# Probing an ultrarelativistic heavy ion at next-to-eikonal accuracy

# Alina Czajka

BP2, Department of Fundamental Research, NCBJ

#### Annual Seminar of Department of Fundamental Research

December 13, 2023, Warsaw

# EIC in the focus of QCD group

#### Goals of Electron-Ion Collider - one of the main activities of the QCD group.

EIC is expected to start operating in the next decade.

Among its main goals:

• 3D momentum distribution of partons inside protons or nuclei - transverse momentum dependent distributions (TMDs) and generalized parton distributions (GPDs)

(L. Szymanowski, J. Wagner, P. Sznajder, V. Martinez-Fernandez)

 saturation effects inside protons or nuclei - phenomenon predicted by Color Glass Condensate (CGC)

(T. Altinoluk, G. Beuf, A. Czajka, P. Agostini, E. Blanco, A. Tymowska (graduated), S. Nisar Mulani)

< ロ > < 同 > < 回 > < 回 > < 回 >

#### Introduction

## Back-to-back DIS dijet production

#### Consistency and interplay between CGC and TMD factorization formalisms?

For a process with two transverse momentum scales: P (hard) and k (not so hard):

- CGC result: leading power (eikonal) in the limit  $|{f k}|\sim |{f P}|\ll \sqrt{s}$
- TMD factorization: leading power (twist-2) in the limit  $|{f k}| \ll |{f P}| \sim \sqrt{s}$
- \* eikonal and twist-2 correlator  $\langle \mathcal{F}_i^{-} \mathcal{F}_i^{-} \rangle$
- $\Rightarrow$  What about power corrections in  $\mathbf{P}^2/s$  or  $|\mathbf{P}||\mathbf{k}|/s$  beyond the eikonal limit?
- $\Rightarrow$  What about power corrections in  $|\mathbf{k}|/|\mathbf{P}|$  (kinematical higher twist contributions)?
- $\Rightarrow$  What about genuine higher twist, beyond-eikonal corrections (correlators involving other combinations of the field strength components)?

(Altinoluk, Beuf, Czajka, Marquet, to appear)

A. Czajka (BP2, NCBJ)

3

#### Introduction

## Eikonal approximation in the CGC

In the CGC framework two approximations adopted:

- (i) Semi-classical approximation  $\rightarrow$  dense target is represented by a strong semi-classical gluon field  $\mathcal{A}^{\mu}(x)$
- (ii) Eikonal approximation  $\rightarrow$  can be understood as the limit of **infinite boost** of  $\mathcal{A}^{\mu}(x)$ :
  - Under a boost of parameter  $\gamma_t$  along the "-" direction, strong ordering between the components of the field:

 $\mathcal{A}^- = O(\gamma_t) \gg \mathcal{A}_\perp = O(1) \gg \mathcal{A}^+ = O(1/\gamma_t)$ 

- $\star$  Only the enhanced component of the background field  $(\mathcal{A}^-)$  is kept.
- Lorentz contraction of the background field A<sup>μ</sup>(x) (shockwave limit)
  \* background field is localized around x<sup>+</sup> = 0 (no transverse motion within the target)
- $\mathcal{A}^{\mu}(x)$  independent on  $x^{-}$  (static limit) due to Lorentz time dilation
  - $\star$  dynamics of the target is neglected (no  $p^+$  transfer from the target)

Background field in the eikonal limit:  $\mathcal{A}^{\mu}(x^+, x^-, \mathbf{x}) \approx \delta^{\mu-} \mathcal{A}^{-}(x^+, \mathbf{x}) \propto \delta(x^+)$ 

Eikonal interaction between the projectile and the target:

- · each parton picks up a Wilson line during the interaction
- dipole operator appears in the observable

$$\begin{aligned} U_{\mathcal{R}}(\mathbf{x}) &= \mathcal{P}_{+} \exp\left[ig \int dx^{+} T_{\mathcal{R}}^{a} A_{a}^{-}(x^{+}, \mathbf{x})\right] \\ \hline \\ d_{\mathcal{R}}(\mathbf{x}, \mathbf{y}) &= \frac{1}{D_{\mathcal{R}}} \mathrm{tr}\left[U_{\mathcal{R}}(\mathbf{x}) U_{\mathcal{R}}^{\dagger}(\mathbf{y})\right] \end{aligned}$$

#### Introduction

## Next-to-Eikonal corrections to the CGC

Next-to-Eikonal (NEik) power corrections to the standard CGC formalism:

- Of order  $1/\gamma_t$  at the level of the boosted background field
- Of order 1/s at the level of a cross section

#### NEik corrections arise from relaxing either of the three approximations:

- () Interactions with  $\mathcal{A}_{\perp}$  field taken into account, not only  $\mathcal{A}^{-}$
- 2 Target with finite longitudinal width  $\Rightarrow$  transverse motion of the parton within the target
- 3  $x^-$  dependence of  $\mathcal{A}^\mu(x)$  beyond infinite Lorentz dilation
  - $\Rightarrow$  treated as gradient expansion around a common  $x^-$  value:

$$\frac{\partial_-\mathcal{A}^-(x)}{\mathcal{A}^-(x)} = O(1/\gamma_t)$$

 $\Rightarrow$  allows possibility of (small)  $p^+$  exchange with the target

NEik DIS dijet

## DIS dijet at NEik accuracy: S-matrix for $\gamma_L^*$



DIS dijet cross section calculated at NEik accuracy, at LO in  $\alpha_s$  in the CGC (Altinoluk, Beuf, Czajka, Tymowska, 2023)

- Only longitudinal photon contribution will be discussed for simplicity
- Second diagram vanishes in  $\gamma_L^*$  case, but matters in  $\gamma_T^*$  case

#### S-matrix element at NEik accuracy (longitudinal photon polarization)

$$S_{q_1\bar{q}_2\leftarrow\gamma_L^*} = S^{\text{Gen.Eik}}_{q_1\bar{q}_2\leftarrow\gamma_L^*} + S^{\text{dyn.target}}_{q_1\bar{q}_2\leftarrow\gamma_L^*} + S^{\text{dec. on } q}_{q_1\bar{q}_2\leftarrow\gamma_L^*} + S^{\text{dec. on } \bar{q}}_{q_1\bar{q}_2\leftarrow\gamma_L^*}$$

with

$$\begin{split} S_{q_1\bar{q}_2\leftarrow\gamma^*L}^{\text{Gen.Eik}} &= -2Q \, \frac{ee_f}{2\pi} \, \bar{u}(1)\gamma^+ v(2) \, \frac{(q^+ + k_1^+ - k_2^+)(q^+ + k_2^+ - k_1^+)}{4(q^+)^2} \, \int_{\mathbf{v},\mathbf{w}} \, e^{-i\mathbf{v}\cdot\mathbf{k}_1} \, e^{-i\mathbf{w}\cdot\mathbf{k}_2} \\ & \times \mathrm{K}_0\left(\hat{Q} \, |\mathbf{w}-\mathbf{v}|\right) \int db^- \, e^{ib^-(k_1^+ + k_2^+ - q^+)} \, \left[\mathcal{U}_F\left(\mathbf{v}, b^-\right) \mathcal{U}_F^\dagger\left(\mathbf{w}, b^-\right) - 1\right] \end{split}$$

 $\star$  0th order term in the expansion around a common value  $b^- = (v^- + w^-)/2$ 

 $\star$  resembles the strict eikonal term with extra  $b^-$  dependence

#### NEik DIS dijet

# DIS dijet at NEik accuracy

$$\begin{split} S_{q_{1}\bar{q}_{2}\leftarrow\gamma_{L}^{*}}^{\text{dyn. target}} &= 2\pi\delta(k_{1}^{+}+k_{2}^{+}-q^{+})\ iQ\ \frac{ee_{f}}{2\pi}\ \bar{u}(1)\gamma^{+}v(2)\ \frac{(k_{1}^{+}-k_{2}^{+})}{(q^{+})^{2}}\ \int d^{2}\mathbf{v}\ e^{-i\mathbf{v}\cdot\mathbf{k}_{1}}\ \int d^{2}\mathbf{w}\ e^{-i\mathbf{w}\cdot\mathbf{k}_{2}} \\ &\times\ \left[\mathrm{K}_{0}\ \left(\bar{Q}\ |\mathbf{w}-\mathbf{v}|\right)-\frac{\left(\bar{Q}^{2}-m^{2}\right)}{2\bar{Q}}\ |\mathbf{w}-\mathbf{v}|\ \mathrm{K}_{1}\ \left(\bar{Q}\ |\mathbf{w}-\mathbf{v}|\right)\right]\left[\mathcal{U}_{F}\left(\mathbf{v},b^{-}\right)\overleftarrow{\partial_{b}}\mathcal{U}_{F}^{\dagger}\left(\mathbf{w},b^{-}\right)\right]\right|_{b^{-}=0} \end{split}$$

 $\star$  first term in the expansion of the around the common value  $b^-$ 

$$\begin{split} S_{q_{1}\bar{q}_{2}\leftarrow\gamma_{L}^{*}}^{\text{dec. on }q} &= 2\pi\delta(k_{1}^{+}+k_{2}^{+}-q^{+}) \; \frac{ee_{f}}{2\pi} \; (-1)Q \; \frac{k_{2}^{+}}{(q^{+})^{2}} \int d^{2}\mathbf{v} \; e^{-i\mathbf{v}\cdot\mathbf{k}_{1}} \int d^{2}\mathbf{w} \; e^{-i\mathbf{w}\cdot\mathbf{k}_{2}} \; \mathbf{K}_{0} \left(\bar{Q} \left|\mathbf{w}-\mathbf{v}\right|\right) \\ &\times \; \bar{u}(1)\gamma^{+} \left[\frac{[\gamma^{i},\gamma^{j}]}{4} \; \mathcal{U}_{F;ij}^{(3)}(\mathbf{v}) - i \; \mathcal{U}_{F}^{(2)}(\mathbf{v}) \; + \mathcal{U}_{F;j}^{(1)}(\mathbf{v}) \left(\frac{(\mathbf{k}_{2}^{j}-\mathbf{k}_{1}^{j})}{2} + \frac{i}{2} \; \partial_{\mathbf{w}}j\right)\right] \mathcal{U}_{F}^{\dagger}(\mathbf{w}) \; v(2) \end{split}$$

 $\star$  similar expression for  $\bar{q}$ 

\* stem from finite width and the interaction with the transverse component of the background field

decorated Wilson lines:

$$\begin{split} \mathcal{U}_{F;j}^{(1)}(\mathbf{v}) &= \int_{-\frac{L^+}{2}}^{\frac{L^+}{2}} dv^+ \, \mathcal{U}_F\left(\frac{L^+}{2}, v^+; \mathbf{v}\right) \overleftarrow{\mathcal{D}_{\mathbf{v}j}} \mathcal{U}_F\left(v^+, -\frac{L^+}{2}; \mathbf{v}\right) \\ \mathcal{U}_F^{(2)}(\mathbf{v}) &= \int_{-\frac{L^+}{2}}^{\frac{L^+}{2}} dv^+ \, \mathcal{U}_F\left(\frac{L^+}{2}, v^+; \mathbf{v}\right) \overleftarrow{\mathcal{D}_{\mathbf{v}j}} \, \overrightarrow{\mathcal{D}_{\mathbf{v}j}} \mathcal{U}_F\left(v^+, -\frac{L^+}{2}; \mathbf{v}\right) \\ \mathcal{U}_{F;ij}^{(3)}(\mathbf{v}) &= \int_{-\frac{L^+}{2}}^{\frac{L^+}{2}} dv^+ \, \mathcal{U}_F\left(\frac{L^+}{2}, v^+; \mathbf{v}\right) gt \cdot \mathcal{F}_{ij}(\underline{v}) \mathcal{U}_F\left(v^+, -\frac{L^+}{2}; \mathbf{v}\right) \end{split}$$

A. Czajka (BP2, NCBJ)

NEik DIS dijet

## NEik corrections as $\mathcal{F}^{\mu\nu}$ insertions

Expression for the cross section is lengthy before taking the back-to-back limit! Consider only one term of the cross section to discuss the idea!

$$\begin{split} \frac{d\sigma_{\gamma_L^* \to q_1 \bar{q}_2}}{d\mathbf{P}.\mathbf{S}.} \bigg|_{\mathrm{NEik\,\,corr.}}^{\mathrm{dec.\,\,on\,\,q}} &= (2q^+) \, 2\pi \delta(k_1^+ + k_2^+ - q^+) \, 8k_1^+ k_2^+ Q^2 \, \left(\frac{ee_f}{2\pi}\right)^2 \frac{k_1^+ k_2^+}{(q^+)^3} \frac{k_2^+}{2(q^+)^3} \\ & \times 2\mathrm{Re} \int_{\mathbf{v}, \mathbf{v}', \mathbf{w}, \mathbf{w}'} e^{i\mathbf{k}_1 \cdot (\mathbf{v}' - \mathbf{v})} e^{i\mathbf{k}_2 \cdot (\mathbf{w}' - \mathbf{w})} \mathrm{K}_0 \left(\bar{Q} \mid \mathbf{w}' - \mathbf{v}'\right) \right) \mathrm{K}_0 \left(\bar{Q} \mid \mathbf{w} - \mathbf{v}\right) \\ & \times \mathrm{Tr} \left\langle \left[ \mathcal{U}_F(\mathbf{w}') \mathcal{U}_F^\dagger(\mathbf{v}') - 1 \right] \left[ \left( -i \, \mathcal{U}_F^{(2)}(\mathbf{v}) + \frac{(\mathbf{k}_2^j - \mathbf{k}_1^j)}{2} \mathcal{U}_{Fj}^{(1)}(\mathbf{v}) \right) \mathcal{U}_F^\dagger(\mathbf{w}) + \frac{i}{2} \, \mathcal{U}_{F(j)}^{(1)}(\mathbf{v}) \, \partial_{\mathbf{w}^j} \mathcal{U}_F^\dagger(\mathbf{w}) \right] \right\rangle \end{split}$$

Terms with  $\mathcal{U}_{F;ij}^{(3)}(\mathbf{v})$  cancel at cross section level for  $\gamma_L^*$ , but survive for  $\gamma_T^*$ 

On the way to TMDs: the relation between derivatives of the Wilson lines and field strength insertions:

$$\begin{split} \partial_{\mu} \mathcal{U}_{F}(x^{+}, y^{+}; \mathbf{v}, v^{-}) &+ igt \cdot \mathcal{A}_{\mu}(x^{+}, \mathbf{v}, v^{-}) \mathcal{U}_{F}(x^{+}, y^{+}; \mathbf{v}, v^{-}) - ig\mathcal{U}_{F}(x^{+}, y^{+}; \mathbf{v}, v^{-}) t \cdot \mathcal{A}_{\mu}(y^{+}, \mathbf{v}, v^{-}) \\ &= -ig \int_{y^{+}}^{x^{+}} dv^{+} \mathcal{U}_{F}(x^{+}, v^{+}; \mathbf{v}, v^{-}) t \cdot \mathcal{F}_{\mu}^{-}(v) \mathcal{U}_{F}(v^{+}, y^{+}; \mathbf{v}, v^{-}) \qquad \text{for } \mu \neq + \end{split}$$

# Change of variables and back-to-back limit

In momentum space:

(total dijet momentum)  $\mathbf{k} = \mathbf{k}_1 + \mathbf{k}_2$  and (relative momentum)  $\mathbf{P} = (z_2\mathbf{k}_1 - z_1\mathbf{k}_2)$  $z_1 = k_1^+/(k_1^+ + k_2^+)$  and  $z_2 = k_2^+/(k_1^+ + k_2^+) = 1 - z_1$  such that In coordinate space:

(conjugate to k)  $\mathbf{b} = (z_1 \mathbf{v} + z_2 \mathbf{w})$  and (conjugate to P)  $\mathbf{r} = \mathbf{v} - \mathbf{w}$ 

back-to-back correlation limit:  $|{f k}| \ll |{f P}|$  and  $|{f r}| \ll |{f b}|$ 

#### perform a small r expansion at the level of the squared amplitude and go to adjoint representation

DIS dijet production cross section at NEik accuracy written in terms of field strength insertions!

$$\begin{split} \mathcal{U}_{F;j}^{(1)}(\mathbf{b})\mathcal{U}_{F}^{\dagger}\Big(\mathbf{b}\Big) &= 2it^{a'}\int_{z^{+}} z^{+} \,\mathcal{U}_{A}\Big(+\infty,z^{+};\mathbf{b}\Big)_{a'a} \,g\mathcal{F}_{j}^{a^{-}}(z^{+},\mathbf{b}) \\ \mathcal{U}_{F}^{(2)}(\mathbf{b})\mathcal{U}_{F}^{\dagger}(\mathbf{b}) &= -t^{a'}t^{b'}\int_{z^{+},z^{\prime+}} (z^{+}-z^{\prime+}) \,\theta(z^{+}-z^{\prime+})\mathcal{U}_{A}\Big(+\infty,z^{+};\mathbf{b}\Big)_{a'a} \,g\mathcal{F}_{j}^{a^{-}}(z^{+},\mathbf{b})\mathcal{U}_{A}\Big(+\infty,z^{\prime+};\mathbf{b}\Big)_{b'b} \,g\mathcal{F}_{j}^{b^{-}}(z^{\prime+},\mathbf{b}) \\ \mathcal{U}_{F;j}^{(1)}(\mathbf{b}) \,\partial_{i}\mathcal{U}_{F}^{\dagger}(\mathbf{b}) &= -2t^{a'}t^{b'}\int_{z^{+},z^{\prime+}} z^{+} \,\mathcal{U}_{A}(+\infty,z^{+};\mathbf{b})_{a'a} \,g\mathcal{F}_{j}^{a^{-}}(z^{+},\mathbf{b})\mathcal{U}_{A}(+\infty,z^{\prime+};\mathbf{b})_{b'b} \,g\mathcal{F}_{i}^{b^{-}}(z^{\prime+},\mathbf{b}) \end{split}$$

★ contributions with either 1 or 2  $\mathcal{F}_{\perp}^{-}$  (like in generalized eikonal case) ★ now with an extra factor  $z^+$  or  $(z^+ - z'^+)$  (NEik suppression with the target width) → similar results for decorations on the antiquark line

A. Czajka (BP2, NCBJ)

### Back-to-back cross section: Eikonal piece

#### The dijet cross section for the longitudinal photon in the back-to-back correlation limit:



$$\begin{split} \frac{d\sigma_{\gamma_{L}^{*} \rightarrow q_{1}\bar{q}_{2}}}{d\mathbf{P.S.}} \bigg|_{\text{Eik}}^{F_{L}^{-},F_{L}^{-}} &= (2q^{+})2\pi\delta(k_{1}^{+}+k_{2}^{+}-q^{+})(ee_{f})^{2}g^{2}4z_{1}^{3}z_{2}^{3}Q^{2} \\ &\times \bigg[\frac{4\mathbf{P}^{i}\mathbf{P}^{j}}{(\mathbf{P}^{2}+\bar{Q}^{2})^{4}}-2(z_{2}-z_{1})\frac{(\mathbf{P}^{i}\mathbf{k}^{j}+\mathbf{k}^{i}\mathbf{P}^{j})}{[\mathbf{P}^{2}+\bar{Q}^{2}]^{4}}+16(z_{2}-z_{1})\frac{(\mathbf{k}\cdot\mathbf{P})\mathbf{P}^{i}\mathbf{P}^{j}}{[\mathbf{P}^{2}+\bar{Q}^{2}]^{5}}+O\left(\frac{\mathbf{k}^{2}}{\mathbf{P}^{8}}\right)\bigg] \\ &\times \int_{\mathbf{b},\mathbf{b}'}e^{-i\mathbf{k}\cdot(\mathbf{b}-\mathbf{b}')}\int_{z^{+},z^{\prime+}}\Big\langle\mathcal{F}_{i}^{a-}(z^{\prime+},\mathbf{b}')\left[\mathcal{U}_{A}^{\dagger}(+\infty,z^{\prime+};\mathbf{b}')\mathcal{U}_{A}(+\infty,z^{+};\mathbf{b})\right]_{ab}\mathcal{F}_{j}^{b-}(z^{+},\mathbf{b})\Big\rangle \end{split}$$

• twist-2 gluon TMDs in the target (both unpolarized and linearly polarized), with momentum fraction x = 0 and transverse momentum k, with a *future staple* gauge link

- kinematical twist-3 corrections, suppressed by an extra  $|\mathbf{k}|/|\mathbf{P}|$  in the back-to-back dijet limit  $|\mathbf{k}| \ll |\mathbf{P}|$
- not shown here: genuine twist-3 corrections, involving a correlator of the type  $\langle \mathcal{F}_{\perp}^{-}\mathcal{F}_{\perp}^{-}\mathcal{F}_{\perp}^{-}\rangle$
- difference between Gen. Eik and Strict Eik.: involves correlator  $\langle \mathcal{F}_{\perp}^{-} \mathcal{F}_{\perp}^{-} \mathcal{F}_{\perp}^{+-} \rangle \Rightarrow$  twist-4 and NEik correction!

< ロ > < 同 > < 回 > < 回 > < 回 >

## Back-to-back cross section: twist-3 TMDs from NEik

From the interference between the non-static NEik correction and the strict Eikonal amplitudes:

$$\frac{d\sigma_{\gamma_{k}^{+} \to q_{1}\bar{q}_{2}}}{d\mathbf{P.S.}} \bigg|_{NEik}^{\mathcal{F}_{k}^{-}\mathcal{F}^{+-}} = (2q^{+})2\pi\delta(k_{1}^{+} + k_{2}^{+} - q^{+})8Q^{2}e^{2}e_{f}^{2}g^{2}\frac{z_{1}^{2}z_{2}^{2}(z_{2} - z_{1})}{q^{+}}\frac{\mathbf{P}^{i}(\mathbf{P}^{2} + m^{2})}{(\mathbf{P}^{2} + \bar{Q}^{2})^{4}} \\ \times 2\mathrm{Re}\int_{\mathbf{b},\mathbf{b}'} e^{-i\mathbf{k}\cdot(\mathbf{b}-\mathbf{b}')}\int_{z^{+},z^{\prime+}} \left\langle \mathcal{F}_{i}^{a-}(z^{\prime+},\mathbf{b}')\left[\mathcal{U}_{A}^{\dagger}(\infty,z^{\prime+};\mathbf{b}')\mathcal{U}_{A}(\infty,z^{+};\mathbf{b})\right]_{ab}\mathcal{F}_{b}^{+-}(z^{+},\mathbf{b})\right\rangle$$

 $\Rightarrow$  NEik. correction stemming from the dynamics of the target is a **twist-3 gluon TMD**, (Mulders, Rodrigues, 2001) with momentum fraction x = 0.

From the interference between the NEik correction with  $\mathcal{U}_{F;ij}^{(3)}$  and the strict Eikonal amplitude:

- Vanishing result in the  $\gamma_L^*$  case due to Dirac algebra.
- An extra contribution to the cross section in the  $\gamma_T^*$  case:

$$\frac{d\sigma_{\gamma_T^* \to q_1\bar{q}_2}}{d\mathrm{P.S.}} \left|_{NEik}^{\mathcal{F}_{\perp}^- \mathcal{F}_{ij}} \propto 2\mathrm{Re} \int_{\mathbf{b}, \mathbf{b}'} e^{-i\mathbf{k}\cdot(\mathbf{b}-\mathbf{b}')} \int_{z^+, z'^+} \left\langle \mathcal{F}_l^a^{-}(z'^+, \mathbf{b}') \left[ \mathcal{U}_A^{\dagger}(\infty, z'^+; \mathbf{b}') \mathcal{U}_A(\infty, z^+; \mathbf{b}) \right]_{ab} \mathcal{F}_{ij}^b(z^+, \mathbf{b}) \right\rangle$$

 $\Rightarrow$  The other twist-3 gluon TMD as found in Mulders, Rodrigues, 2001, with momentum fraction x = 0.

## Back-to-back cross section: x dependence from NEik

Including all contributions of the form  $\langle \mathcal{F}_{\perp}^{-}\mathcal{F}_{\perp}^{-}\rangle$ , of order Eik or NEik, and twist-2 or twist-3:

$$\begin{split} \left. \frac{d\sigma_{\gamma_{L}^{+} \rightarrow q_{1}\bar{q}_{2}}}{d\mathbf{P}.\mathbf{S}.} \right|^{\mathcal{F}_{L}^{-},\mathcal{F}_{L}^{-}} &= (2q^{+})2\pi\delta(k_{1}^{+}+k_{2}^{+}-q^{+})(ee_{f})^{2}g^{2}4z_{1}^{3}z_{2}^{3}Q^{2} \\ &\times \left[ \frac{4\mathbf{P}^{\mathbf{i}}\mathbf{P}^{j}}{(\mathbf{P}^{2}+\bar{Q}^{2})^{4}} - 2(z_{2}-z_{1})\frac{(\mathbf{P}^{\mathbf{i}}\mathbf{k}^{j}+\mathbf{k}^{\mathbf{i}}\mathbf{P}^{j})}{[\mathbf{P}^{2}+\bar{Q}^{2}]^{4}} + 16(z_{2}-z_{1})\frac{(\mathbf{k}\cdot\mathbf{P})\mathbf{P}^{\mathbf{i}}\mathbf{P}^{j}}{[\mathbf{P}^{2}+\bar{Q}^{2}]^{5}} + O\left(\frac{\mathbf{k}^{2}}{\mathbf{P}^{8}}\right) \right] \\ &\times \int_{\mathbf{b},\mathbf{b}'} e^{-i\mathbf{k}\cdot(\mathbf{b}-\mathbf{b}')} \int_{z^{+},z^{+}} \left[ 1 + i(z^{+}-z^{+})\frac{(\mathbf{P}^{2}+\bar{Q}^{2})}{2q^{+}z_{1}z_{2}} \right] \left\langle \mathcal{F}_{i}^{a-}(z^{+},\mathbf{b}') \left[ \mathcal{U}_{A}^{\dagger}(+\infty,z^{+};\mathbf{b}')\mathcal{U}_{A}(+\infty,z^{+};\mathbf{b}) \right]_{ab} \mathcal{F}_{j}^{b-}(z^{+},\mathbf{b}) \right\rangle \end{split}$$

 $\Rightarrow$  NEik corrections and kinematic twist-3 corrections to the  $\langle \mathcal{F}_{\perp}^{-}\mathcal{F}_{\perp}^{-} \rangle$  contribution factorize from each other!

The " – " momentum extracted from the target can be defined from the conservation relation (where the  $k^2$  term is a twist-4 correction):

$$\mathbf{x} P_{tar.}^- \equiv \check{k}_1^- + \check{k}_2^- - q^- = \frac{\mathbf{k}_1^2 + m^2}{2k_1^+} + \frac{\mathbf{k}_2^2 + m^2}{2k_2^+} + \frac{Q^2}{2q^+} = \frac{(\mathbf{P}^2 + \bar{Q}^2)}{2q^+ z_1 z_2} + \frac{\mathbf{k}^2}{2q^+}$$

The NEik correction can be summed into a phase!  $\Rightarrow$  dependence of the twist-2 gluon TMDs on x

$$\begin{split} \left. \frac{d\sigma_{\gamma_{1}^{*} \to q_{1}\bar{q}_{2}}}{d\mathbf{P}.\mathbf{S}.} \right|^{F_{\perp}^{-}F_{\perp}^{-}} &= (2q^{+})2\pi\delta(k_{1}^{+}+k_{2}^{+}-q^{+})(ee_{f})^{2}g^{2}4z_{1}^{3}z_{2}^{3}Q^{2} \\ &\times \left[ \frac{4\mathbf{P}^{i}\mathbf{P}^{j}}{(\mathbf{P}^{2}+\bar{q}^{2})^{4}} - 2(z_{2}-z_{1})\frac{(\mathbf{P}^{i}\mathbf{k}^{j}+\mathbf{k}^{i}\mathbf{P}^{j})}{[\mathbf{P}^{2}+\bar{Q}^{2}]^{4}} + 16(z_{2}-z_{1})\frac{(\mathbf{k}\cdot\mathbf{P})\mathbf{P}^{i}\mathbf{P}^{j}}{[\mathbf{P}^{2}+\bar{Q}^{2}]^{5}} + O\left(\frac{\mathbf{k}^{2}}{\mathbf{P}^{8}}\right) \right] \\ &\times \int_{\mathbf{b},\mathbf{b}'} e^{-i\mathbf{k}\cdot(\mathbf{b}-\mathbf{b}')} \int_{z^{+},z^{+}} e^{i(z^{+}-z^{+})\times\mathbf{P}_{ix'}^{-}} \left\langle \boldsymbol{\mathcal{F}}_{i}^{a-}(z^{+},\mathbf{b}') \left[ \boldsymbol{\mathcal{U}}_{A}^{\dagger}(+\infty,z^{+};\mathbf{b}')\boldsymbol{\mathcal{U}}_{A}(+\infty,z^{+};\mathbf{b}) \right]_{ab} \boldsymbol{\mathcal{F}}_{j}^{b-}(z^{+},\mathbf{b}) \right\rangle \end{split}$$

(Altinoluk, Beuf, Czajka, Marquet, to appear)

A. Czajka (BP2, NCBJ)

To understand the interplay between CGC and TMD frameworks, we studied the back-to-back limit of the DIS dijet production at NEik accuracy, including twist-3 power corrections.

We obtained various contributions:

- twist-2 gluon TMDs:  $\langle \mathcal{F}_i^{-} \mathcal{F}_j^{-} \rangle$ 
  - factorization of kinematic twist-3 and of NEik correction
  - NEik corrections reproduce the expansion of the phase defining the x dependence of the TMDs
- twist-3 gluon TMDs:  $\langle \mathcal{F}_i^{-} \mathcal{F}^{+-} \rangle$  and (for  $\gamma_T^*$ )  $\langle \mathcal{F}_l^{-} \mathcal{F}_{ij} \rangle$  as further NEik corrections
- 3-body twist-3 correlators  $\langle \mathcal{F}_i^- \mathcal{F}_j^- \mathcal{F}_l^- \rangle$ : beyond TMDs! Already appear in Eikonal contributions. NEik corrections partially resum into phase.

< ロ > < 同 > < 回 > < 回 > < 回 >