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Quantum Mechanics

1. Good theory of the microworld

2. Quite resistant to ‘small improvements’

I Nonlinear versions of quantum mechanics make superluminal communication possible.
(Gisin; Polchinski)

I Nonlinear quantum mechanics implies polynomial-time solution for ‘hard’ (NP)
computational problems (Abrams and Lloyd; Aaronson)

I Altering the rules of calculating probabilities has similar inconsistencies (Aaronson)

I Abandoning the complex space as the space of states makes the number of degrees of
freedom of a composite system incompatible with the numbers of degrees of freedom of
the subsystems (Hardy) and causes some implausible logical consequences concerning
possibility of probabilistic reasoning (Caves, Fuchs, and Schack)

3. Intrinsically (‘ontologicaly’) random (probabilistic): unpredictability caused not by
lack of knowledge (e.g. of precise initial conditions) like in classical mechanics, but
rather by inherent uncertainty

I Because 1. and 2. rather than ‘improve’ quantum mechanics, try to understand
how 3. is possible
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Intrinsic randomness
I How do we prove that quantum mechanics is intrinsically random? (e.g. that we can generate

a ‘truly’ random sequence)

BobAlice

x

a

y

b

I p(a, b|x, y) - probability of obtaining a, b when measuring x, y.

I Usually p(a, b|x, y) 6= p(a|x)p(b|y).

I Local hidden-variable model

p(a, b|x, y, λ) = p(λ)p(a|x, λ)p(b|y, λ).

p(a, b|x, y) =

∫
Λ

dλp(λ)p(a|x, λ)p(b|y, λ),

λ - common cause (‘hidden variables’)

I Bell inequalities, fulfilled by all deterministic (=local hidden variables) theories.∑
a,b,x,y

α
xy
ab p(a, b|x, y) ≤ SL,
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EPR scheme

I Spin component (ei, fj) measurements (1,−1) of two products of decayed spin 0
particle

e
2

e
1

f
1f

2

I Correlations:
〈ei fj〉 =

∑
a,b=±1

a · b · p(a, b|ei, fj)

S = 〈e1 f1〉+ 〈e2 f1〉+ 〈e2 f2〉 − 〈e1 f2〉

I Classically: S ≤ 2
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EPR scheme - quantum mechanics

I Quantum mechanics: 〈e, f 〉 = 〈Ψ|E ⊗ F|Ψ〉 = −e · f

I QM state of the system

|Ψ〉 =
1
√

2

(
|1〉 ⊗ | − 1〉+ | − 1〉 ⊗ |1〉

)

I Configuration of measurements devices

e
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p/4

p/4
p/4

I S = 2
√

2
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Bell tests of intrinsic probability

I Bell’s theorem: impossibility of instantaneous communication (‘no-signaling’)
between spatially separated systems and full determinism imply that all
correlations between results of measurements must be local i.e. obey the Bell
inequalities

I Exhibiting non-local correlations in an experiment would give, under the
assumption of no-signalling, a proof of a nondeterministic nature of quantum
mechanical reality.

I Loophole-free tests of Bell’s theorem

I The experiments require random measurements - there must exist a truly random
process controlling their choice. To produce a random sequence we need another
one

I Rather than try to close the loop, try to understand why the intrinsic randomness is
possible
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No-signaling boxes

input a1
1, 2, . . . n

output
α1 ∈ Ua1

input a2
1, 2, . . . n

output
α2 ∈ Ua2

. . .

input ak
1, 2, . . . n

output
αk ∈ Uak

I P(α1α2 . . . αk|a1a2 . . . ak) probability of an outcome (α1, α2, . . . , αk) given an input
(a1, a2, . . . , ak)

I positive, normalized, and no-signaling∑
αi

P(α1 . . . αi . . . αk|a1 . . . ai . . . ak) =
∑
βi

P(α1 . . . βi . . . αk|a1 . . . bi . . . ak),

i.e. changing the input in one box does not influence the outcomes of other ones



No-signaling boxes

input a1
1, 2, . . . n

output
α1 ∈ Ua1

input a2
1, 2, . . . n

output
α2 ∈ Ua2

. . .

input ak
1, 2, . . . n

output
αk ∈ Uak

I P(α1α2 . . . αk|a1a2 . . . ak) probability of an outcome (α1, α2, . . . , αk) given an input
(a1, a2, . . . , ak)

I positive, normalized, and no-signaling∑
αi

P(α1 . . . αi . . . αk|a1 . . . ai . . . ak) =
∑
βi

P(α1 . . . βi . . . αk|a1 . . . bi . . . ak),

i.e. changing the input in one box does not influence the outcomes of other ones



I The simplest case - two boxes with binary inputs and outputs

I Correlations

〈ab〉 =
∑

α,β∈{−1,1}
αβP(αβ|ab), |〈ab〉| ≤ 1

I ‘CHSH’ inequality

S := |〈xx〉+ 〈xy〉+ 〈yx〉 − 〈yy〉| ≤ 4

I Classical and quantum physics restrict S further
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Classical restrictions
I Elementary proposition Does our system belongs to a (measurable) subset a of

the phase-space Γ?

I Propositions can be joined (or, and) or negated in correspondence with
set-theoretic sum, x ∩ y, intersection, a ∪ b, and complement, a′ = Γ \ a

I Both structures (logical and set-theoretical) are Boolean algebras

I State of a system: probability distribution p(x) on Γ

I Correlations: 〈ab〉 =
∫
Γ a(x)b(x)p(x)dx, where a(x), b(x) - characteristic functions

of a i b

I Bell ((CSHS) inequalities

S := |〈xx〉+ 〈xy〉+ 〈yx〉 − 〈yy〉| ≤ 2
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Quantum restrictions
I Elementary propositions: Is the result of measuring the projection on a closed

subspace of the Hilbert space of the system equal to 1?.

I Elementary proposition - orthogonal projection Pa on a closed subspace a ⊂ H
(equivalently, a itself)

I Conjunction (and) a ∧ b ∼ a ∩ b
I Disjunction (or ) a ∨ b ∼ a⊕ b = smallest closed subspace containing a and b an
I negation −a ∼ a⊥ (orthogonal complement)

I This is no longer a Boolean algebra
It is not distributive: a ∧ (b ∨ c) 6= (a ∧ b) ∨ (a ∧ c) for some a, b, c

I state of a system = density matrix ρ : H → H, ρ = ρ† ≥ 0 (Gleason theorem)

I Correlations: 〈ab〉 = trρPaPb

I Tsirelson (CSHS) inequalities

S := |〈xx〉+ 〈xy〉+ 〈yx〉 − 〈yy〉| ≤ 2
√

2
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I Disjunction (or ) a ∨ b ∼ a⊕ b = smallest closed subspace containing a and b an
I negation −a ∼ a⊥ (orthogonal complement)

I This is no longer a Boolean algebra
It is not distributive: a ∧ (b ∨ c) 6= (a ∧ b) ∨ (a ∧ c) for some a, b, c

I state of a system = density matrix ρ : H → H, ρ = ρ† ≥ 0 (Gleason theorem)

I Correlations: 〈ab〉 = trρPaPb
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I Different restrictions caused by different rules of calculating probabilities

I Rules of calculating probabilities determined by the ‘phase space’
(measurable subsets - Kolmogorov, Hilbert space - Gleason)

I ‘Phase space’ determined by the logical structure of propositions
(Boolean algebra↔ subsets - Stone)
(orthomodular lattice↔ Hilbert space - Piron, Solér, Morash, Holland)

I Popescu-Rohrlich boxes

P(αβ|ab) =


xx xy yx yy

00 1/2 1/2 1/2 0
01 0 0 0 1/2
10 0 0 0 1/2
11 1/2 1/2 1/2 0


I CHSH inequality

S := |〈xx〉+ 〈xy〉+ 〈yx〉 − 〈yy〉| ≤ 4

I Reconstruction of the underlying algebraic structure

I T I Tylec, M K, Non-signaling boxes and quantum logics. J. Phys. A, 48 505303, 2015.
I T I Tylec, M K, J Krajczok. Non-signalling Theories and Generalized Probability. Int. J.

Theor. Phys. 55, 3832, 2016.
I T I Tylec, M K, Remarks on the tensor product structure of nosignaling theories. J. Phys.

A, in print; arXiv 1604.01949, 2016.
I T I Tylec M K, Ignorance is a bliss: mathematical structure of many-box models. soon,

2016.



I Different restrictions caused by different rules of calculating probabilities
I Rules of calculating probabilities determined by the ‘phase space’

(measurable subsets - Kolmogorov, Hilbert space - Gleason)

I ‘Phase space’ determined by the logical structure of propositions
(Boolean algebra↔ subsets - Stone)
(orthomodular lattice↔ Hilbert space - Piron, Solér, Morash, Holland)

I Popescu-Rohrlich boxes

P(αβ|ab) =


xx xy yx yy

00 1/2 1/2 1/2 0
01 0 0 0 1/2
10 0 0 0 1/2
11 1/2 1/2 1/2 0


I CHSH inequality

S := |〈xx〉+ 〈xy〉+ 〈yx〉 − 〈yy〉| ≤ 4

I Reconstruction of the underlying algebraic structure

I T I Tylec, M K, Non-signaling boxes and quantum logics. J. Phys. A, 48 505303, 2015.
I T I Tylec, M K, J Krajczok. Non-signalling Theories and Generalized Probability. Int. J.

Theor. Phys. 55, 3832, 2016.
I T I Tylec, M K, Remarks on the tensor product structure of nosignaling theories. J. Phys.

A, in print; arXiv 1604.01949, 2016.
I T I Tylec M K, Ignorance is a bliss: mathematical structure of many-box models. soon,

2016.



I Different restrictions caused by different rules of calculating probabilities
I Rules of calculating probabilities determined by the ‘phase space’

(measurable subsets - Kolmogorov, Hilbert space - Gleason)
I ‘Phase space’ determined by the logical structure of propositions

(Boolean algebra↔ subsets - Stone)
(orthomodular lattice↔ Hilbert space - Piron, Solér, Morash, Holland)

I Popescu-Rohrlich boxes

P(αβ|ab) =


xx xy yx yy

00 1/2 1/2 1/2 0
01 0 0 0 1/2
10 0 0 0 1/2
11 1/2 1/2 1/2 0


I CHSH inequality

S := |〈xx〉+ 〈xy〉+ 〈yx〉 − 〈yy〉| ≤ 4

I Reconstruction of the underlying algebraic structure

I T I Tylec, M K, Non-signaling boxes and quantum logics. J. Phys. A, 48 505303, 2015.
I T I Tylec, M K, J Krajczok. Non-signalling Theories and Generalized Probability. Int. J.

Theor. Phys. 55, 3832, 2016.
I T I Tylec, M K, Remarks on the tensor product structure of nosignaling theories. J. Phys.

A, in print; arXiv 1604.01949, 2016.
I T I Tylec M K, Ignorance is a bliss: mathematical structure of many-box models. soon,

2016.



I Different restrictions caused by different rules of calculating probabilities
I Rules of calculating probabilities determined by the ‘phase space’

(measurable subsets - Kolmogorov, Hilbert space - Gleason)
I ‘Phase space’ determined by the logical structure of propositions

(Boolean algebra↔ subsets - Stone)
(orthomodular lattice↔ Hilbert space - Piron, Solér, Morash, Holland)

I Popescu-Rohrlich boxes

P(αβ|ab) =


xx xy yx yy

00 1/2 1/2 1/2 0
01 0 0 0 1/2
10 0 0 0 1/2
11 1/2 1/2 1/2 0



I CHSH inequality

S := |〈xx〉+ 〈xy〉+ 〈yx〉 − 〈yy〉| ≤ 4

I Reconstruction of the underlying algebraic structure

I T I Tylec, M K, Non-signaling boxes and quantum logics. J. Phys. A, 48 505303, 2015.
I T I Tylec, M K, J Krajczok. Non-signalling Theories and Generalized Probability. Int. J.

Theor. Phys. 55, 3832, 2016.
I T I Tylec, M K, Remarks on the tensor product structure of nosignaling theories. J. Phys.

A, in print; arXiv 1604.01949, 2016.
I T I Tylec M K, Ignorance is a bliss: mathematical structure of many-box models. soon,

2016.



I Different restrictions caused by different rules of calculating probabilities
I Rules of calculating probabilities determined by the ‘phase space’

(measurable subsets - Kolmogorov, Hilbert space - Gleason)
I ‘Phase space’ determined by the logical structure of propositions

(Boolean algebra↔ subsets - Stone)
(orthomodular lattice↔ Hilbert space - Piron, Solér, Morash, Holland)

I Popescu-Rohrlich boxes

P(αβ|ab) =


xx xy yx yy

00 1/2 1/2 1/2 0
01 0 0 0 1/2
10 0 0 0 1/2
11 1/2 1/2 1/2 0


I CHSH inequality

S := |〈xx〉+ 〈xy〉+ 〈yx〉 − 〈yy〉| ≤ 4

I Reconstruction of the underlying algebraic structure

I T I Tylec, M K, Non-signaling boxes and quantum logics. J. Phys. A, 48 505303, 2015.
I T I Tylec, M K, J Krajczok. Non-signalling Theories and Generalized Probability. Int. J.

Theor. Phys. 55, 3832, 2016.
I T I Tylec, M K, Remarks on the tensor product structure of nosignaling theories. J. Phys.

A, in print; arXiv 1604.01949, 2016.
I T I Tylec M K, Ignorance is a bliss: mathematical structure of many-box models. soon,

2016.



I Different restrictions caused by different rules of calculating probabilities
I Rules of calculating probabilities determined by the ‘phase space’

(measurable subsets - Kolmogorov, Hilbert space - Gleason)
I ‘Phase space’ determined by the logical structure of propositions

(Boolean algebra↔ subsets - Stone)
(orthomodular lattice↔ Hilbert space - Piron, Solér, Morash, Holland)

I Popescu-Rohrlich boxes

P(αβ|ab) =


xx xy yx yy

00 1/2 1/2 1/2 0
01 0 0 0 1/2
10 0 0 0 1/2
11 1/2 1/2 1/2 0


I CHSH inequality

S := |〈xx〉+ 〈xy〉+ 〈yx〉 − 〈yy〉| ≤ 4

I Reconstruction of the underlying algebraic structure

I T I Tylec, M K, Non-signaling boxes and quantum logics. J. Phys. A, 48 505303, 2015.
I T I Tylec, M K, J Krajczok. Non-signalling Theories and Generalized Probability. Int. J.

Theor. Phys. 55, 3832, 2016.
I T I Tylec, M K, Remarks on the tensor product structure of nosignaling theories. J. Phys.

A, in print; arXiv 1604.01949, 2016.
I T I Tylec M K, Ignorance is a bliss: mathematical structure of many-box models. soon,

2016.



I Different restrictions caused by different rules of calculating probabilities
I Rules of calculating probabilities determined by the ‘phase space’

(measurable subsets - Kolmogorov, Hilbert space - Gleason)
I ‘Phase space’ determined by the logical structure of propositions

(Boolean algebra↔ subsets - Stone)
(orthomodular lattice↔ Hilbert space - Piron, Solér, Morash, Holland)

I Popescu-Rohrlich boxes

P(αβ|ab) =


xx xy yx yy

00 1/2 1/2 1/2 0
01 0 0 0 1/2
10 0 0 0 1/2
11 1/2 1/2 1/2 0


I CHSH inequality

S := |〈xx〉+ 〈xy〉+ 〈yx〉 − 〈yy〉| ≤ 4

I Reconstruction of the underlying algebraic structure
I T I Tylec, M K, Non-signaling boxes and quantum logics. J. Phys. A, 48 505303, 2015.

I T I Tylec, M K, J Krajczok. Non-signalling Theories and Generalized Probability. Int. J.
Theor. Phys. 55, 3832, 2016.

I T I Tylec, M K, Remarks on the tensor product structure of nosignaling theories. J. Phys.
A, in print; arXiv 1604.01949, 2016.

I T I Tylec M K, Ignorance is a bliss: mathematical structure of many-box models. soon,
2016.



I Different restrictions caused by different rules of calculating probabilities
I Rules of calculating probabilities determined by the ‘phase space’

(measurable subsets - Kolmogorov, Hilbert space - Gleason)
I ‘Phase space’ determined by the logical structure of propositions

(Boolean algebra↔ subsets - Stone)
(orthomodular lattice↔ Hilbert space - Piron, Solér, Morash, Holland)

I Popescu-Rohrlich boxes

P(αβ|ab) =


xx xy yx yy

00 1/2 1/2 1/2 0
01 0 0 0 1/2
10 0 0 0 1/2
11 1/2 1/2 1/2 0


I CHSH inequality

S := |〈xx〉+ 〈xy〉+ 〈yx〉 − 〈yy〉| ≤ 4

I Reconstruction of the underlying algebraic structure
I T I Tylec, M K, Non-signaling boxes and quantum logics. J. Phys. A, 48 505303, 2015.
I T I Tylec, M K, J Krajczok. Non-signalling Theories and Generalized Probability. Int. J.

Theor. Phys. 55, 3832, 2016.

I T I Tylec, M K, Remarks on the tensor product structure of nosignaling theories. J. Phys.
A, in print; arXiv 1604.01949, 2016.

I T I Tylec M K, Ignorance is a bliss: mathematical structure of many-box models. soon,
2016.



I Different restrictions caused by different rules of calculating probabilities
I Rules of calculating probabilities determined by the ‘phase space’

(measurable subsets - Kolmogorov, Hilbert space - Gleason)
I ‘Phase space’ determined by the logical structure of propositions

(Boolean algebra↔ subsets - Stone)
(orthomodular lattice↔ Hilbert space - Piron, Solér, Morash, Holland)

I Popescu-Rohrlich boxes

P(αβ|ab) =


xx xy yx yy

00 1/2 1/2 1/2 0
01 0 0 0 1/2
10 0 0 0 1/2
11 1/2 1/2 1/2 0


I CHSH inequality

S := |〈xx〉+ 〈xy〉+ 〈yx〉 − 〈yy〉| ≤ 4

I Reconstruction of the underlying algebraic structure
I T I Tylec, M K, Non-signaling boxes and quantum logics. J. Phys. A, 48 505303, 2015.
I T I Tylec, M K, J Krajczok. Non-signalling Theories and Generalized Probability. Int. J.

Theor. Phys. 55, 3832, 2016.
I T I Tylec, M K, Remarks on the tensor product structure of nosignaling theories. J. Phys.

A, in print; arXiv 1604.01949, 2016.

I T I Tylec M K, Ignorance is a bliss: mathematical structure of many-box models. soon,
2016.



I Different restrictions caused by different rules of calculating probabilities
I Rules of calculating probabilities determined by the ‘phase space’

(measurable subsets - Kolmogorov, Hilbert space - Gleason)
I ‘Phase space’ determined by the logical structure of propositions

(Boolean algebra↔ subsets - Stone)
(orthomodular lattice↔ Hilbert space - Piron, Solér, Morash, Holland)

I Popescu-Rohrlich boxes

P(αβ|ab) =


xx xy yx yy

00 1/2 1/2 1/2 0
01 0 0 0 1/2
10 0 0 0 1/2
11 1/2 1/2 1/2 0


I CHSH inequality

S := |〈xx〉+ 〈xy〉+ 〈yx〉 − 〈yy〉| ≤ 4

I Reconstruction of the underlying algebraic structure
I T I Tylec, M K, Non-signaling boxes and quantum logics. J. Phys. A, 48 505303, 2015.
I T I Tylec, M K, J Krajczok. Non-signalling Theories and Generalized Probability. Int. J.

Theor. Phys. 55, 3832, 2016.
I T I Tylec, M K, Remarks on the tensor product structure of nosignaling theories. J. Phys.

A, in print; arXiv 1604.01949, 2016.
I T I Tylec M K, Ignorance is a bliss: mathematical structure of many-box models. soon,

2016.



Hasse diagram

a ≤ b iff a = a ∧ b



Uncertainty

I Why quantum mechanics is (can be) intrinsically probabilistic while classical mechanics not?

I Uncertainty relations

I Observable: a measure with values in the algebra of propositions

I State: a probability function on the algebra of propositions

I Mean value in µ

µ(X) :=

∫
R

tµ(X(dt))

I Variance
∆µX :=

∫
R
(t − µ(X))

2
µ(X(dt))

I If there exists ε such that, for na arbitrary state µ we have ∆µX∆µY ≥ ε then for X i Y
the uncertainty relation is fulfilled.

I Quantum mechanics - Heisenberg uncertainty relation (no dispersion (variance)-free states)

I Classical mechanics - there are dispersion free states

I The algebra of no-signaling box model is set-representable and consequently such models do
not satisfy uncertainty relations (there are dispersion-free states)
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not satisfy uncertainty relations (there are dispersion-free states)



Consequences of nondistributivity

I p ∨ q is true does not mean that p is true or q is true (occurs with probability one)

I In quantum mechanics - a cat state

I We can live with that, in fact for more than 2000+ years

I “A sea-fight must either take place to-morrow or not, but it is not necessary that it should take
place to-morrow, neither is it necessary that it should not take place, yet it is necessary that it
either should or should not take place to-morrow.”
(Aristotle, On Interpretation)

I “Aristotle’s reasoning does not undermine so much the principle of the excluded middle as
one of the basic principles of our entire logic, which he himself was the first to state, namely,
that every proposition is either true or false.”
(Łukasiewicz, On Determinism)

I “Whether that new system of logic has any practical importance will be seen only when the
logical phenomena, especially those in the deductive sciences, are thoroughly examined, and
when the consequences ... can be compared with empirical data.” (Łukasiewicz, On
Three-Valued Logic)

I “At the time when I gave my address those facts and theories in the field of atomic physics
which subsequently led to the undermining of determinism were still unknown.” (Łukasiewicz,
On Determinism)
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On the other hand...

I despite...

“The well-known attempts of Brouwer, who rejects the universal validity of the law of the
excluded middle and also repudiates several theses of the ordinary propositional calculus,
have so far not led to an intuitively based system.” (Łukasiewicz, Philosophical Remarks On
Many-Valued Systems of Propositional Logic)

one can map the propositional system of quantum mechanics on an intuitionistic logic
(Heyting algebra)
(Isham, Döring, Bytterfield, Heunen, Landman, Spitters)

I Standard example of a Heyting algebra: as the Boole algebra but only with open sets

I −X (negation) - interior of the complement

I The law of excluded middle not valid

I On can do it without any reference to sets (J.C.C. McKinsey, A.Tarski, The algebra of
topology

I It can be done also for no-signaling boxes (work in progress, J. Gutt, M. K., Non-signalling
boxes and Bohrification, arXiv:1602.04702), where the ‘classical’ features of the model should
be visible.

I In any case...

Conclusion: no-signaling boxes are no competitor to quantum mechanics when it
comes to possible ‘intrinsic’ randomness.
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Outlook

I Families of theories approximating QM from the classical and super-quantum side

I Where is the point in which probability becomes intrinsic (‘ontological’)?
I Structure of entangled states in composite systems.

I Causal structure in QM and other theories (in QM one can condition the causal
order by the theory itself)
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