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c) Description of the scientific goals and results of the series of publications with a
discussion of possible applications

4.1 Introduction

High-energy hadronic collisions and heavy ions have been one of the most appealing but also chal-
lenging problems in physics for many years. They have been at the focus of theoretical effort before
the proposal of Quantum Chromodynamics (QCD) as the quantum field theory to describe the
strong interactions. The experimental studies to investigate QCD under extreme conditions via
heavy ion collisions (HIC) started decades ago at the Brookhaven National Laboratory (BNL) and
at CERN. Data from the Relativistic Heavy Ion Collider (RHIC) at BNL with nucleon-nucleon
collision energies 7-200 GeV since year 2000 and, since 2010, from the heavy-ion program at the
Large Hadron Collider (LHC) at CERN with collisions energies of 2.7-5.1 TeV/nucleon in PbPb
and pPb runs have provided the possibility of studying a new phase of matter, called Quark-Gluon
Plasma (QGP), that is described in terms of the elementary QCD quanta, quarks and gluons.

The description of the high energy collision data in proton-proton (pp) and proton-nucleus (pA)
collisions are provided within the framework of an effective theory called Color Glass Condensate
(CGC) that takes into account the gluon saturation effects. In this description of my scientific
achievements, I provide a brief summary of my contributions that have served to the advancement
of the CGC.

This report is organized as follows. In Section 4.2, I give an introduction to the concept of gluon
saturation and to the CGC. In section 4.3, I concentrate on particle production in pA collisions
within the CGC framework and describe the problems related with this observable and provide a
description of my contributions to overcome these problems (summary of [H1], [H2], [H4], [H6] and
[H8]). Section 4.4 is devoted to the description of particle correlations in this framework. In this
section, I summarize my contributions to improve our understanding of the particle correlations in
the CGC framework (summary of [H3], [H5], [H7] and [H9] ). Finally, in Section 4.5, I describe the
impact and further development of my program of studies.

4.2 The concept of gluon saturation and the Color Glass Condensate

The concept of gluon saturation was introduced via high energy evolution of the hadronic cross sec-
tions. The present section provides a review of the progress of the high energy scattering problem
over the years that lead to the concept of gluon saturation to describe the high energy behavior
hadronic cross sections and other relevant observables.

The problem of calculating high energy evolution of hadronic cross sections and other physical
observables has a long history. It started with the early work of Gribov on reggeon field theory
[1] which was performed even before the theory of strong interactions, Quantum chromodynamics
(QCD), was established. High energy scattering in the framework of QCD can be studied in two
different regimes. In the infrared regime, the interaction between the projectile and the target is
described by "soft" scattering in which the momentum exchange between the projectile and the
target is small and the theory is strongly coupled. Hence, in the soft scattering limit QCD is
non-perturbative. On the other hand, one can consider the regime where the interaction between
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the projectile and the target is described by a "hard" scattering. In this case, the momentum
transfer between the projectile and the target is large during the scattering process. Since QCD
is asymptotically free, the coupling gets weaker and weaker as the momentum exchange increases.
In consequence, the perturbation theory becomes more and more accurate when the relevant scale
grows.

Deep inelastic scattering (DIS) with large momentum exchange is a well known process for which
perturbation theory is successfully applied within the framework of QCD. In this process, Fig. 1, a
virtual photon emitted by an electron scatters off a hadron. Within the Parton model, this process
can be explained in a very simple manner.

Figure 1: Deep inelastic scattering in QCD.

An incoming electron emits a virtual photon with four momenta qµ, where the virtuality of the
photon is given by q

2
= �Q

2, that scatters of a proton with for momenta Pµ. In this process, there
are three Lorentz invariant quantities albeit only two of the are independent. The first Lorentz
invariant quantity is the virtuality of the photon which is equal to the four momenta squared
exchanged between the electron and the proton. The second Lorentz invariant quantity is the
longitudinal momentum fraction carried by a parton inside the hadron, x = Q

2
/2P · Q. The last

Lorentz invariant quantity in this process is the energy of the colliding � � p system which can be
defined as s ' 2P · Q. However, as mentioned earlier, the energy of the colliding � � p system is
not independent and can be written in terms of the other two Lorentz invariant quantities as

s =
Q

2

x
. (1)

The physical picture of this process within the Parton model can be described as follows. In the
infinite momentum frame, the photon is a very small probe with transverse size roughly 1/Q. In
order to scatter off a proton, the photon has to encounter another object which should be roughly
the same size as itself. Since quarks are charged and they interact with the photon, this object that
photon has to encounter has to be a quark with the size of 1/Q. Thus, one can think of Q as a
transverse resolution scale.

One can increase the energy of the colliding � � p system, Eq.(1), in two ways. The first one
is called "Bjorken limit" and it corresponds to the increasing the value of Q

2 for fixed value of
x. In accordance with the physical picture described in the above paragraph, in the Bojrken limit
increasing the energy of the colliding � �p system corresponds to increasing the resolution scale and
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decreasing the size of the probe. At the new scale, the number of partons increases simply because
with a higher resolution scale one can distinguish two small transverse size partons located close to
each other on the transverse plane from a single larger transverse size parton. However, the size
of the resolved partons decreases much faster than the increase in their number. As a result, the
density of the partons in the transverse plane decreases and the system becomes more dilute than
the one we started with. This evolution associated with increasing Q

2 is described by the QCD
Dokshitzer-Gribov-Lipatov-Alteralli-Parisi (DGLAP) equations [2, 3, 4]. These evolution equations
describe the change of the Parton Distribution Functions (PDFs), fi(x, Q

2
), with increasing Q

2

where the PDF formally can be defined as the number density of partons of type i in the proton
seen with the transverse resolution scale 1/Q

2 and carrying the longitudinal momentum fraction x.

The second way to increase the energy of the colliding � � p system is to consider the so
called "Regge-Gribov limit". This limit corresponds to decreasing the value of x while keeping
Q

2 constant to increase the energy. The first approach to describe the hadronic structure at low
x is the famous Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [5, 6]. It is the perturbative
linear evolution equation for the unintegrated gluon density �(Y, k) with increasing rapidity Y =

ln(1/x) that corresponds to decreasing x. The unintegrated gluon density and the gluon distribution
function (gluon PDF) fg(x, Q

2
) are related via

xfg(x, Q
2
) =

Z
Q

2

0

d
2
k

k2
�(x, k) . (2)

The BFKL evolution equation was a very important to step in the study of high energy scattering
processes. It has given a lot of insight into both theoretical and experimental studies. However,
it has been realized that at very high energies (or equivalently at very small values of x) BFKL
equation has two major problems. The first problem is that it violates the Froissart bound [7]. In
any massive theory the total scattering cross section can not grow faster than the Froissart bound
�

total
<

⇡

m2 Y
2. However, the cross section calculated by the solution of the BFKL equation grows

exponentially with rapidity, �
total ⇠ e

cY , hence violates the Froissart bound. Since the emitted
gluons in perturbative QCD are massless, the number of gluons increases rapidly. This increases
the transverse size of the hadron exponentially which leads to the violation of Froissart bound. To
solve this problem one needs the information from the infrared scale of QCD. The second major
problem that BFKL equation suffers from is related with the unitarity of the scattering probability.
In BFKL evolution scattering probability grows without a bound and exceeds unity at rapidities
of order Y ⇠ 1

↵s
ln(1/↵s). However, this problem can be addressed by taking into account the

saturation effects.

The physical picture behind the saturation phenomena can be described as follows. In the
"Regge-Gribov limit", the increase in the energy of the colliding system is achived by decreasing
x while keeping Q

2 constant. This evolution causes a growth in the number of partons as well.
However, this growth in the number of partons are due to parton splitting since the resolution
scale is kept constant as opposed to the case in the "Bjorken limit". The parton splitting is in the
longitudinal direction and the transverse scale does not change. Hence, the splitted partons have
the same transverse size as the mother partons. Naturally, this increases the density of partons in
the transverse plane and eventually causes saturation.

The increase in the density of partons with increasing energy has been observed in DIS. Fig.2
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Fig. 5. Parton distributions in a proton, measured in Deep Inelastic Scattering at HERA.2

parton distributions at high energy/small x is that the gluons are outnumbering

all the other parton species – the valence quarks are completely negligible in this

kinematical region, and the sea quarks are suppressed by one power of the coupling

↵s, since they are produced from the gluons by the splitting g ! qq.

Fig. 6. Left: typical process in a hadronic collision in the dilute regime. Right: typical process in
the dense regime.

This increase of the gluon distribution at small x leads to a major complication

when applying QCD to compute processes in this regime. Indeed, the usual tools of

perturbation theory are well adapted to the situation where the parton distributions

are small (see the left figure 6) and where a fairly small number of graphs contribute

at each order. On the contrary, when the parton distributions increase, processes

involving many partons become more and more important, as illustrated in the

right panel of the figure 6. The extreme situation arises when the gluon occupation

number is of order 1/↵s: in this case, an infinite number of graphs contribute at each

order. This regime of high parton densities is non-perturbative, even if the coupling

constant is weak – the non-perturbative features arise from the fact that the large

Figure 2: Parton distributions in proton (Figure taken from [8]).

is from HERA [8] and shows the rapid increase of the gluon distribution function xfg(x, Q
2
) as

function of x for fixed Q
2

= 10GeV
2. For the values of x below 10

�2, the rapid rise in the number
of gluons compared to quarks makes the gluons the major component of the hadronic wave func-
tion. In other words, at very high energies the effects of quarks can be neglected and gluons alone
dominate partonic density of a hadron.

In DIS process, electron is used as the probe. The main reason for that is quarks carry electro-
magnetic charge and they interact with electron. But as explained above, in the saturation regime
the main components in the hadron are gluons and quarks are neglected. Since gluons carry only
color charge but not electromagnetic charge, using electron as a probe does not work. Therefore,
instead of DIS, one should consider hadron-hadron scattering for studying saturation effects.

The idea of using the gluon saturation to restore the unitarity in hadron-hadron scattering was
developed by Gribov, Levin and Ryskin [9]. The idea was including the nonlinear effects due to
large density of gluons in the hadronic wave function. These nonlinear effects should slow down the
evolution of physical observables at high energies. The GLR equation that describes the change in
the gluon distribution function with decreasing x and increasing Q

2 reads

@
2

xfg(x, Q
2
)

@ log(1/x)@ log(Q2)
=

↵sNc

⇡
xfg(x, Q

2
) � ↵

2
s

⇡2R2

⇥
xfg(x, Q

2
)
⇤2

Q2
(3)

where R is the radius of the hadron. The linear term in GLR equation behaves similar to the
BFKL equation and it causes a rapid growth in the number of gluons with decreasing x. During the
x evolution, the nonlinear term and the linear term become comparable at some value of x. The
nonlinear term stops the increase in the number of gluons and this causes saturation. The saturation
phenomena is described by the saturation scale Qs(x) which can be interpreted as a measure of the
strength of the gluon interaction processes that may occur when the gluon density becomes large.
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The saturation scale can be defined in terms of the gluon distribution function as

Q
2
s(x) ⇠ xfg(x, Q

2
s)

↵s

⇡R2
(4)

Fig. 3 shows a demonstration of the phase diagram for x evolution of a hadron for different transverse
momentum scale Q

2. Above the saturation line Qs(x), there is no rapid increase in the number of
gluons, i.e. after saturation occurs the number of gluons in a hadron is roughly constant.The x evolution of a hadron :

above the saturation line there is no rapid increase in the number of
gluons

Tolga Altinoluk (UCONN) High Energy Evolution : From JIMWLK/KLWMIJ to QCD Reggeon Field TheoryApril 22, 2011 13 / 45

Figure 3: The sketch of the ”phase-diagram” for x evolution of a hadron.

It is necessary to emphasize that GLR equation takes into account the saturation effects and it
describes the evolution of the gluon distribution function both for decreasing x and increasing Q

2.
However, it is more interesting to find the an evolution equation for decreasing x at fixed Q

2, in
some sense the generalization of the BFKL equation, in order to probe the effects of saturation.

By introducing the color dipole model, Mueller developed gluon saturation ideas further [10,
11, 12, 13]. In this model, an incoming dipole is boosted to higher rapidity and it emits gluons
as its energy increases. In the large Nc limit, a gluon line can be described by a quark- antiquark
pair. Then, as the original dipole evolves, it emits another dipole at each step of the evolution.
This process forms a dipole cascade and in the end the evolved system of dipoles interacts with the
target. With the color dipole model, Mueller related saturation ideas to BFKL Pomeron and triple
Pomeron vertex.

It was noted by McLerran and Venugopalan that a well-suited approach to the gluon saturation
is to study nonlinearities of the classical Yang-Mills field theory directly in the path integral ap-
proach [14, 15]. This observation lead to what is now known as McLerran-Venugopalan model (MV
model). The MV model provides the prescription of scattering processes in the saturation regime
via appropriate effective degrees of freedom. These effective degrees of freedom are defined with
respect to a cutoff ⇤

+ imposed on the longitudinal momentum of the partons. The partons that
have longitudinal momentum larger than the cutoff ⇤

+ are defined by a color charge J
µ
a (x), which

7
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is the first effective degree of freedom and has the following form,

J
µ

a (x) = �
µ+

�(x
�
)⇢a(x) , (5)

where ⇢a(x) is defined as the color charge density per unit transverse area 1. The slow gluons with
longitudinal momentum smaller than the cutoff ⇤

+ are defined by color field A
µ
a(x) which is the

second degree of freedom in the MV model. The coupling between the slow and the fast degrees of
freedom is eikonal and it is given by

Z
d

4
xJ

µ

a (x)Aµa(x) (6)

in the action of this model. Within the MV model, the expectation value of an observable O, that
is a functional of color charge density ⇢a, is defined as

hOi =

Z ⇥
D⇢a

⇤
W [⇢a] O

⇥
⇢a

⇤
, (7)

where W
⇥
⇢a

⇤
, which serves as a weight functional, is the distribution function of the color charge

density ⇢a The reasoning behind this definition is quite simple. The color charge density ⇢a describes
the distribution of the partons with longitudinal momentum larger than the cutoff ⇤

+. However,
this distribution ⇢a is not static and varies with time. At the time of the collision, the color charge
density ⇢a describes the distribution for that specific time and one needs to average over the possible
distributions W

⇥
⇢a

⇤
. Thus, MV model suggests the following prescription for the computation of

the expectation value of any observable: first, calculate the observable for an arbitrary configuration
of the color charge densities. In the saturation regime, the nonlinearities in the color charge density
⇢a can be accounted for by solving the classical Yang-Mills equations

⇥
Dµ, F

µ⌫
⇤

= J
⌫ (8)

Then as the second step, the expectation value of the observable is computed by averaging over all
possible configurations via Eq. (7).

MV model successfully describes the processes like DIS at tree level. However, at any loop order
it was shown that this model leads to logarithms of the cutoff ⇤

+ [16]. This problem is solved by
realizing that the logarithms of the cutoff ⇤

+ can be absorbed into the distribution function W
⇥
⇢a

⇤

of the color charge density ⇢a which amounts to

W
⇥
⇢a

⇤
! W⇤+

⇥
⇢a

⇤
. (9)

Soon after this realization, the evolution equation for this cutoff dependent distribution function
has been derived [17, 18, 19, 20, 21, 23, 24]. The derivation is performed by changing the cutoff
⇤

+ which is imposed on the longitudinal momentum with a rapidity interval �Y whose relation
can be written as �Y = ln

�
⇤

+
0 /⇤

+
�
. This can be interpreted as follows. At some initial rapidity

Y0, one starts with an initial distribution function W⇤+
0
. As the initial rapidity changes Y0 ! Y ,

1
Hereafter, boldface letters will be used for transverse components of the coordinates and momenta.
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the distribution function changes from W⇤+
0

! W⇤+ . This rapidity evolution of the distribution
function is written as

@WY

⇥
⇢a

⇤

@Y
= �HJIMWLK WY

⇥
⇢a

⇤
(10)

This equation is known as the Jalilian-Marian-Iancu-Weigert-Leonidov-Kovner (JIMWLK) evolu-
tion equation and it is the generalization of the linear BFKL equation. HJIMWLK in Eq. (10) is
the JIMWLK Hamiltonian. Here, we are not presenting the explicit expression of the JIMWLK
Hamiltonian since it is not necessary for our purposes. However, it is necessary to mention that
the JIMWLK evolution has limitations and it can only be employed for the scattering processes
where one of the colliding objects is dilute, i.e. the number of gluons inside this object is O(g),
and the other one is dense, the number of gluons inside this object is O(1/g), with g being the
small coupling constant of QCD. I will discuss the details of this limitation and recent advances in
extending its validity region in Section 5.

The "Color Glass Condensate" is the effective theory that describes the high energy scattering
processes by employing the MV model to separate the slow and the fast degrees of freedom by
imposing a cutoff on the longitudinal momentum (or equivalently on the rapidity) and employing
JIMWLK evolution equation to describe the evolution with respect to this cutoff. For the simple
1 ! 1 process, this amounts to the following prescription. The fast moving dilute projectile is
described by some color charge J

µ
(x) that is defined in Eq. (5). The dense target on the other

hand is described by the color field which can be defined as

A
µ

a(x) = �
µ�

A
�
a (x

+
,x) (11)

where the target color field is assumed to be picked around x
+

= 0 due to Lorentz contraction.
The interaction between the projectile and the target is assumed to be eikonal. At a given rapidity,
this amounts to the situation where each projectile parton produced by the projectile color charge
scatters on the target by picking up a Wilson line which is defined as an exponential of the target
field ordered in x

+ coordinate

UR(x) = P+ e
ig

R
dx

+
T

a
R A

�
a (x+

,x) (12)

at the amplitude level. Here, T
a

R is the SU(Nc) generator in the representation R which can be
fundamental representation for a quark and adjoint representation for a gluon. The dipole operator
which is defined as

sR(x,y) =
1

DR
tr

h
UR(x)U

†
R(y)

i
(13)

appears at the level of the cross section. Here, DR is the color dimension of the representation and
trace is performed over the color indices. As explained previously, the dipole operator is calculated
for a specific distribution of target fields at some given rapidity and it has to be averaged over the
possible target field distributions. Therefore, it should be written as

⌦
sY0(x,y)

↵
where Y0 is the

initial rapidity and h· · · i stands for the averaging over the target field distributions which serves as
an initial condition for the rapidity evolution. In order to calculate the evolution of this observable,
one should calculate the rapidity evolution of the dipole operator which is given by the JIMWLK
evolution equation:

@
⌦
sY (x,y)

↵

@Y
= �↵s Nc

2⇡2

Z
d

2z
(x � y)

2

(x � z)2(y � z)2

⇢⌦
sY (x,y)

↵
�

⌦
sY (x, z)sY (z,y)

↵�
(14)
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The second term on the right hand side of Eq. (14), shows that JIMWLK equation in rapidity of
single dipole includes a double dipole operator. The target averaging of the double dipole operator
corresponds to the situation where both dipoles s(x, z) and s(z,y) simultaneously scatter on the
target. If we assume that the areas of the target on which the dipoles scatter are uncorrelated, then
we can factorize the target averaging of the double dipole into target averaging of the two dipoles
separately: ⌦

sY (x, z)sY (z,y)
↵

!
⌦
sY (x, z)

↵ ⌦
sY (z,y)

↵
(15)

This factorization assumption reduces the JIMWLK evolution equation to Balitsky-Kovchegov (BK)
evolution equation [25, 26, 27, 28].

In recent years, these developments have become the basis for phenomenological studies of
saturation physics applied to high-energy collision data. As mentioned earlier, this approach is
valid as long as one of the colliding objects is dilute. Typical processes that can be studied within
the CGC framework are DIS on a nuclear target, DIS on a high-energy proton, proton-nucleus (pA)
collisions and forward particle production in proton-proton collisions. In the rest of this report of
scientific accomplishments, I will describe the specific problems that has been at the focus of the
CGC, especially in pA collisions, and my contributions to the global effort of pushing the frontiers
of the high-energy scattering studies within the CGC framework.

4.3 Particle production in the CGC

During the last two decades, calculations using the CGC framework have been utilized to describe
different aspects of RHIC and LHC data. Even though the CGC-based data description has been
quite successful, theoretical improvements are mandatory to establish its precision and determine
unambiguously whether saturation is exhibited by the data. Two observables used frequently to
test the compatibility of saturation physics with the proton-nucleus collision data from RHIC and
the LHC experiments are particle production at central and forward rapidities. The computation
framework for central production is referred to as "kt-factorization" [29] while the one for the for-
ward production is called "hybrid factorization" [30]. Significant part of my scientific achievements
is devoted to improvement of these two frameworks.

The plan for the rest of this subsection is as follows. In part 4.3.1, I will describe kt-factorization
framework and my contributions to improve the precision of this framework concentrating on single
inclusive gluon production in pA collisions. This part will be the summary of the papers [H1],
[H4] and [H6] listed in the monographic series of publications. Then, in part 4.3.2, I will discuss
the hybrid factorization framework for particle production at forward rapidity and explain my
contributions in this framework. This part will be the summary of the papers [H2] and [H8] listed
in the monographic series of publications.

4.3.1 Particle production at central rapidity and non-eikonal corrections:
Summary of papers [H1],[H4] and [H6]

For single inclusive gluon production at central rapidity in pA collisions, both the projectile and
the target are energetic since they are boosted from their initial rapidity to the central rapidity
where the collision occurs. Therefore, in this case both of the colliding objects are treated in CGC

10
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framework. This corresponds to defining the projectile by the color charge J
µ
a (x) which is given

in Eq. (5). On the other hand, the target is defined by the color field A
µ
a(x) that is given in Eq.

(11). Let me recall that these expressions of the color charge of the projectile and the color field of
the target are defined within the eikonal approximation. In this case one can easily calculate the
production cross section of a single gluon with transverse momentum k and rapidity ⌘ as

d�

d2kd⌘
=

1

k2

Z
d

2q

(2⇡)2
�P (q)(k � q)

2
Z

d
2x d

2y e
�i(k�q)·(x�y)

sA(x,y) (16)

where sA(x,y) is the dipole operator in adjoint representation that it is defined in Eq. (13) and �P

is the unintegrated gluon distribution of the projectile. This is known as the kt-factorized formula
for the production cross section. In the weak field limit, it can be written as the convolution of the
unintegrated gluon distributions of the projectile and the target.

The use of eikonal approximation for the projectile and the target is justified by the fact that
both of the colliding objects are very energetic. Even though for the dilute projectile the eikonal
approximation is very reliable, the same approximation for a large target can be true only for
asymptotically large energies. The eikonal approximation for the target amounts to the following
three conditions:

1. A
µ
a(x) ' �

µ�
A

�
a (x): Neglecting the (+) and transverse components of the color field of the

target.

2. A
µ
a(x) ' A

µ
a(x

+
,x): Neglecting the x

� dependence in the color field of the target.

3. A
µ
(x) / �(x

+
): Assuming that the target field is peaked around x

+
= 0 due to Lorentz

contraction, which is also known as the shockwave approximation.

In realistic kinematical conditions under which the experiments are performed, the energies are not
asymptotic and the eikonal approximation is not always justified. For dilute projectile it is valid
even for realistic kinematics whereas this is not necessarily true for large nucleus. Relaxing any of
the above approximations accounts for corrections to the eikonal limit. For a large target nucleus,
the dominant contribution beyond the eikonal accuracy is obtained by relaxing the third approxi-
mation and assuming that the color field of the target is defined with a finite width L

+ along the x
+

direction. This is due to the fact that finite longitudinal width of the target is proportional to the
power A

1/3 of the nuclear mass number A, and therefore this correction is enhanced with respect
to the other two.

In papers [H1] and [H4], I have developed a systematic method to compute the corrections to
the eikonal approximation in the CGC. Such non-eikonal corrections are originating from the finite
longitudinal width of the target and can be understood as the subleading effects with respect to
infinite Lorentz contraction of the target.

Before discussing the results, let me give a brief sketch of the method employed to derive the
non-eikonal corrections. Let us consider the production of a single gluon with transverse momenta
k and longitudinal momenta k

+ in pA collisions at central rapidity. The dilute projectile is still
treated in eikonal approximation and it is defined with the charge density J

µ
a (x) given in Eq. (5).

11
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On the other hand, the eikonal approximation is relaxed for the dense target and it is defined by
the color field A

µ
a(x) given in Eq. (11) but instead of assuming that it is peaked around x

+
= 0, the

color field is defined with a finite support form 0 to L
+ in the longitudinal direction. In this case,

production cross section can be written as the square of the gluon production amplitude averaged
over the projectile and target distributions and integrated over the impact parameter B:

2k
+ d�

dk+d2k
=

Z
d

2B
X

�

⌧D
|Ma

�
(k,B)|2

E

P

�

T

(17)

Here, �, a and k = (k
+
,k)

2 are the polarization, color and momentum of the produced gluon. For
a target with finite longitudinal width, the gluon production amplitude Ma

�
(k,B) is composed of

three different contributions: gluon production before the projectile propagates through the target,
gluon production while the projectile is propagating through the target and gluon production after
the projectile propagated through the target. At leading order, it is possible to relate the total
gluon production amplitude and the background retarded gluon propagator by using LSZ reduction
formula and the perturbative expansion of the color field of the target [31]. In the light cone gauge
where A

+
= 0, the total gluon production amplitude can be written in terms of the (i�) component

of the background retarded gluon propagator G
µ⌫

R
(x, y) as

Ma

�
(k,B) = ✏

i⇤
�

(2k
+
) lim

x+!0

Z
d

2x

Z
dx

�
e
ik·x

Z
d

4
y G

i�
R

(x, y)ab J
+
b

(y) (18)

Since the color field of the target is independent of x
�, one can introduce the one-dimensional Fourier

transform of the background retarded gluon propagator and write it in terms of of the background
scalar propagator Gµ⌫

k+(x, y). Then, the (i-) component of the retarded background gluon propagator
reads

G
i�
R

(x, y)ab

Z
dk

+

2⇡
e
�ik

+(x��y
�) i

2(k+ + i✏)2
@yiGab

k+(x, y) (19)

The background scalar propagator Gab

k+(x, y) satisfies the scalar Green’s equation whose solution
formally can be written as a path integral

Gab

k+(x, y) = ✓(x
+ � y

+
)

Z z(x+)=x

z(y+)=y

⇥
Dz(z+

)
⇤
e

ik+

2

R x+

y+ dz
+ż2(z+)

U
ab

⇣
x

+
, y

+
;
⇥
z(z+

)
⇤⌘

(20)

with the Wilson line

U
ab

⇣
x

+
, y

+
;
⇥
z(z+

)
⇤⌘

= P+ exp

⇢
ig

Z
x
+

y+
dz̃

+
T

c
A

�
c

⇣
z̃
+
, z(z+

)

⌘�
ab

(21)

following the Brownian trajectory z(z+
). In the limit of vanishing longitudinal width, x

+ �y
+ ! 0,

the background scalar propagator Gab

k+(x, y) reduces to the standard Wilson line introduced in Eq.
(12) and one recovers the eikonal limit. Therefore, it can be safely conclude that all the non-eikonal
effects that are due to the finite longitudinal width of the target are encoded in the background
scalar propagator. This also means that an eikonal expansion of Gab

k+(x, y) can be performed and the

2
Hereafter, we use the notation underline to indicate that for coordinates x = (x+,x) and for momentum k =

(k+k).

12
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first term in this expansion corresponds to the eikonal limit and the higher order terms correspond
to the corrections to this limit.

In order to perform an eikonal expansion of the background scalar propagator Gab

k+(x, y), one
should first discretize the scalar background propagator. In the eikonal limit, k

+
/(x

+ �y
+
) is much

larger than any transverse scale in the problem. In the large k
+ limit, it is natural to consider a

generic path as a perturbation around the classical free path

zn = zcl
n + un (22)

where the transverse positions at step n are on the straight line zcl
n

zcl
n = y +

n

N
(x � y) (23)

between the initial and final points, and the perturbation un satisfies the boundary conditions
u0 = uN = 0 with N being the number of discretized steps (see Fig.4-A). Once the expansion
around the free classical path is performed for fixed initial and final positions, one should perform
another expansion in the limit un ! 0 since at each step of the discretization the transverse distance
between the classical path and the initial transverse position is small (see Fig.4-B). After performing

0 N
n

(y
+
, y�)

(x
+
, x�)

z
cl
�(z

+
)

z�(z
+
)

(A)

x� � y�

(y
+
, y�)

(x
+
, x�)

(B)

Tolga Altinoluk High energy QCD and gluon saturation 4/48

Figure 4: (A) Demonstration of the perturbative expansion around the classical path. The red line
represents the classical path. At each discretization step n, the difference between the Brownian
trajectory and the classical path is equal to un. Perturbative expansion corresponds to Taylor
expansion in the limit un ! 0. (B) Demonstration of the expansion around the initial transverse
position. The first expansion is performed for fixed initial and final positions. In the large k

+ limit
the result has to be re-expanded since zcl

(z
+
) � y is small at each discretization step.

these two expansions, up to second order in (x
+ � y

+
) - the finite longitudinal width of the target

- the scalar background propagator Gab

k+(x, y) can be written as

13
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Z
d

2x e
�ik·x Gab

k+(x, y) = ✓(x
+ � y

+
)e

�ik·y
e
�k

�(x+�y
+)

n
U(x

+
, y

+
;y)

+
(x

+ � y
+
)

k+

h
ki

U
i

[0,1](x
+
, y

+
;y) +

i

2
U[1,0](x

+
, y

+
;y)

i
(24)

+
(x

+ � y
+
)
2

(k+)2

h
kikj

U
ij

[0,2](x
+
, y

+
;y) +

i

2
ki

U
i

[1,1](x
+
, y

+
;y) � 1

4
U[2,0](x

+
, y

+
;y)

io
ab

The first term on the right hand side of Eq.(24) is the standard Wilson line which defined in Eq. (12)
that appears only at the strict eikonal order. The O

⇥
(x

+ � y
+
)/k

+
⇤

are the first order corrections
to the strict eikonal limit which we refer to as next-to-eikonal (NEik) corrections. Similarly, the
O

⇥
(x

+�y
+
)
2
/(k

+
)
2
⇤

terms are the second order corrections and they are referred to as next-to-next-
to-eikonal (NNEik) corrections. The terms that are denoted as U[↵,�](x

+
, y

+
;y) are the decorated

Wilson lines which only appear beyond strict eikonal order. The first subscript ↵ in the decorated
Wilson lines stands for the order of expansion around the classical path while the second subscript
� stands for the order of the expansion around the initial transverse position y. The reason why
these objects are referred to as decorated Wilson lines is related with their structure. These objects
involve a background field insertion into the standard Wilson lines along the longitudinal direction.
For example the the first decorated Wilson line is defined as

h
U

i

[0,1](x
+
, y

+
;y)

i
ab

=

Z
x
+

y+
dz

+ z
+ � y

+

x+ � y+
U

ac
(x

+
, z

+
;y)

⇥
ig T

e

cd
A

�
e (z

+
,y)

⇤
U

db
(z

+
, y

+
;y) (25)

The other decorated Wilson lines have similar structure with one or more background field inser-
tions. I do not present the structure of all the decorated Wilson lines due their complexity and
lengthy expressions (see [H1], [H4]). One can easily get the expression for the gluon production
amplitude at NNEik accuracy given in Eq. (18) by using the expression of the retarded background
gluon propagator Eq. (19) and the expression derived for background scalar propagator Eq. (24).

The retarded background gluon propagator G
µ⌫

R
(x, y)ab and therefore the scalar background

propagator Gab

k+(x, y) are the main building blocks of the high energy pA collisions. In papers [H1]
and [H4], the eikonal expansion performed at the level of the gluon background propagator is then
applied to high energy dilute-dense scattering processes within the CGC framework. Two different
observables have been analysed, in pA collisions at midrapidity, within this framework: the single
inclusive gluon production cross section and the light-front helicity asymmetry of produced gluons.
For the single inclusive gluon cross section, it has been shown that the NEik terms vanish and the
first non-vanishing corrections to the strict eikonal limit that appear at NNEik order have been
calculated. On the other hand, for the light-front helicity asymmetry, it has been shown that both
the strict eikonal terms and NNEik terms vanish and the leading contribution to this observable
turns out to be the NEik terms.

In [H7], I have used the results computed in [H1] and [H4] for the single inclusive gluon production
cross section at NNEik accuracy and studied the weak field limit of this result. In this limit, the
decorated Wilson lines are expanded to first order in the background field of the target A

�
a (z

+
,y).

14
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For example, the decorated Wilson line
⇥
U

i

[0,1](x
+
, y

+
;y)

⇤
ab defined in Eq. (25) reduces to

h
U

i

[0,1](x
+
, y

+
;y)

i
ab

!
Z

x
+

y+
dz

+ z
+ � y

+

x+ � y+

⇥
ig T

c

ab
A

�
c (z

+
,y)

⇤
(26)

which allows us to calculate the Lipatov vertex. After expanding the eikonal and non-eikonal terms
to first order in powers of the background field, the Lipatov vertex at NNEik accuracy can be written
as

L
i

NNEik(p,k) = �2

✓
pi

p2
� ki

k2

◆
k2

⇢
1 +

i

2
p2 z

+
2

p+
� 1

8

✓
p2 z

+
2

p+

◆2�
(27)

Let me now, provide the interpretation of this expression with Fig. 5. The incoming projectile with
transverse momenta k interacts with the target that has some finite longutindal extend z

+
2 . The

transverse momentum transfer from the target is p � k and the produced gluon carries transverse
momenta p and longitudinal momenta p

+.

2

above Wilson line simplifies to

U i,ab
[0,1](x

+
, y

+
, y�) =

x+Z

y+

dz
+ z

+ � y
+

x+ � y+

⇥
igT

e
ab@yiA

�,e
(z

+
, y�)

⇤
(5)

which su�ces for the evaluation of the Lipatov vertex. The purpose of this paper is to derive Li at next to next to

eikonal (NNE) accuracy; and to discuss the corrections to the single-inclusive gluon production cross section at high

transverse momentum at order ⇢T (k1) ⇢
�
T (k2).

p

k

p � k

z+
2

Lµ(p, k)

FIG. 1: Fusion of the fields of two high-energy projectile and target charges described by the Lipatov vertex.

Our result for the Lipatov vertex (in light-cone gauge A
+

= 0) at NNE accuracy is

L
i
(p, k) = �2C

i
(p, k) k

2

�
1 +

i

2
p
2 z

+
2

p+
� 1

8

✓
p
2 z

+
2

p+

◆2
�

, (6)

where

C
i
(p, k) =

p
i

p2
� k

i

k2
. (7)

A derivation is given in appendix A and the corresponding diagram is shown in fig. 1. The first term in (6) corresponds

to the eikonal (shock wave) limit while the second and third terms are the NE and NNE corrections for a target of

finite thickness �
+
, respectively. These corrections come with additional factors of z

+
2 /p

+
which is due to the above

mentioned quantum di�usion of the incident wave passing through the target. The mean square deviation from the

classical (eikonal) path is proportional to z
+
2 /p

+
[10].

The vertex from eq. (6) acts on a product of projectile and target fields to generate the produced gluon radiation

field in the forward light cone,

Ma
�(p) = ✏

i
� p

2
A

i,a
(p) , (8)

with p
2
A

i,a
(p) as written in eq. (1) above.

To compute the single inclusive cross section we multiply eq. (8) with its complex conjugate, sum over gluon

polarizations and colors, and perform an average over the random color charge densities of projectile and target. In

the standard McLerran-Venugopalan (MV) model [11] this (target) average is performed with the action

SMV[⇢] =

Z
d
2
x�

�+Z

0

dx
+ tr ⇢(x

+
, x�)⇢(x

+
, x�)

µ2
, (9)

which leads to the following color charge correlator:

⌦
⇢

a
(z

+
1 , k1) ⇢

�b
(z

+
2 , k2)

↵
= �

ab
�(z

+
1 � z

+
2 ) (2⇡)

2
�
2
(k1 � k2)µ

2
. (10)

Figure 5: Illustration of the single inclusive gluon production with non-eikonal corrections to the
Lipatov vertex.

The first term on the right hand side of Eq. (27) corresponds to the strict eikonal limit. The
second and the third terms are the NEik and NNEik corrections respectively. The structure of
the vertex suggests that the corrections to the amplitude due to finite width of the target may
exponentiate 3: ⇢

1 +
i

2
p2 z

+
2

p+
� 1

8

✓
p2 z

+
2

p+

◆2�
! exp

✓
i
p2

2p+
z
+
2

◆
(28)

Nevertheless, let us restrict ourselves to the Lipatov vertex given at NNEik accuracy in Eq. (27).
This leads to the following expression for the single inclusive gluon production cross section:

d�

dp+d2p
= 4Nc (N

2
c � 1)S?

g
2

p2


1 � 1

6

✓
p2

�
+

2p+

◆2� Z
d

2k

(2⇡)2
�P (k2

) �T

⇥
(p � k2

)
⇤
. (29)

where �
+ is the color correlation length in the target which should be of the order of the size of a

nucleon. This occurs because in the case of a finite width target, the color charge densities have
3
This exponentiation has been proven later in Ref. [75].
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the freedom to have different longitudinal positions. Thus, the correlator of such two color fields
naturally introduces a dependence on the �

+ in the observable.

O(1) term in Eq.(29) is known as the kt-factorized single inclusive cross section. The NEik
terms that are O[(p2

�
+
)/p

+
⇤

drop out from the cross section as in the previous case where the
cross section was written to all orders in the background field of the target. The first correction to
the kt-factorized formula appears at NNEik order. Corrections to the eikonal approximation in the
kt-factorized formula, Eq. (29), was calculated for the first time in [H7].

As already indicated above NNEik correction is suppressed by two powers of the light-cone
momentum p

+ of the produced gluon but increases with transverse momentum. Nevertheless, the
NNEik correction to single-inclusive gluon production is seen not to exhibit nuclear enhancement
factor A

1/3 since it involves the color correlation length �
+ rather than the target thickness L

+.
However, I would like to emphasize that even with the non-eikonal corrections that are proportional
to �

+ may very well be sizable depending on the kinematics of the process. For realistic values of
�

+ ' 0.5 fm, relative weight of the non-eikonal corrections with respect to eikonal result can vary
between %2 and %10 [75].

4.3.2 Particle production at forward rapidity:
Summary of papers [H2] and [H8]

Particle production at forward rapidity in pA collisions is another observable that is used to test the
compatibility of the CGC-based calculations with the data from RHIC and LHC. The state of the
art calculation of this observable is based on the “hybrid formalism” [30]. In this approach, the wave
function of the dilute projectile is calculated perturbatively, without any kinematic approximation,
in the spirit of the collinear factorization, while the scattering of the projectile partons on the target
fields is treated in the eikonal approximation within the CGC framework.

In recent years, there has been a lot of activity to calculate the single inclusive gluon production
at next-to-leading order (NLO) [32, 33, 34, 35]. However, numerical studies [36] indicate very strong
effects of the NLO corrections. The cross sections even become negative at moderate transverse
momenta. This issue is demonstrated very clearly in Fig.6 which is taken from [36].

In [H2], I have studied the forward particle production at NLO with the aim of identifying the
origin of the problem that causes the cross section to become negative and eventually solve this
problem in order to stabilize the NLO corrections. The two important achievements in [H2] are: (i)
to clarify the proper rapidity interval available for the evolution of the target and (ii) to correctly
account for the produced pairs that are resolved by the target during the scattering.

One of the most important factors, in order to identify the origin of the negativity problem and
then to correctly compute the cross section, is the choice of frame for the calculation. The most
convenient frame is referred to as PROJ (projectile frame) which was introduced for the first time
in [H2] since it permitted to avoid part of the problems mentioned above. In this frame, projectile
moves fast enough to be able to accommodate partons with momentum fraction xp = p

+
/P

+
P

(longitudinal momentum fraction of the projectile carried by the produced parton). On the other
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FIG. 1: Comparisons of BRAHMS [10] (h�) and STAR [11] (�0) yields in dAu collisions to results of the numerical calculation
with the rcBK gluon distribution, both at leading order (tree level) and with NLO corrections included. The edges of the solid
bands were computed using µ2 = 10 GeV2 to 50 GeV2.

tion becomes negative increases with rapidity, as can be

seen from Fig. 1. Once the hadron transverse momentum

p� is larger than Qs(xg), the NLO correction starts to

become very large and negative. This indicates that we

need to either go beyond NLO or perform some sort of

resummation when p� > Qs(xg), due to this theoreti-

cal limitation of the dilute-dense factorization formalism

at NLO. This is an important problem but it lies out-
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FIG. 2: Comparisons of BRAHMS data [10] at � = 3.2 with
the theoretical results for four choices of gluon distribution:
GBW, MV with � = 0.24 GeV, BK solution with fixed cou-
pling at �s = 0.1, and rcBK with �QCD = 0.1 GeV. The edges
of the solid bands show results for µ2 = 10 GeV2 to 50 GeV2.
As in other figures, the crosshatch fill shows LO results and
the solid fill shows NLO results.

side the scope of the current work and we will leave this

to future study. Given these limitations, we expect the

dilute-dense factorization formalism to work much better

for more forward rapidity regions. This trend is indeed

observed in Fig. 1 and Fig. 3. Nevertheless, as shown in

all the plots, the results computed from SOLO are stable

and reliable as long as p� < Qs(xg).

Furthermore, we have also run SOLO with three

other choices of dipole gluon distribution: the Golec-

Biernat and Wustho� (GBW) model [34], the McLerran-

Venugopalan (MV) model [4], and the solution to the

fixed coupling BK equation. As shown in Fig. 2, all four

parametrizations give similar results and agree with the

BRAHMS data in the p� < Qs region. For other plots,

we only use the rcBK solution, which is the most sophis-

ticated parametrization.

Fig. 3 shows predictions made by SOLO for pPb col-

lisions at high pseudorapidities which are accessible at

LHC detectors, in particular 5.3 � ⌘ � 6.5 for TOTEM’s

T2 telescope [35] and ⌘ � 8.4 at LHCf [36]. Of course,

our prediction in the left plot should only be valid when

p� < 3 GeV, which is about the size of the saturation

momentum at the corresponding rapidity.

One of the advantages of the NLO results is the signif-

icantly reduced scale dependence as shown in Fig. 4. In

principle, cross sections for any physical observable, if it

could be calculated up to all order, should be completely

independent of the factorization scale µ. However, as

shown in Fig. 4, the LO cross section is a monotonically

decreasing function of the factorization scale µ. This is

well-known and is simply due to the fact that an increase

of µ causes both the parton distribution function (in the

region x > 0.1) and the fragmentation function (in the

Figure 6: The data from BRHAMS collaboration [37] for charged hadron spectrum as a function of
transverse momentum in dAu collisions for rapidities ⌘ = 2.2 and ⌘ = 3.2 at

p
sNN = 200 GeV is

plotted (figure taken from [36]). Data is compared to the numerical results calculated with rcBK
gluon distribution both at LO and at NLO. Even though, the LO results fit the data fairly well, the
NLO results show instability at moderate transverse momenta.

hand, target also moves fast and carries most of the energy of the process. In PROJ frame, the
total energy s is defined in terms of the large momenta of the projectile P

+
P, PROJ and the target

P
�
T, PROJ as

P
+
P, PROJ =

s

2 P
�
T, PROJ

(30)

In this frame, the large momenta of the projectile and target scale differently with energy:

P
+
P, PROJ = constant , P

�
T, PROJ / s (31)

We also introduce the initial energy s0 = 2P
+
P, PROJ P

�0
T

. The final result does not depend on the
initial energy explicitly. To get to the initial energy s0, the projectile is boosted to rapidity YP while
the target is boosted to Y

0
T

from their rest frames. The distribution of the total rapidity between
the projectile and the target is summarized in Fig. 7. Starting from the initial energy s0, the energy
of the process is increased by boosting the target with rapidity YT , such that

YT = ln
s

s0
(32)

The evolution of the target from the initial rapidity Y
0
T

to the final rapidity YT is given by the BK
evolution equation that was introduced in Eq. (14) together with Eq. (15). The initial condition
for the evolution of the target wave function is specified at Y

0
T
. The rapidity distribution and the

final rapidity evolution of the target described above is different from the standard prescription
used in [33, 34, 35, 36]. The standard prescription suggests to evolve the target up to the rapidity
Yg = ln

1
xg

where the gluon is produced. The reasoning behind this argument is that the light-cone
energy, p

�, of the produced gluon is transferred from a single gluon of the target, then that gluon
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in Sec. III. C, in a certain kinematic regime our evolution
interval turns out to be effectively similar to the one in
[24,34]. The different scales are illustrated in Fig. 1.
With this partition of degrees of freedom between the

projectile and the target, our setup is fixed. Any projectile
parton scatters on a member of the same target field
ensemble. Averaging over this ensemble leads to the dipole
scattering matrix sYT

ðx; yÞ, which at fixed energy of the
process does not depend on the transverse momentum or
rapidity of the final state hadron.
Note that at this point we do not have to specify what is

exactly the evolution equation that governs the evolution of
the target. This equation is self-consistently determined
from the calculation itself. Unsurprisingly, we will find that
at the accuracy of our calculation the relevant evolution is
the leading-order BK equation.

B. YT vs Yg

Importantly, the above discussion does not uphold the
prescription used in [24] and in current numerical imple-
mentations [26–28]. The procedure set out in [24] is to
evolve the target to rapidity Yg ¼ ln 1

xg
with xg ¼ p⊥ffiffi

s
p e−η.

The reason for choosing this particular value of Yg in [24] is
based on the following kinematic argument. At leading
order the incoming projectile parton carries momentum
ðpþ; 0; 0Þ. The parton measured in the final state has the
same þ component of momentum, transverse momentum
p⊥, and is on shell. This means that during the scattering it

picks up the − component of momentum p− ¼ p2
⊥

2pþ ¼
e−η p⊥ffiffi

2
p from the target. If one assumes that this momentum

has been transferred to the projectile parton by a single
gluon of the target, the gluon in question must have carried
at least this amount of p−, and therefore had to have the
longitudinal momentum fraction of the target

xg ¼
p−

P− ¼ e−η
p⊥ffiffiffi
s

p : ð2:12Þ

On the other hand, the high-energy evolution (in the dilute
regime) has the property that any hadronic wave function is
dominated by softest gluons. One thus may conclude that
xg is the longitudinal momentum fraction of the softest
gluons in the target wave function, and thus the target has to
be evolved to Yg.
On closer examination, however, it transpires that this

argument does not hold water. It overlooks the fact that the
target is in fact dense. For the dense target, the projectile
parton undergoes multiple scatterings, and therefore picks
up momentum p− not from a single target gluon but from
several. This means that xg is actually an upper bound on
the momentum fraction of the target gluons, and therefore
Yg only gives a lower bound on the rapidity up to which the
target wave function has to be evolved. In fact, it is very
natural that the total rapidity YT should not depend on the
transverse momentum of the produced particle rather than
depend on it as in (2.12). Recall that in the dense scattering
regime, the transverse momentum of the scattered parton
“random walks” as the parton propagates through the
target. Thus the total transverse momentum is proportional
to the square root of the number of collisions with the target
gluons, p2

⊥ ∝ Ng. On the other hand, the transferred p−

does not random walk, since all the gluons in the target
have p− of the same sign. Thus p− ∝ Ng, which is perfectly
consistent with the relation between p− and p⊥ that follows
from the on-shell-ness condition of the outgoing parton.
Therefore, increasing p⊥ of the observed parton (at fixed
pþ), while increasing the total p− acquired by the projectile
parton, does not change the fraction of longitudinal
momentum of individual gluons in the target wave function
that participate in the scattering, and therefore does not
affect the value of YT .
In the leading-logarithmic approximation it is not impor-

tant what exactly is the value of the evolution parameter for

FIG. 1. Different rapidity and momenta scales in our setup.
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Figure 7: Illustration of the distribution of the rapidities and momentum scales in the PROJ frame.

has to carry the longitudinal momentum fraction xg = p
�
/P

� of the target.

However, this argumentation over looks the fact that the target is in fact dense. The projectile
parton undergoes multiple scatterings and therefore the momentum p

� it has in the final state is
not transferred from a single target gluon but from several of them. This means that xg is an upper
bound on the momentum fraction of the target gluons and therefore Yg only gives a lower bound
on the rapidity up to which the target has to be evolved. Thus, it is important to use YT instead of
Yg for the rapidity up to which the target has to be evolved. This is the first achievement in [H2]
which clearly determines the limit of the rapidity evolution of the target.

Apart from, the setting up the problem in the most convenient frame for the calculation and
correctly defining the final rapidity that target is evolved, the most important new feature of the
computation that I have introduced in [H2] is the so called "Ioffe time restriction" that provides a
consistent description of the partonic configurations (pairs of partons at NLO) that are resolved by
the target. This restriction can be explained as follows. In the quark channel, at LO the incoming
quark scatters on the target and produces the final state particle. At NLO, the incoming quark
splits into a quark-gluon pair in the projectile wave function which then scatters on the target.
Within the hybrid framework, the scattering of the quark-gluon pair is treated as a completely
eikonal process. This amounts to the fact that each parton gets a Wilson line during the interaction
with target. However, the target has a finite longitudinal width at initial energy s0. Therefore, this
treatment is only possible if the life time of the quark-gluon pair is larger than the time that it takes
to propagate thorough the target. This restriction can be formulated in the following form:

tc =
2 ⇠̄ ⇠ xBP

+

k2
> ⌧ (33)

where tc is the life time of the pair and ⌧ is a fixed time scale determined by the longitudinal size
of the target and xBP

+ is the longitudinal momentum of the incoming quark, ⇠ is the longitudinal
momentum fraction carried by the emitted gluon, ⇠̄ = (1 � ⇠) and k is the transverse momentum of
the emitted gluon. This time scale ⌧ enters into calculation via initial energy P

+
/⌧ = s0/2. Thus,

the pairs that do not live long enough are not resolved by the target. The scattering and particle
production from the pairs that do not live long enough are indistinguishable from the single parent
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quark.

Effectively, the Ioffe time restriction appears in the calculation via replacement of the standard
Weiszäcker-Williams fields A

i
(y � z) by the modified one Ai

⇠
(y � z):

A
i
(y � z) = � 1

2⇡

(y � z)i

(y � z)2
! Ai

⇠
(y � z) = � 1

2⇡

(y � z)i

(y � z)2


1 � J0

✓
|y � z|

r
2⇠⇠̄

xBP+

⌧

◆�
(34)

where J0 is the Bessel function of the first type. When the Ioffe time restriction is discarded (in the
limit P

+
/⌧ ! 1), the modified Weiszäcker-Williams field reduces the standard one.

With the help of the two modifications described above, I calculated the quark production cross
section at NLO in the hybrid formalism and showed that the NLO terms in the cross sections have
two contributions

d�
q!H

d2pd⌘

����
NLO

=
d�

q!H

d2pd⌘

����
lit.

NLO

+ Lq (35)

The first term on the right of Eq. (35) is the part of the NLO result that has been known in the
literature (see for example [33, 34, 35]) and it is independent of the Ioffe time restriction. On the
other hand, Lq is the new contribution that encodes the information on the Ioffe time restriction.
Similarly, in the gluon channel, the new contribution Lg that accounts for the Ioffe time restriction
is computed. Due to the fact these expressions are lengthy, their explicit forms are not presented
here but can be found in [H2] (in Eq 3.8).

Soon after [H2] was published, the new contributions Lq and Lg are also reproduced in [38]
in slightly different approach called "exact kinematical approach". The numerical studies per-
formed in [38] show that the new contributions Lq and Lg that account for the Ioffe time restriction
significantly improve the problem of negativity of the NLO cross section as can be seen from Fig. 8.

As discussed in detail in Section 4.2, within the CGC framework, the non-perturbative part of
the total differential cross section that defines the structure of the hadrons is given by the parton
distribution functions (PDFs) which depend on the longitudinal momentum of the parton inside the
hadron. PDFs are universal objects. For certain processes, transverse momentum of the partons
become important as well and these distributions need to be generalized to include the transverse
momentum dependence yielding the so-called transverse-momentum-dependent distribution func-
tions (TMDs). TMDs are process dependent unlike the PDFs and they are of great interest since
their measurement offers insight on the three-dimensional structure of the hadrons.

Apart from the single inclusive particle production, hybrid formalism is also used to study for-
ward dijet production in pA collisions [39]. This process is particularly interesting since it can
be studied both in the standard TMD factorization framework (by constructing hadronic matrix
elements of bilocal products of field operators that contain gauge-links) and in the CGC framework.
The results obtain from two different methods should coincide when one applies the appropriate
limits on both sides. Recently, it has been shown that the high energy limit of the dijet cross section
calculated in the TMD factorization approach coincides with the correlation limit (when the two jets
are produced back-to-back) of the cross section calculated in the CGC framework [40, 41, 42, 43].

19



dr Tolga Altinoluk Załącznik nr 3: Autoreferat w języku angielskim
12

10
�7

10
�5

10
�3

10
�1

10
1

⌘ = 2.2

d
3
N

d
�
d
2
p

�

⇥ G
e
V

�
2
⇤

GBW

LO

+NLO

+Lq + Lg

BRAHMS

⌘ = 2.2

rcBK ⇤
2
QCD = 0.01

LO

+NLO

+Lq + Lg

BRAHMS

1 2 3
10

�7

10
�5

10
�3

10
�1

10
1

⌘ = 3.2

p�[GeV]

d
3
N

d
�
d
2
p

�

⇥ G
e
V

�
2
⇤

1 2 3

⌘ = 3.2

p�[GeV]

FIG. 4. Comparisons of BRAHMS data [9] with the center-of-mass energy of
p

sNN = 200GeV per nucleon

at rapidity y = 2.2, 3.2 with our results. As illustrated above, the crosshatch fill shows LO results, the

grid fill indicates LO+NLO results, and the solid fill corresponds to our new results which include the NLO

corrections from Lq and Lg due to the kinematical constraint. The error band is obtained by changing µ
2

from 10 GeV
2

to 50 GeV
2
.

(transformed) formulas. The LO and LO+NLO curves are very similar to earlier results published

in Ref. [43]; some slight di�erences are due to the increased precision of the new formulas. In the

meantime, the Lq and Lg corrections are completely negligible in the region where p? � Qs. On

the other hand, where p? � Qs, Lq and Lg start to become important and alleviate the negativity

problem in the GBW model, and help us to better describe the data in the high p? region. In the

rcBK case, we find that the full NLO cross section now becomes completely positive and provides

us excellent agreement with all the RHIC data.

In Figure 6, we show the comparison between the forward ATLAS data at y = 1.75 and the

numerical results from SOLO. We observe remarkable agreement between the full NLO calculation

from the saturation formalism and experimental data up to 6GeV. Again, as we have seen earlier,

the newly added Lq and Lg corrections help to increase the applicable p? window of the saturation

formalism from roughly 2.5–3 GeV to 6 GeV. From 6 GeV and up, the full NLO cross section

still becomes negative, which implies that the saturation formalism does not apply anymore and

the collinear factorization should be used. Admittedly, what we have seen is only one piece of

a promising clue for the gluon saturation phenomenon. More data in di�erent forward rapidity

windows at the LHC would allow us to conduct precise tests of the theoretical calculation, and

may eventually provide us the smoking gun proof.

Figure 8: Figure is taken from [38]. It presents the comparison of the data from BRHAMS collabo-
ration [37] for charged hadron spectra as a function of transverse momentum in dAu collisions for
rapidities ⌘ = 2.2 and ⌘ = 3.2 at

p
sNN = 200GeV with the numerical results calculated both with

GBW and rcBK gluon distribution models.

This result suggests an equivalence of the two frameworks at the appropriate limits at leading order
and proves that one can get the whole set of different TMDs for these particular processes through
CGC calculations.

In [H8], by using the modifications introduced in [H2] to the standard hybrid formalism, I have
studied the production of three final state particles in pA collisions. Namely, the process under
consideration is the forward production of a soft photon with transverse momentum |q1| ⇠ Qs and
two hard jets with transverse momenta |q2|, |q3| � Qs:

p(pp) + A(pA) ! �(q1) + g(q2) + q(q3) + X (36)

The two important achievements in [H8] can be summarized as follows. First of all, it is the first
study that provides the cross section for production of three final state particles in the hybrid for-
malism. Moreover, one of the produced particles is a photon and photon related observables are of
key importance for the future colliders like Electron-Ion Collider (EIC) and Large Hadron electron
Collider (LHeC). Second, the correlation limit of the final result provide the correspondence between
the TMD and CGC frameworks beyond the simple 1 ! 2 processes like forward dijet production.

I have adopted the same strategy to calculate the production cross section of three particles
as in the case of [H2]. At order, ge the incoming quark state is dressed by photon emission. At
order gs, it is dressed by a gluon emission. Since we are interested in the production of three final
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state particles, one needs to go one step further and consider the dressing of the incoming quark
by a photon and a gluon at order gegs. At this order, one should take into account two different
contributions: emission of the photon before and after the emission of the gluon (see Fig. 9).

k1, �

k2, ⌘, c

p, s, ↵ p � k1 � k2, s
��
, �p � k1, s

�
, ↵

1

k2, ⌘, c

k1, �

p, s, ↵ p � k1 � k2, s
��
, �p � k2, s

�
, �

1

Figure 2.1. The dressed quark state to order O(gegs), with the two possible orderings of the

photon resp. gluon emission by the quark.

this point, we would like to emphasize that there is also an instantaneous quark contribu-

tion in the dressed state. One should include this contribution to calculate the complete

expression for the dressed quark at O(gegs). However, this instantaneous contribution is

suppressed by two powers of the hard momenta of the produced jets, and we can therefore

safely neglect it for our purposes.

The functions F
(1)
(q�) and F

(1)
(qg) define the momentum structure of the quark-photon

and and quark-gluon splittings. The quark-photon splitting function reads (see for example

[33]):

F
(1)
(q�)

h
(�)[k

+
1 , k1]

�
, (q)[p

+ � k
+
1 , p � k1]ss0

i
=

�
�1�
2⇠1p

+

�
�

��̄

ss0(⇠1)
(⇠1p � k1)

�̄

(⇠1p � k1)
2

, (2.9)

with

�
��̄

ss0(⇠1) =

h
(2 � ⇠1)�

��̄
�ss0 � i✏

��̄
�

3
ss0⇠1

i
, (2.10)

where �
3

is the third Pauli matrix and where we have defined the longitudinal momentum

ratio ⇠1 ⌘ k
+
1 /p

+
. The function F

(1)
(qg) has the same structure as F

(1)
(q�), and its explicit

expression can be read o� from (2.9) by exchanging (1 ! 2).

The functions F
(2)
(q��qg) and F

(2)
(qg�q�) in Eq. (2.8) define the momentum structure

of successive quark-photon and quark-gluon splittings, and di�er in the sequence of the

emissions (see Fig. 2.1). The explicit expression for F
(2)
(q��qg), in which the photon is

emitted before the gluon, reads (see for example [33])

F
(2)
(q��qg)

h
(�)[k

+
1 , k1]

�
, (g)[k

+
2 , k2]

⌘
, (q)[p

+ � k
+
1 � k

+
2 , p � k1 � k2]ss00

i
(2.11)

=

X

s0

�
�1�
2⇠1p

+
�

��̄

ss0(⇠1)

� �
�1�
2⇠2p

+
�̃

⌘⌘̄

s0s00(⇠1, ⇠2)

�
(⇠1p � k1)

�̄

(⇠1p � k1)
2

� [⇠2(p � k1) � ⇠̄1k2]
⌘̄

⇠2(⇠1p � k1)
2 + ⇠1(⇠2p � k2)

2 � (⇠2k1 � ⇠1k2)
2

,

with

�̃
⌘⌘̄

s0s00(⇠1, ⇠2) =
⇠1

⇠̄1

⇥
(2⇠̄1 � ⇠2)�

⌘⌘̄
�s0s00 � i✏

⌘⌘̄
�

3
s0s00⇠2

⇤
, (2.12)

where the ratios of longitudinal momenta are defined as

⇠1 ⌘ k
+
1 /p

+
, ⇠2 ⌘ k

+
2 /p

+
, ⇠̄1 ⌘ 1 � ⇠1 , and ⇠̄2 ⌘ 1 � ⇠2 . (2.13)

– 6 –

Figure 9: The dressed quark state at order O(gegs), with the two possible orderings of the photon
resp. gluon emission by the quark.

The dressed quark state computed to order gegs, then scatters off the target by getting a Wilson
line (adjoint for a gluon and fundamental for quark) on the quark, quark-photon, quark-gluon and
quark-gluon-photon components and gives the outgoing state. The relevant component of the outgo-
ing state for the production of three particles is the quark-gluon-photon one (the other components
vanish when one calculates the cross section since this is a tree level computation). Moreover, the
main production mechanism of a soft photon is collinear radiation from the incoming quark which
is only possible if one considers the emission of the photon before the emission of the gluon. Thus,
the second ordering can be neglected. After all, this procedure provides the outgoing state and one
can calculate the production cross section of a soft photon and two hard jets in straight forward
manner. The final result for the cross section can be found in [H8] (Eq. 2.25). The importance of
this result is that it constitutes the first step towards photon-jet production at NLO and eventually
a complete NLO calculation of photon production in the hybrid formalism.

Nevertheless, the complicated final expression of the cross section can be simplified for production
of jets with transverse momenta |q2| and |q3| much larger than the saturation momentum of the
target, |q2|, |q3| � Qs. The origin of the hard momenta of the produced jets is the large relative
transverse momenta of the splitting of the quark-gluon pair in the wave function. In such a case, the
transverse momentum transfer between the target and the quark-gluon pair during the scattering
is small. Therefore, the final jets propagate almost back-to-back in the momentum space. The
small transverse momentum imbalance of the final jets, |q2 +q3|, is then sensitive to the transverse
momenta of the gluons in the target which are of the order of the saturations scale, i.e. |q2+q3| ⇠ Qs.
This corresponds to a large relative momentum of the produced jets, |q2 � q3| � Qs. Thus, in the
correlation limit, we are interested in the following kinematics:

|q2|, |q3|, |q2 � q3| � |q1|, |q2 + q3| ⇠ Qs (37)

In this situation the transverse size of the produced quark-gluon pair in the coordinate space is
small. This allows us to utilize a small dipole approximation and expand our final result in powers
of the dipole sizes. After all said and done, the partonic cross section can be written in terms of
the first two TMD gluon distributions:

d�
qA!q�g+X

d3q
1
d3q

2
d3q

3

/ ↵
2
s↵em

1

q2
1

⇢
⇠
2
2 � ⇠̄

2
2

N2
c

�
F (1)

qg (x2, PT ) + F (2)
qg (x2, PT )

�
(38)
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The full expression can be found in [H8] in Eq. (3.14). Here, PT = q1 + q2 + q3 and as before,
⇠2 = q

+
2 /p

+. The functions F (1)
qg (x2, PT ) and F (2)

qg (x2, PT ) are the first two TMD gluon distributions
[42] which are defined as

F (1)
qg (x2, PT ) =

4

g2

Z
d

2b d
2b0

e
iPT ·(b�b0)

D
tr

⇥�
@

i
Ub

��
@

i
U

†
b0

�⇤E

x2

F (2)
qg (x2, PT ) = � 4

g2

Z
d

2b d
2b0

e
iPT ·(b�b0)

D
tr
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@

i
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�
U

†
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�
@

i
Ub0

�
U

†
b

⇤
tr

⇥
UbU

†
b0

⇤E

x2

(39)

where h· · · ix2 denotes the average over the target boosted to rapidity ln(1/x2).

The final result in the correlation limit written in terms of the TMD gluon distributions is very
similar to the one for forward dijet production in the same limit [42] (up to kinematical factors due
to the emission of the extra soft photon). These expressions coincide with the small-x limit of the
TMD formula [39, 42] in their overlapping validity region. Obviously, the production cross section
of the soft photon and two hard jets is suppressed by a power of ↵em compared to the forward dijet
production, but it is enhanced by the inverse of the transverse momentum of the soft photon in
the correlation limit. Thus, the ↵em suppression can be compensated by the transverse momenta
of the soft photon which indicates that this observable might be also interesting experimentally.
Moreover, Eq. (38) shows that the emission of the soft photon does not spoil the TMD structure
that was seen in the forward dijet production. This shows the correspondence between the TMD
and CGC frameworks beyond the simple 1 ! 2 processes which is main achievement of [H8].

4.4 Particle correlations in the CGC:

Summary of papers [H3], [H5], [H7] and [H9]

The LHC data has shown some very surprising and unexpected aspects of QCD dynamics, partic-
ularly in small systems like pp and pA. One of the most exciting observations already made during
the first LHC run by the CMS collaboration in high multiplicity pp collisions, is the discovery of
the correlations between produced particles over large intervals of rapidity peaking at zero relative
azimuthal angle [44, 45, 46]. This was dubbed “ridge” due its shape on the azimuthal angle-rapidity
plot, and constitute one of the key findings of the LHC regarding QCD dynamics (see Fig. 10).
Later on, a similar ridge structure was also observed in pPb collisions at the LHC by the four large
collaborations [47, 48, 49, 50]. A peak in the correlations also appears at azimuthal angle ⇡ . Similar
correlations were observed earlier at RHIC in Au-Au collisions [51, 52, 53]. These collective features
of particle production are surprising, since they appear in processes where the final state has the
size of a single proton, which were not expected to show collective behavior similar to heavy ion
collisions (HICs). Earlier observations of the ridge in HICs at RHIC have an accepted explana-
tion as the collective flow due to strong final state interactions, usually described in the framework
of relativistic viscous hydrodynamics. Such explanation in pp collisions looks tenuous for several
reasons, in particular due to the small system size. Nevertheless, data can be well described by
hydrodynamic simulations. This naturally raises a fundamental question: is the strong interaction
dynamics capable to lead to collectivity even in small systems, or is the origin of the ridge correla-
tions different in pp and pPb collisions than in HICs?
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Figure 7: 2-D two-particle correlation functions for 7 TeV pp (a) minimum bias events with
pT > 0.1 GeV/c, (b) minimum bias events with 1 < pT < 3 GeV/c, (c) high multiplicity
(Noffline

trk � 110) events with pT > 0.1 GeV/c and (d) high multiplicity (Noffline
trk � 110) events

with 1 < pT < 3 GeV/c. The sharp near-side peak from jet correlations is cut off in order to
better illustrate the structure outside that region.

of particles and, therefore, has a qualitatively similar effect on the shape as the particle pT cut
on minimum bias events (compare Fig. 7b and Fig. 7c). However, it is interesting to note that
a closer inspection of the shallow minimum at �� � 0 and |��| > 2 in high multiplicity pT-
integrated events reveals it to be slightly less pronounced than that in minimum bias collisions.

Moving to the intermediate pT range in high multiplicity events shown in Fig. 7d, an unex-
pected effect is observed in the data. A clear and significant “ridge”-like structure emerges
at �� � 0 extending to |��| of at least 4 units. This is a novel feature of the data which has
never been seen in two-particle correlation functions in pp or pp̄ collisions. Simulations using
MC models do not predict such an effect. An identical analysis of high multiplicity events in
PYTHIA8 [34] results in correlation functions which do not exhibit the extended ridge at �� �0
seen in Fig. 7d, while all other structures of the correlation function are qualitatively repro-
duced. PYTHIA8 was used to compare to these data since it produces more high multiplicity
events than PYTHIA6 in the D6T tune . Several other PYTHIA tunes, as well as HERWIG++ [30]
and Madgraph [35] events were also investigated. No evidence for near-side correlations cor-
responding to those seen in data was found.

The novel structure in the high multiplicity pp data is reminiscent of correlations seen in rel-
ativistic heavy ion data. In the latter case, the observed long-range correlations are generally

Figure 10: Figure taken from [44]. Two dimensional plot for two-particle correlation functions for 7
TeV pp collisions. (a) minimum bias events with pt > 0.1 GeV/c, (b) minimum bias events with
1 < pt < 3 GeV/c, high multiplicity events with pt > 0.1 GeV/c and (d) high multiplicity with
1 < pt < 3 GeV/c. The ridge structure is apparent in figure (d).

Significant part of my scientific achievements is devoted to understand whether the structure of
the initial state itself can lead, in pp and pA collisions, to such correlations independently of strong
final state interactions. Over the last decade, several mechanisms have been suggested to explain
the ridge correlations in the CGC framework. The most successful one is the so-called the “glasma
graph” approach [54, 55, 56]. Even though this approach is very successful to describe the data
[57, 58, 59, 60, 61, 62], the physics behind it was not clear.

In [H3], I have studied the two particle correlations within the "glasma graph approach" and
have shown that Bose enhancement of the gluons in the projectile wave function leads to final state
correlations in this approach. This is the main achievement of [H3].

The concept of Bose enhancement for a generic quantum system can be understood by consid-
ering a state with fixed occupation number, {ni(p)}, of N species of bosons at different momenta
which up to some normalization function can be written as

��{ni(p)}
↵

/
Y

i,p

⇥
a

†
i
(p)

⇤
ni(p)|0i (40)

with a
†
i
(p) being the creation operator of the boson and i = 1, 2, . . . , N . The mean particle density

ñ is defined as the expectation value of the number operator in this state:

ñ ⌘
⌦
{ni(p)}

��
X

j

a
†
j
(x)aj(x)

��{ni(p)}
↵

=

X

i,p

ni(p) (41)
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The two particle correlator in momentum space D(p, k) is defined in a similar way and can be
calculated in a trivial manner:

D(p, k) =

h X

i

ni(p)

i h X

j

nj(k)

i
+ �(p � k)

X

i

⇥
ni(p)

⇤2 (42)

The first term on the right hand side of Eq. (42) is the square of the mean particle density and the
second term is the Bose enhancement term. It vanishes when the momentum of the two bosons are
different and gives an enhancement which is O(1/N) when the momenta of two bosons are same.
The Bose enhancement term is O(1/N) due to the fact that it contains a single sum over the species
index. The physics behind this is the fact that only bosons of the same species are correlated with
each other.

Let me now, describe how Bose enhancement arises in the CGC and lead to final state correla-
tions by considering the double inclusive gluon production within the glasma graphs approach. In
this approach each produced gluon is assumed to be produced from a different color charge denisty
in the projectile wave function. For our purposes, these color charge densities can be conveniently
represented in terms of gluon creation and annihilation operators in the incoming projectile wave
function. After averaging over the target fields the glasma graphs can be written as sum of three
types of diagrams (see Fig. 11). Type A diagram describes the case where the two gluons with
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Figure 11: Glasma graphs for two gluon inclusive production before averaging over the projectile
color charge density ⇢. Black blobs denote vertices and dashed lines the cuts.

transverse momenta k1 and k2 scatters independently on the target by acquiring transfer of trans-
verse momentum p � k1 and q � k2 so that the outgoing gluons have transverse momenta p and
q. Type B and Type C diagrams include interference contributions which are also interesting to
study but the Bose enhancement effect can be observed by studying the Type A diagrams alone,
so here I only concentrate on this diagram. The Type A contribution to the double inclusive gluon
production is proportional to (see Eq.(7) in [H3] for the full expression)

Type A /
Z

d
2k1

(2⇡)2

d
2k2

(2⇡)2
hin|a†i

a (k1)a
†j
b

(k2)a
k

a(k1)a
l

b
(k2)|ini N(p � k1) N(q � k2) (43)

where N(p � k) is the dipole scattering amplitude. Moreover, the rapidity dependence on the gluon
creation and annihilation operators are integrated over. The explicit dependence on rapidity be-
comes important when the rapidity difference between the observed particles is large, �⌘ ⇠ 1/↵s.
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The evaluation of the expectation value of any operator in the incoming projectile state requires
two averaging procedure in the CGC. In [H3], I performed first averaging over the valance color
charge density that leads to the density matrix operator ⇢̂, on the soft gluon Hilbert space (see Eq.
(15) in H[3] for the explicit expression). Then, I have performed the second averaging over the soft
gluons by using this density matrix operator. The two particle correlator that appears in Type A
contribution calculated with this procedure lead to the following result (see Eq.(18) in [H3] for the
explicit expression):

D(k1,k2) /
⇢

1 +
1

S?(N2
c � 1)

h
�
(2)

(k1 � k2) + �
(2)

(k1 + k2)

i�
(44)

where S? is the transverse area of the projectile. The first term on the right hand side of Eq. (44)
is the classical term which corresponds to the square of the number of gluons while the second term
is the typical Bose enhancement term.

If we consider a situation where the incoming projectile has intrinsic saturation momentum Qs

and the momenta of the produced gluons are of the same order as Qs, i.e. |p| ⇠ |q| ⇠ Qs, then
the production amplitude is dominated by the contributions |k1| ⇠ |k2| ⇠ Qs. The initial state
correlations are encoded in the Bose enhancement terms in Eq. (44) which are delta functions. The
interaction with the target is obtained by convoluting the two particle correlator with the dipole
amplitudes N(p � k1)N(q � k2). Since in this kinematics, the momentum transfers from the tar-
get ( |p � k1| ⇠ |q � k2| ⌧ Qs ) are small and since the Bose enhancement terms involve delta
functions, these initial state correlations naturally transform into angular correlations between the
directions of the vectors ~p and ~q in the final state. In more general cases, the delta functions are
smeared when convoluted with the dipole scattering amplitudes but this does not spoil the final
state angular correlations. This identification of the origins of the final state angular correlations is
the main achievement in [H3].

The immediate question that arises after the study of [H3]: "are the quarks are subject to corre-
lations in the CGC?" In [H7], I have addressed this question and study the correlations between the
produced quarks for the first time in the CGC framework. The results of [H3] shows that the origin
of the correlations between the produced gluons is the Bose enhancement of the projectile gluons.
Due to their fermionic nature, one expects quarks to experience Pauli blocking which effectively
amounts to a suppression of the probability of finding two quarks with the same quantum numbers
in the CGC state. Therefore, one should expect negative correlation between the final state quarks
that originate from the initial state ones. On the other hand, the correlation between the gluons
is found to be long range in rapidity since the CGC wave function is dominated by the rapidity
integrated soft gloun field. Thus, another important question to answer: are the (anti)correlations
between the final state quarks long or short range in rapidity? The answer to this question is not
obvious a priori. In the projectile wave function, quarks are produced via splitting of the rapidity
invariant gluons into quark-antiquark pairs. However, the splitting amplitude itself depends on the
rapidity of the quark and antiquark. Moreover, due to this splitting in the projectile wave function
the expression for the production cross section of quarks is much more complicated when compared
to the gluons.

The main achievements in [H7] are the answers of these two questions. In [H7], I have shown that
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the initial state correlations between the quarks in the projectile wave function are not distorted
by small momenta transfer from the target in specific kinematics. In this kinematics the rapidity
difference between the produced quarks is relatively large, i.e. ⌘1�⌘2 � 1. Moreover, the transverse
momenta of the produced quarks p and q are of the same order and much larger than the saturation
scale of the projectile Qs, and the saturation scale of the projectile is much larger than saturation
scale of the target QT , i.e. |p| ⇠ |q| � Qs � QT . In this kinematics the contribution to the
production cross section that is sensitive to correlations has the following form (see Eqs. (3.19) and
(3.20) in [H7] for the full expressions)

d�

d2pd⌘1 d2qd⌘2

����
corr.

/ �e
�(⌘1�⌘2)

(⌘1 � ⌘2)
2
i

(45)

The negative sign of this contribution shows that it suppresses the classical term as opposed to the
gluonic case. This is the result of the Pauli blocking effect in the quark-quark production. More-
over, this effect decays exponentially with the rapidity difference between two produced quarks
which shows that it is short range in rapidity. However, this exponential decrease is tempered by
two powers of the rapidity difference.

In [H5], I have shown that there is another physical effect present in the glasma graph approach
which is referred to as the Hanbury-Brown-Twiss (HBT) correlations between the produced gluons.
The diagrams in the "glasma graphs approach" that lead to the HBT correlations are presented in
Fig. 12 after performing pair wise contraction of the color charges in the projectile wave function.
Assuming translationally invariant projectile wave function, the contribution from the Type B and
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Figure 12: Glasma graph diagrams (after averaging over the projectile color charges) that lead to
HBT correlations.

Type C diagrams to the production cross section is

Type B / �
(2)

(p � q) , Type C / �
(2)

(p + q) (46)

If the translational invariance condition is relaxed, then the delta functions are smeared over the
scale of the size R of the projectile: |p ± q| ⇠ R

�1. This size R represents the radius of the gluon
cloud inside the proton and its inverse is smaller than the saturation scale, R

�1
< Qs. Moreover, I

have shown in [H5] that the HBT correlations are long range in rapidity just as the Bose enhance-
ment effect. This amounts to the fact that, the strength of the HBT correlations is equal when the
rapidities of the two produced gluons are equal (⌘1 = ⌘2) or when the difference between them is
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large (|⌘1 � ⌘2| � 1).

These findings can be summarized as follows. The correlation function C(p,q), which is formally
defined as the ratio of double inclusive gluon production cross section to the square of the single
one, in the "glasma graph approach" contains two physical effects which can be written as follows:

C(p,q) = 1 + C(p,q)

���
BE

+ C(p,q)

���
HBT

(47)

The first term on the right hand side of Eq. (47) is the classical contribution which originates from
the square of the single inclusive production. C(p,q)

��
BE

represents the effect of Bose enhancement
of the gluons in the projectile wave function. As described above, this effect leads to the correla-
tion of the final state gluons. On the other hand, C(p,q)

��
HBT

represents the HBT correlations in
the "glasma graph approach" which directly introduces correlations between the final state gluons.
Both C(p,q)

��
BE

and C(p,q)
��
HBT

are rapidity independent which shows that both effects are long
range in rapidity. The Bose enhancement contribution is suppressed by a factor of the transverse
area of the projectile with respect to HBT contribution. However, it leads to correlations whose
width in the momentum space is determined by the saturation momentum Qs. On the other hand,
the HBT contribution is not suppressed but it gives a narrow peak in momentum space with the
width R

�1. This comparison is demonstrated in Fig. 13. The main achievements in [H5] are the

Bose Enhancement (BE)

HBT

Qs

R-1

q

Figure 13: Schematic separation in q of the contribution to the HBT effect (solid line) and contribution
to the Bose enhancement effect (dashed line) in two-particle correlation function.

identification of the HBT effect in the glasma graph approach and its comparison with the Bose
enhancement effect which is summarized in Fig. 13.

The "glasma graph approach" to double inclusive particle production is valid for pp collisions.
In principle, the dipole scattering amplitudes N(p � k1) and N(q � k2) introduced in Eq. (43)
are assumed to originate from single target fields and therefore this approach does not take into
account the effects of multiple scatterings in the dense target. In [H9], I have extended this study
and computed the inclusive production of two and three particles beyond "glasma graph approach"
by including the multiple scattering effects. Thus, the results of [H9] extends the validity of the
"glasma graph approach" from pp to pA collisions which is one of the main achievements in [H9].
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Apart from taking into account the multiple scattering effects in [H9], I have also introduced a
systematic way to identify each term and describe whether it is a Bose enhancement or HBT contri-
bution. For this identification, I have used the following strategy. When calculating the double in-
clusive gluon production, one has to average over four color charges (two in the amplitude and two in
the complex conjugate amplitude) in the projectile wave function: h⇢a1(x1)⇢

a2(x2)⇢
b1(y1)⇢

b2(y2)iP .
Here, xi and yi stands for the transverse position of the the color charge densities in the amplitude
and in the complex conjugate amplitude respectively. The averaging over the color charge distribu-
tions in the projectile is performed by using a generalized MV model where the weight functional
is Gaussian. Then, the average of any product of color charge densities factorizes into a product of
all possible Wick contractions. The correlator of two color charge densities in momentum space can
be defined as

h⇢a
(k)⇢

b
(k)iP = �

ab
µ

2
(k,p) (48)

This function µ
2
(k,p) defines the structure of the projectile and it can be written as

µ
2
(k,p) = T

✓
k � p

2

◆
F

⇥
(k + p)R

⇤
(49)

where F
⇥
(k + p)R

⇤
is a soft form factor which is maximal at F(0), and R is the radius of the

projectile. The function T defines the transverse momentum dependent distribution of the valence
charges. The soft form factor identifies whether a term is a contribution to the Bose enhancement
of the projectile gluons or a contribution to the HBT correlations of the produced gluons. For
example, in our set up the produced gluons have momenta p and q, while the projectile gluons
carry transverse momenta k1 and k2. In this case, the µ

2
(p,q) give maximal contribution when

p + q = 0 which clearly can be identified as the HBT correlations of the produced gluons. The
µ

2
(k1,k2) is peaked when k1 + k2 = 0 which is a contribution to the Bose enhancement of the

gluons in the projectile wave function.

On the other hand, the multiple scattering effects on the dense target are taken into account via
adjoint Wilson lines U

ab
(x) in gluon production process as described in detail in Section 4.2. This

leads to the appearance of double dipole and quadrupole amplitudes (in the adjoint representation)
of the type

hs(x,y)s(z,w)iT hQ(x,y, z,w)iT (50)

in the cross section, which have to be averaged over the target field distributions. The double
operator is expressed in terms of dipole amplitude s(x,y) is defined in Eq. (13) and the quadrupole
amplitude is defined as

Q(x,y, z,w) =
1

N2
c � 1

tr
⇥
U(x)U

†
(y)U(z)U †

(w)
⇤

(51)

The cross section has to be integrated over four transverse coordinates. In principal, the maximal
contribution should come from the area in coordinate space, i.e. when all the four coordinates are
far away from each other. However, all four points can not be far away from each other since the
target field ensemble has to be color nuetral. Therefore, the maximal contribution must come from
the configurations where the four points are combined into pairs, such that each pair is a singlet and
the distance between the pairs is large. Taking into account only such configurations is equivalent
to calculating the target averages of product of any number of Wilson lines by factorizing them into
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averages of pairs with basic Wick contraction. In this case, the the quadrupole amplitudes can be
written as

hQ(x,y, z,w)iT = hs(x,y)iT hs(z,w)iT + hs(x,w)iT hs(z,y)iT +
1

N2
c � 1

hs(x, z)iT hs(y,w)iT (52)

Similar expression for double dipole operator can be found in [H9] in Eq (18). Then, by using
the function µ

2
(k,p) given in Eq.(49) for the projectile color charge density correlators and using

the factorization ansatz described above for the double dipole and quadrupole amplitudes, I have
calculated the double inclusive gluon production cross section and identified the nature of all the
terms. Moreover, I have used same computation framework to compute the inclusive production of
three gluons and identify each term whether they are contributions to the Bose enhancement of the
projectile gluons or contribution to the HBT correlations of the final state gluons.

The main achievements in [H9] can be listed as follows. First of all, I introduced the function
µ

2
(k,p) and used the factorization argument of the averaging over the target field configurations

which can be applied to production of any number of gluons in pA collisions. This procedure
establishes a systematic way of identification of whether a term is a contribution to the Bose
enhancement of projectile gluons or a contribution to HBT correlations of the final state particles.
Second, with this approach I have computed inclusive production of both two and three gluons. I
have shown that, the contributions to the final state correlations are originating from quadrupole
terms in the two gluon production. Similarly, the correlations between the three final state gluons
are originating from sextuple amplitude (trace of six Wilson lines) in the three gluon production
process.

4.5 Impact and prospects

As described in detail in Sections 4.3 and 4.4, with the results of the works that have been pre-
sented here, I have significantly improved our understanding of saturation phenomena and the CGC
framework. In particular, the non-eikonal study of the single inclusive gluon production in pp and
pA collisions developed in [H1], [H4] and [H6] have triggered many studies in the CGC framework
especially in the context of TMDs [63, 64] and spin related observables [65, 66, 67]. On the other
hand, the idea of "Ioffe time restriction" that was introduced in [H2] in order to stabilize the NLO
corrections to the single inclusive particle production in the hybrid formalism is further developed
in [68], and a new factorization scheme is proposed for this process. Finally, the results of my
contributions in [H3], [H5], [H7] and [H9] are used in many numerical studies for the explanation of
the two particle correlations within CGC framework (see for example [69, 70, 71]).

The results of the works that I present here can inspire further studies in the CGC framework.
One of the immediate direction is related with the two particle correlations. The key theoretical
problem for the description of the two particle correlations within CGC is the absence of the odd
harmonics in the azimuthal angle �, i.e. terms containing cos(n�) with n being odd. This issue is
recently addressed and it has been shown that inclusion of higher-order saturation corrections in the
projectile wave function generates non-vanishing odd harmonics [72, 73]. It has been shown in [74],
the description of the data is possible by including these density corrections. Very recently, I have
also studied the problem of vanishing odd azimuthal harmonics in the CGC framework in [75]. In
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this work, I have shown that including the non-eikonal corrections in the study of the two particle
correlations in pp collisions also leads to non-vanishing odd harmonics. Currently, I am working on
a more dedicated numerical study of the odd harmonics originating form the non-eikonal corrections
in pp collisions.

On the other hand, I have recently extended the study performed in [H8] and considered the
forward production of two hard jets and a hard photon [76]. The main difference in the new study is
that the produced photon is not restricted to be soft. This leads to the possibility of production of
the final state photon in the gluon initiated channel which was absent in [H8]. In [76], I have shown
that in the correlation limit of the cross section of this process one probes, in the quark channel,
the first two unpolarized TMDs defined in Eq. (39) together with their linearly polarized partners.
Moreover, in the gluon channel one probes the first three TMDs of this channel with their linearly
polarized partners. These two studies performed in [H8] and in [76] constitute the first steps of
the computation of the production of a photon and a single jet at NLO. This is another problem
that I am working on currently which will show the correspondence between the CGC and TMD
frameworks at NLO.

Also very recently, in [77] and [78], I have shown how the CGC formulation which involves the
Wilson lines can be fully rewritten as an infinite twist TMD framework for inclusive observables.
This leads to a perfect match between the high and moderate energy limits of QCD given in terms
of TMDs and PDFs. The immediate continuation of these studies is its application to the azimuthal
angular correlations in the DIS dijet production.

5 Other scientific achievements

5.1 Bibliometric data (as of March, 2019)

According to the Web of Science
number of citations: 245
number of citations without self-citations: 213
h-index (Hirsch index): 9
total impact factor (the sum of 5-year journal impact factors [H1]-[H9], [P1]-[P7]): 71,683

5.2 Description of other scientific achievements

5.2.1 Other publications after completing PhD studies

The list of my other publications after PhD is as follows.

[P1] T. Altinoluk, B. Pire, L. Szymanowski, S. Wallon,
Resumming soft and collinear contributions in deeply virtual Compton scattering,
JHEP 1210, 049 (2012) [arXiv:1207.4609 [hep-ph]].

[P2] T. Altinoluk, C. Contreras, A. Kovner, E. Levin, M. Lublinsky, A. Shulkin,
QCD Reggeon Calculus From KLWMIJ/JIMWLK Evolution: Vertices, Reggeization and All,
JHEP 1309, 115 (2013) [arXiv:1306.2794 [hep-ph]].
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[P3] T. Altinoluk, A. Kovner, E. Levin, M. Lublinsky,
Reggeon Field Theory for Large Pomeron Loops,
JHEP 1404, 075 (2014) [arXiv:1401.7431 [hep-ph]].

[P4] T. Altinoluk, N. Armesto, A. Kovner, E. Levin, M. Lublinsky,
KLWMIJ Reggeon field theory beyond the large Nc limit,
JHEP 1408, 007 (2014) [arXiv:1402.5936 [hep-ph]].

[P5] T. Altinoluk, N. Armesto, G. Beuf, A. H. Rezaeian,
Diffractive Dijet Production in Deep Inelastic Scattering and Photon-Hadron Collisions in

the Color Glass Condensate,
Phys. Lett. B 758, 373 (2016) [arXiv:1511.07452 [hep-ph]].

[P6] T. Altinoluk, N. Armesto, G. Beuf, A. Kovner, M. Lublinsky,
Heavy quarks in proton-nucleus collisions - the hybrid formalism,
Phys. Rev. D 93, no. 5, 054049 (2016) [arXiv:1511.09415 [hep-ph]].

[P7] T. Altinoluk, N. Armesto, D. E. Wertepny,
Correlations and the ridge in the Color Glass Condensate beyond the glasma graph approxi-

mation,
JHEP 1805, 207 (2018) [arXiv:1804.02910 [hep-ph]].

Now, I would like to describe shortly each of the work performed in the publications listed above.

The JIMWLK equation takes into account the nonlinear effects of the large gluon density of the
projectile evolution. However, at very high energies where one can evolve in energy both colliding
objects, there is another nonlinear effect that comes into play, namely multiple scatterings on a dense
target. Such scattering processes are outside of the validity of JIMWLK equation. This makes it
inapplicable for processes with a very large range of evolution in rapidity, which evolve an initially
dilute projectile into a dense system at final energy. During my PhD studies, I have worked on the
derivation of a new Hamiltonian which leads to generalization of the JIMWLK equation that takes
into account both of the above mentioned effects via Pomeron loops [79, 80]. This Hamiltonian of
QCD is referred to as “Reggeon Field Theory (RFT) Hamiltonian of QCD” since it clarifies the rela-
tion between the functional evolution approach and the QCD formulation of pre-QCD ideas known
as reggeon field theory. After my PhD apart from the new topics that I have worked on, I also
continued on this direction of research. In [P2], I have extended the study of the RFT Hamiltonian
of QCD by considering the rapidity evolution in terms of the natural degrees of freedom of this the-
ory which are refered to as the reggeons. In [P3], I have analyzed the range of applicability of this
state-of-the-art Hamiltonian. I have shown that this approach partially overcomes the limitations
of BK-JIMWLK formulation. However, the new Hamiltonian is only as long as at any intermediate
value of the rapidity throughout the evolution at least one of the colliding objects is dilute. Finally,
in [P4], I have studied the relation between the RFT Hamiltonian and the functional JIMWLK
equation beyond the simplified large Nc limit.

After my PhD, I got interested in the study of the exclusive physics and the Generalized Parton
Distributions (GPDs) that are nonperturbative objects and can be considered as the generalization
of the TMDs. In [P1], I have focused on Deeply Virtual Compton Scattering (DVCS), particularly
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to the quark channel. The quark coefficient function which can be calculated perturbatively includes
double logarithmic terms of the light cone momentum fraction of the incoming and outgoing quarks
at NLO. These terms become important in the limit of vanishing light cone momentum fraction. I
have performed an all order resummation of these double logarithmic terms and provided a simple
resummed expression for the quark coefficient function.

In [P5], I have studied the diffractive dijet production in DIS and in photon-hadron collisions
within the CGC framework. The results showed that the diffractive dijet cross section shows sen-
sitivity to the orientation of the dipole in the transverse plane. In other words, the cross section
depends both on the dipole transverse size r and its impact parameter b. This result suggests that
this observable can be used to study the possible correlations between the produced quark-antiquark
pair such as the azimuthal angle correlations.

[P6] is a natural continuation of the study performed in [H2]. In this paper, I have studied the
forward production heavy quarks in the hybrid formalism in pA collisions. I provided the results for
the single inclusive cross section for extrinsic charm and beauty hadron production at LO. More-
over, I have also studied their heavy quark limit and provided the expression up to order 1/m

4
Q

and
shown that in the heavy quark limit the production cross section is linearly proportional to square
of the saturation momentum of the target.

Finally, in [P7], I have studied the extension of the "glasma graph approach" to the two gluon
production from pp to pA collisions by including the multiple scattering effects of the dense target.
The main difference between the work performed in [H9] and [P7] is the computation framework.
The two gluon correlations in [P7] are calculated within the kt-factorized approach which is difficult
to generalize to three or more particles. Moreover, the results of [P7] are valid only valid in the
large Nc limit as opposed to the the results of [H9] which is valid for finite Nc. In this sense, [P7]
can be considered as the first attempt to generalize the "glasma graph approach" to the two gluon
production from pp to pA collisions.
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