tau Yukawa coupling (Υ_τ)

 Yukawa coupling: CP-odd term can occur at tree level (no suppression by NP scale!)

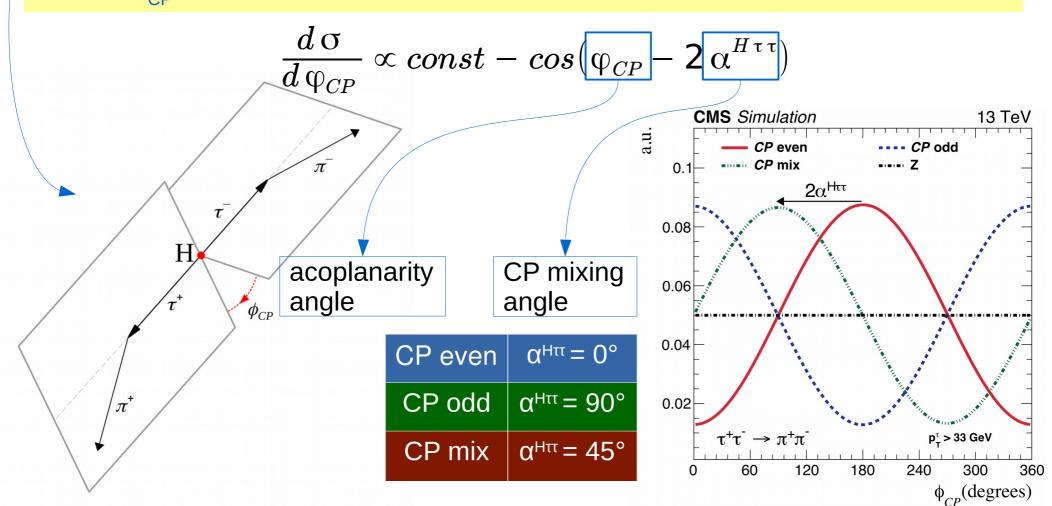
$$\mathcal{L}_{Y} = -\frac{m_{\tau}H}{v} \underbrace{(\kappa_{\tau}\bar{\tau}\tau) + (\tilde{\kappa}_{\tau}\bar{\tau}i\gamma_{5}\tau)}_{\text{CP even}}$$

$$\underbrace{\text{CP even}}_{\text{(scalar)}} \underbrace{\text{CP odd}}_{\text{(pseudoscalar)}}$$

$$0 \le \kappa_{\tau}, \widetilde{\kappa}_{\tau} \le 1, \sqrt{\kappa_{\tau}^2 + \widetilde{\kappa}_{\tau}^2} = 1$$

 \circ Parametrisation: effective **CP mixing angle (α**^{Hττ}**)**:

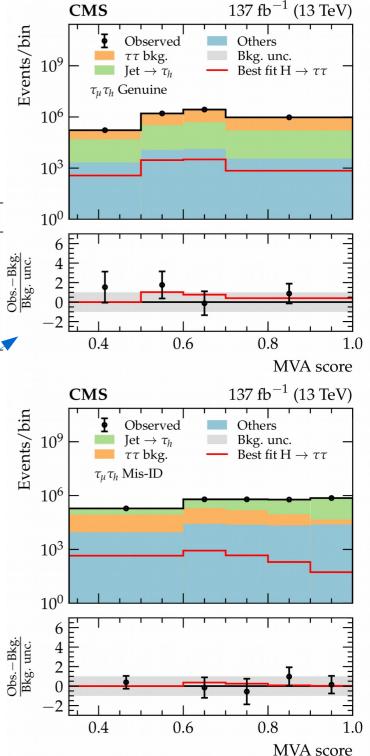
$$\tan(\alpha^{\mathrm{H}\tau\tau}) = \frac{\widetilde{\kappa}_{\tau}}{\kappa_{\tau}}$$


CP even	$\alpha^{H\tau\tau} = 0^{\circ}$
CP odd	$\alpha^{H\tau\tau} = 90^{\circ}$
CP mix	$\alpha^{H\tau\tau} = 45^{\circ}$

Acoplanarity angle

CP encoded in correlations between transversal components τ spins => correlation between τ -decay planes (acoplanarity angle ϕ_{CP})

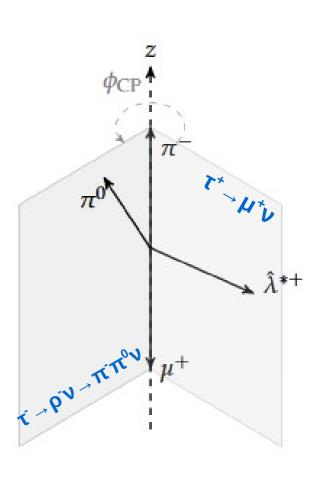
Cross-section of the H \rightarrow TT decay has a sinusoidal shape in acoplanarity angle (ϕ_{CP}) with phase given by CP mixing angle (α^{HTT})



Strategy

- Full Run-2 data of 137/fb at 13TeV (2016-2018)
- $_{\odot}$ Most sensitive channels: eτ_h & μτ_h & τ_hτ_h (~85% of all ττ final states)

Mode	$e^{\pm}\nu\nu$	$\mu^{\pm}\nu\nu$	$\mathrm{h}^{\pm} u$	$\mathrm{h}^{\pm}\pi^{0} u$	$\mathrm{h}^{\pm}\pi^{0}\pi^{0} u$	$h^{\pm}h^{\mp}h^{\pm}\nu$	_
Туре	$ au_{ m e}$	$ au_{\mu}$	$ au_{ m h}$	$ au_{ m h}$	$ au_{h}$	$ au_{h}$	
$\mathcal{B}(\%)$	17.8	17.4	11.5	25.9	9.5	9.8	ī
Resonance	<u> </u>	_	_	$\rho(770)$	$a_1(1260)$	$a_1(1260)$	7
Symbol	e	μ	π	ρ	a ₁ ^{1pr}	a_1^{3pr}	A


- Event categories with ML (multi-class MVA):
 - H → ττ signal
 - ∘ Genuine $\tau\tau$ (mainly $Z/\gamma^* \rightarrow \tau\tau$)
 - Fakes (mainly QCD jets & W+jets)
 - => Use m_{π} and event topology & kinematics
- Reconstruct decay planes (signal cat.)
- Fit expectations to data in all categories
 - $_{\circ}$ 2D fit in signal category: ϕ_{CP} vs MVA score
 - 1D fit in bkg. categories: MVA score

Decay plane reconstruction

- In LHC generally not possible
 - Momentum carried by υ's, not known Higgs rest frame
 - => use approximated methods
- Impact parameter method for single charged particle (e[±], μ[±], π[±])
 - (by S.Berge et al)
 - Plane spanned by IP and momentum of charged particle
- $_{\odot}$ Neutral pion method (ρ , a_1^{1pr} , a_1^{3pr})
 - (by Z.Was et al)
 - Plane spanned by momentum of charged and neutral particle
 - \circ a_1^{1pr} : momenta of $2\pi^0$ summed up
 - $_{\circ}~~a_{_{1}}^{~3pr}\!\!:$ find pair compatible with ρ and use instead of π^{o}
- Combine planes in zero momentum frame (ZMF) of two charged particles

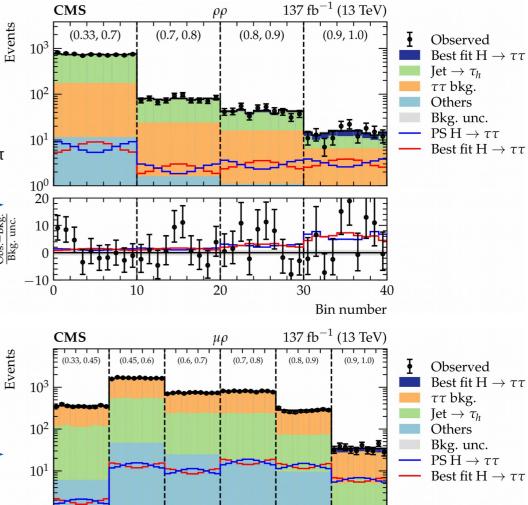
Signal extraction

10

30

Bin number

Fit of signal and background models to data in all categories simultaneously


• Free parameters: signal strength & $\alpha^{H\pi}$

Signal category split by TT decay channel

Most sensitive channels:

ρρ πρ,μρ

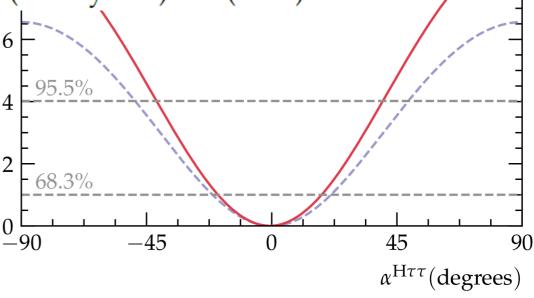
• each with ~1 σ separation between CP even and CP odd Distributions of ϕ_{CP} in bins of MVA score shown

Results: CP mixing angle $\alpha^{H\pi}$

- 1st measurement of CP structure of Y_T
- Consistent with SM: CP even preferred over CP odd with 3σ

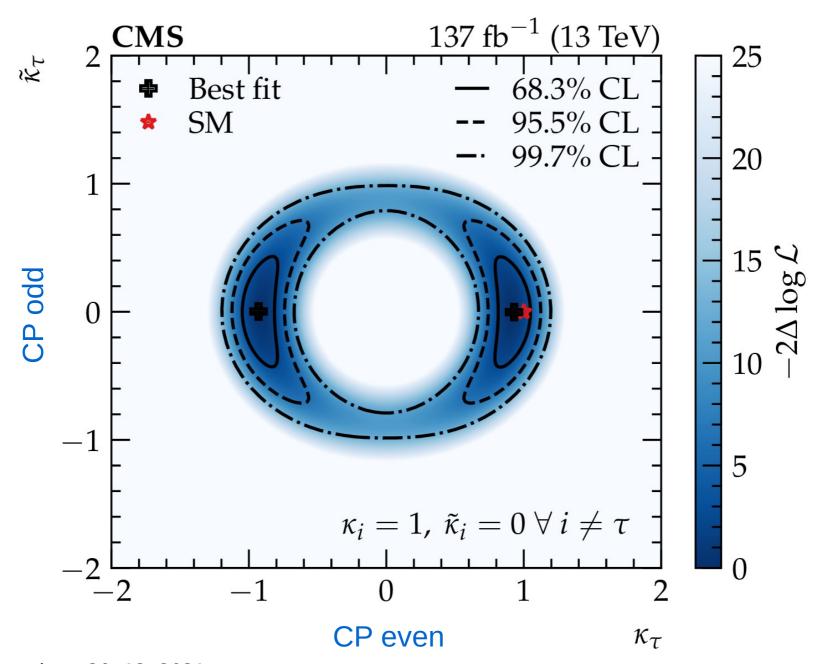
CMS


12 CMS


137 fb⁻¹ (13 TeV)

Observed: $\hat{\alpha}_{obs.}^{H\tau\tau} = -1 \pm 19 \circ (68.3\% \text{ CL})$ Expected: $\hat{\alpha}_{exp.}^{H\tau\tau} = 0 \pm 21 \circ (68.3\% \text{ CL})$

 $\alpha^{H\tau\tau} = -1 \pm 19 \text{ (stat)} \pm 1 \text{ (syst)} \pm 2 \text{ (bin-by-bin)} \pm 1 \text{ (theo)}^{\circ}$


Uncertainty dominated by statistic

Results: reduced couplings

Summary

- Run-2 opened era of precise measurements of the Higgs boson
- CP structure of tau Yukawa coupling probed
 - $^{\circ}$ CMS measurement (1st of this type!) agrees with SM (CP even coupling) and excludes pure CP odd coupling at 3σ
 - Ohear of the state of the stat
- Result in arXiv:2110.04836 and submitted to JHEP

Thank you!

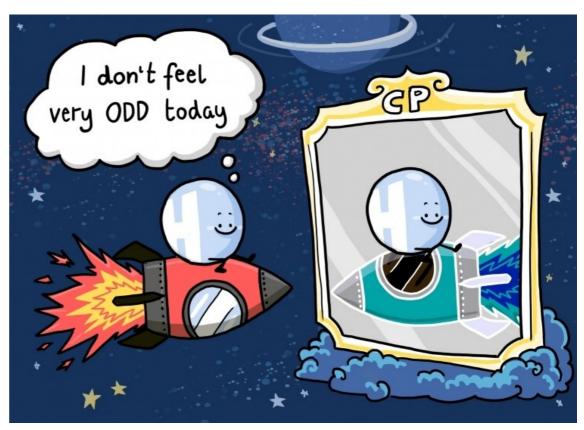
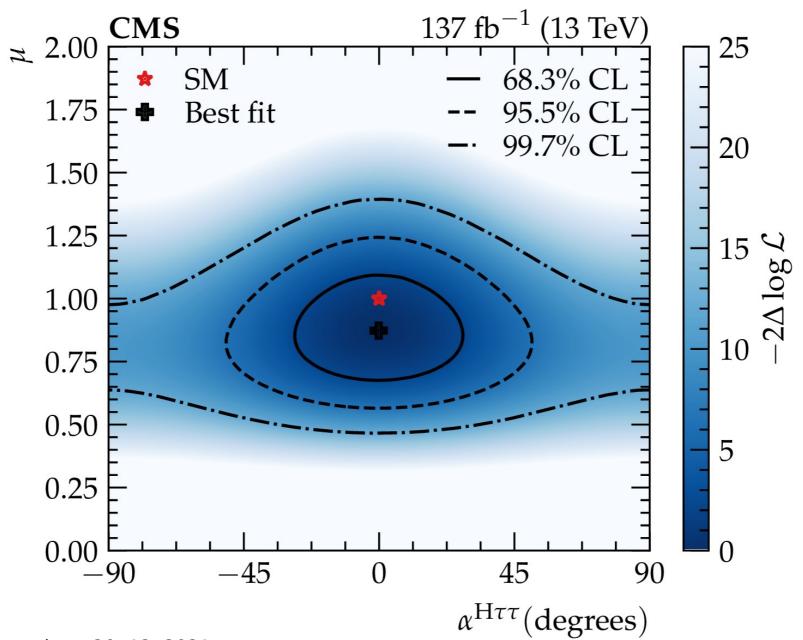



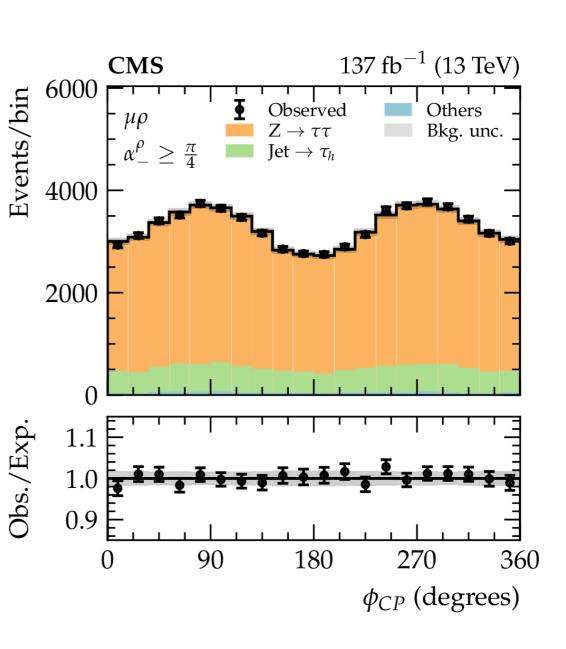
image: DESY/designdopper

Additional material

Results: CP mixing angle $\alpha^{H\tau\tau}$ vs signal strength μ

Check with $Z \rightarrow \tau \tau$

 ϕ_{CP} flat for $Z \rightarrow \tau \tau$,

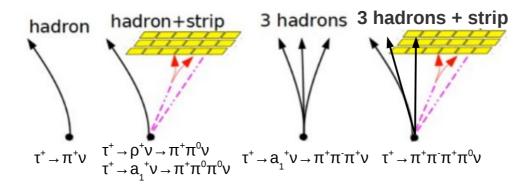

but can be modulated when events "nearly perpendicular" ($\alpha > \pi/4$, here) or "nearly coplanar" ($\alpha < \pi/4$) to production plane are selected

 cf. S.Berge et al, arXiv:1410.6362

Can be used to check data/MC of ϕ_{CP} with $Z \rightarrow \tau \tau$ enriched

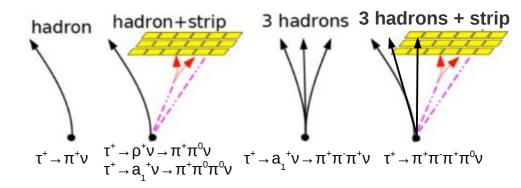
sample

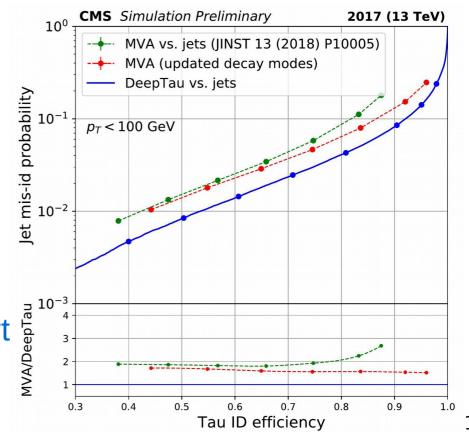
=> Observed agreement is very good


Anatomy of H→tt measurements

τ reconstruction in CMS

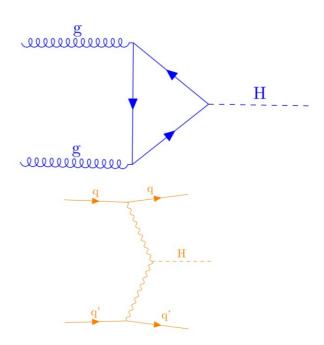
- Only visible τ decay products reconstructed
 - vs contribute to p_T^{miss}
- Leptonic decays undistinguishable from prompt e and μ
- $_{\odot}$ Decays to hadrons+ν (τ_{h}) with hadron-plus-stips (HPS) algorithm
 - Main τ_h decay modes
 (with particles by PFlow)


Decay mode	Resonance	B (%)	
Leptonic decays		35.2	
$ au^- o \mathrm{e}^- \overline{ u}_\mathrm{e} u_ au$			17.8
$ au^- o \mu^- \overline{ u}_\mu u_ au$			17.4
Hadronic decays		64.8	
$ au^- ightarrow ext{h}^- u_ au$			11.5
$ au^- o ext{h}^- \pi^0 u_ au$	$\rho(770)$		25.9
$ au^- ightarrow \mathrm{h}^- \pi^0 \pi^0 u_ au$	$a_1(1260)$		9.5
$ au^- ightarrow ext{h}^- ext{h}^+ ext{h}^- u_ au$	$a_1(1260)$		9.8
$ au^- ightarrow ext{h}^- ext{h}^+ ext{h}^- \pi^0 u_ au$			4.8
Other			3.3

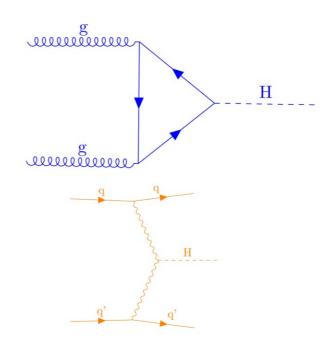


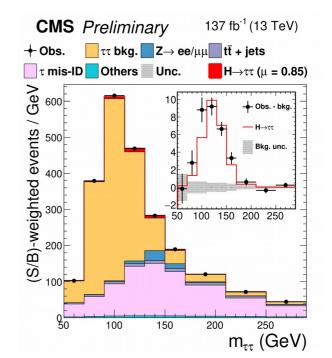
τ reconstruction in CMS

- Only visible τ decay products reconstructed
 - νs contribute to p_T^{miss}
- Leptonic decays undistinguishable from prompt e and μ
- Decays to hadrons+ν (τ_h) with hadron-plus-stips (HPS) algorithm
 - Main τ_n decay modes
 (with particles by PFlow)
- Further identification with DNN
 - $_{h}$ τ quantities & quantities of particles around τ (global and per-particle)
 - => significant gain in performance wrt previous tauID



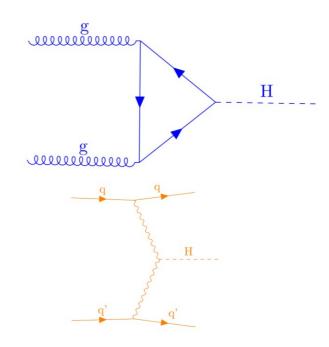
Anatomy of H → TT measurements

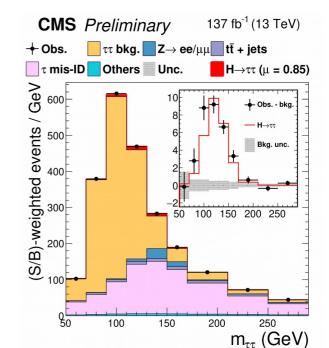

- $_{\odot}$ Use the $_{h}^{}$ τ $_{h}^{}$, $μτ_{h}^{}$, $eτ_{h}^{}$, and eμ
- Exploit event topology
 - Production: 0-, 1- and 2-jet (VBF)
 - $_{\circ}$ p_T of the di-τ+p_T^{miss} (Higgs)
 - VH(ττ) channels analysed separately



Anatomy of H → TT measurements

- $_{\odot}$ Use the $_{h}^{}$ τ $_{h}^{}$, $μτ_{h}^{}$, $eτ_{h}^{}$, and eμ
- Exploit event topology
 - Production: 0-, 1- and 2-jet (VBF)
 - $_{\circ}$ p_{_T of the di-τ+p_T^{miss} (Higgs)}
 - VH(ττ) channels analysed separately
- $_{\odot}$ Fully reconstructed m_{$_{\pi}$} (res. of ~20%)
 - $_{\circ}$ vis. momenta & $p_{_{\scriptscriptstyle T}}^{\rm miss}$ w/ max likelihood

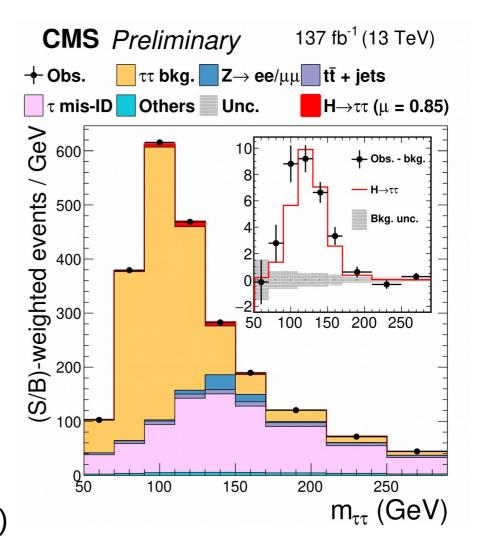



CMS-HIG-PAS-19-010

Anatomy of H → TT measurements

- $_{\odot}$ Use the $_{h}^{}$ τ $_{h}^{}$, $μτ_{h}^{}$, $eτ_{h}^{}$, and eμ
- Exploit event topology
 - Production: 0-, 1- and 2-jet (VBF)
 - $_{\circ}$ p_{_T of the di-τ+p_T^{miss} (Higgs)}
 - \circ VH($\tau\tau$) channels analysed separately
- $_{\odot}$ Fully reconstructed m_{$_{\Pi}$} (res. of ~20%)
 - $_{\circ}$ vis. momenta & $p_{_{\mathsf{T}}}^{\mathrm{miss}}$ w/ max likelihood
 - => Cut-based or MVA-based event categories with different yields & S/B
- Fit S&B expectations to data to find event yields
 - All categories fit simultaneously
 - Systematics as nuisance parameters

Background in H→TT measurements


Genuine TT

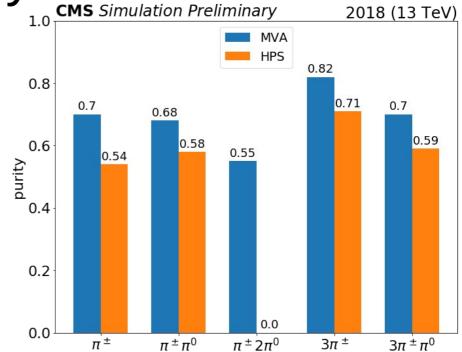
Mainly $Z/\gamma^* \to \tau\tau$ Embedding technique: Replace μs in $(Z/\gamma^* \to) \mu\mu$ data by simulated τs

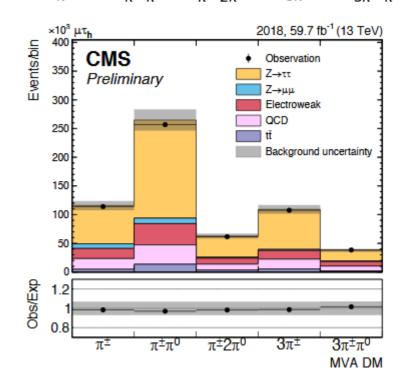
Mis-ID ts (fakes)

Mainly QCD jets, W+jets w/ jet $\rightarrow \tau$ Fake factors technique: Apply mis-ID probability to τ -free events

Z/y* → ee/µµ, tt+jets, Others (VV, single-t, ...) Simulation (with MC/data corrections)

MVA T decay-mode ID


Decay mode migrations lead to incorrect ϕ_{CP} estimates


=> Dedicated BDT developed to improve decay mode identification on top of HPS

Inputs include:

- Inv. masses of tau decay products,
- angular distribution of photons in strips,
- HPS decay mode

Substantial gain in purity and Efficiency => Improves ϕ_{CP} sensitivity by ~15-20% CMS-DP-2020-041

