## 4.4 Eksperyment 1,6 GeV wiązka deuteronów [32], [48]

Przedostatni eksperyment na zestawie "E+T" odbył się z użyciem wiązki deuteronów o energii 1,6 GeV [48]. Rozkład detektorów wykonanych z Y-89 był identyczny jak przy energii 2,52 GeV (patrz Rysunek 4.15 w poprzednim podrozdziale). Eksperyment został wykonany w grudniu 2006 roku. Model naświetlano wiązką deuteronów o energii 1,6 GeV (0,8 GeV na nukleon) przez czas 22135 sekund. Zebrano łącznie 2,08\*10E13 deuteronów, czyli o połowę więcej niż poprzednio. Procedura pomiaru próbek i analizy uzyskanych widm wraz z kalibracją wyników była identyczna jak poprzednio. Z powodu dużej ilości próbek do zmierzenia na jednym spektrometrze, uwaga została skupiona na prawidłowym rozpoznaniu podstawowych izotopów z reakcji (n,2n), (n,3n), (n,4n). Linie z reakcji (n,5n) i (n,6n) odnalezione zostały tylko w nielicznych, najbardziej aktywnych próbkach. Wyznaczone wartości parametru B [40] (czyli wielkości produkcji danego izotopu w danym punkcie na 1 gram próbki i 1 deuteron z wiązki) są zebrane w tabel 4.7.

| Izotop                      | Promień | Odległość od czoła modelu [cm] |           |          |          |          |  |  |  |
|-----------------------------|---------|--------------------------------|-----------|----------|----------|----------|--|--|--|
| Czas T/2                    | [cm]    | Parametr Bx10E-5               |           |          |          |          |  |  |  |
| Użyte Linie γ               |         | 0.0                            | 11.8      | 24.0     | 36.2     | 48.4     |  |  |  |
| Y-88                        | 0.0     | 9,00(98)                       | 16,76(18) | 7,79(85) | 3,17(35) | 1,07(13) |  |  |  |
| T <sub>1/2</sub> =106.65 d, | 3.0     | 2,29(26)                       | 5,57(61)  | 3,15(36) | 1,63(18) | 0,55(70) |  |  |  |
| Eγ=898.0 keV                | 6.0     | 1,09(13)                       | 2,01(23)  | 1,65(19) | 0,87(95) | 0,39(43) |  |  |  |
| i 1836.0 keV                | 8.5     | 0,70(90)                       | 1,24(14)  | 1,04(12) | 0,54(59) | 0,23(26) |  |  |  |
|                             | 10.5    | 0,46(61)                       | 0,87(10)  | 0,71(91) | 0,38(42) | 0,18(20) |  |  |  |
|                             | 13.5    | 0,26(36)                       | 0,52(66)  | 0,37(50) | 0,21(24) | 0,11(13) |  |  |  |
| <b>Y-87</b>                 | 0.0     | 5,52(59)                       | 10,53(11) | 5,11(54) | 2,15(23) | 0,72(76) |  |  |  |
| $T_{1/2}=3.32 \text{ d}$    | 3.0     | 0,89(95)                       | 3,05(32)  | 1,85(19) | 0,98(10) | 0,40(43) |  |  |  |
| Eγ=388.5 keV                | 6.0     | 0,44(47)                       | 1,08(12)  | 0,93(10) | 0,52(56) | 0,26(28) |  |  |  |
| i 484.8 keV                 | 8.5     | 0,29(31)                       | 0,67(72)  | 0,57(61) | 0,31(33) | 0,15(16) |  |  |  |
|                             | 10.5    | 0,20(22)                       | 0,45(48)  | 0,39(42) | 0,21(23) | 0,11(13) |  |  |  |
|                             | 13.5    | 0,12(1)                        | 0,26(28)  | 0,22(24) | 0,13(14) | 0,08(90) |  |  |  |
| Y-86                        | 0.0     | 2,15(70)                       | 3,89(78)  | 1,87(45) | 0,82(29) | 0,28(10) |  |  |  |
| T <sub>1/2</sub> =0.614 d   | 3.0     | 0,24(10)                       | 1,03(25)  | 0,64(20) | 0,37(17) | 0,14(7)  |  |  |  |
| Eγ=1076.0 keV               | 6.0     | 0,10(5)                        | 0,34(13)  | 0,29(12) | 0,18(10) | 0,11(6)  |  |  |  |
|                             | 8.5     | 0,07(5)                        | 0,20(10)  | 0,17(6)  | 0,11(6)  | 0,06(4)  |  |  |  |
|                             | 10.5    | 0,05(4)                        | 0,13(7)   | 0,12(6)  | 0,07(6)  | 0,04(6)  |  |  |  |
|                             | 13.5    | 0,03(4)                        | 0,07(5)   | 0,07(4)  | 0,04(3)  | 0,02(3)  |  |  |  |

| Tabel | 4.7 | Wartości                | parar | netru 🛛 | B dla | izot | topów | Y-88, | , 87 i | 86 przy | energii | 1,6 GeV  | ′ [48]. |
|-------|-----|-------------------------|-------|---------|-------|------|-------|-------|--------|---------|---------|----------|---------|
|       |     | Niektóre                | błędy | pomia   | arowe | (w   | nawia | sach) | mają   | znaczne | wartośc | i. Wyjaś | nienie  |
|       |     | podano w rozdziale 4.3. |       |         |       |      |       |       |        |         |         |          |         |

Nie zaobserwowano przesunięcia punktu maksymalnej produkcji izotopów (patrz podrozdział 4.3). W tym eksperymencie obszar ten, podobnie jak we wszystkich eksperymentach z protonami, wypada w okolicy drugiej płaszczyzny pomiarowej czyli w odległości około 12 cm. Aby potwierdzić lub ostatecznie zanegować istnienie przesunięcia maksimum produkcji należało przeprowadzić kolejne eksperymenty przy różnych energiach deuteronu np.: 1, i 3,5 GeV. Pozwoliło by to zaobserwować (ewentualną) pełną zależność tego zjawiska od energii wiązki. Kolejny eksperyment udało się przeprowadzić dopiero pod

koniec 2009 r. z energią wiązki 4 GeV. Wnioski z niego ostatecznie zanegowały istnienie przesunięcia maksimum, co opiszę szerzej w rozdziale 5.6.

Na rysunkach 4.25, 4.26 i 4.27 przedstawiono trójwymiarowe wykresy z uzyskanymi wynikami rozkładu produkcji trzech izotopów Itru po wykonaniu wszystkich kalibracji.



Rys. 4.25 Rozkład przestrzenny parametru B (produkcji) dla izotopu Y-88. Wartości odległości na osi X i Y podane są w [cm]. [48]



Rys. 4.26 Rozkład przestrzenny parametru B (produkcji) dla izotopu Y-87. Wartości odległości na osi X i Y podane są w [cm]. [48]

Aby pokazać zgodność uzyskanych rezultatów dla detektorów itrowych z uzyskiwanymi z innych detektorów, zaprezentowano rezultaty uzyskane przez grupę czeską przy tej samej energii wiązki dla detektorów wykonanych ze Złota, Bizmutu i Indu oraz ich własną analizę próbek Itru [5], [32]. Na Rys. 4.28 pokazano zmiany produkcji poszczególnych izotopów w funkcji odległości od czoła zestawu dla jednej i tej samej odległości radialnej od osi (3cm). Widać wyraźnie, że niezależnie od materiału próbki maksimum produkcji wypada w tej samej odległości a wyznaczone wartości produkcji izotopów itru mają te same wartości jak w pokazanych na rysunkach 4.25-4.27.

Rozkład osiowy Y-86 dla linii 1076.64 keV



Rys. 4.27 Rozkład osiowy parametru B (produkcji) dla izotopu Y-86. Wartości odległości na osi X i Y podane są w [cm]. [48]



Rys. 4.28 Porównanie wyników zależności produkcji danego izotopu od odległości od czoła zestawu [cm], dla jednakowego dystansu radialnego 3 cm od osi zestawu [5], [32]. Na czterech wykresach zaprezentowano wyniki odpowiednio dla Złota (lewy-górny), Indu (prawy-górny), Itru (lewy-dolny) i Bizmutu (prawy-dolny). W górnej części każdego wykresu podano oznaczenie danego izotopu i koloru na wykresie. Wykresy przygotowane przez grupę czeską [5].