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Motto

“The main principle of the present work is

the idea that, since matter and light both

possess the dual characters of particle and

wave, a similar mathematical treatment

should be applied to both, and that this

has not been yet done as fully

as should be possible”.

Charles G. Darwin 1932



The Schrödinger equation for photons

Weyl equation for (massless) neutrinos (spin 1/2)

i~∂tψ = c (σ ·p)ψ or i∂tψ = −ic (σ ·∇)ψ

Analogous equation for photons (spin 1)

i∂tF = −ic (S ·∇)F

S ·∇ =


0 −i∂z i∂y

i∂z 0 −i∂x
−i∂y i∂x 0

 = i∇×



Splitting into real and imaginary parts

i∂tF = c∇× F

F = ℜ(F ) + iℑ(F )

∂tℜ(F ) = c∇×ℑ(F ) ∂tℑ(F ) = −c∇×ℜ(F )

ℜ(F ) =
√
ϵE =

D√
ϵ

ℑ(F ) =
√
µH =

B
√
µ

∂tD = ∇×H ∂tB = −∇×E



Relativistic quantum mechanics of photons

General solution of the Schrödinger equation

for photons

F (r, t) =
√
~c

∫
d3k

(2π)3/2
e(k)

[
fL(k)e−iωkt+ik·r + f ∗

R(k)eiωkt−ik·r]
Polarization vector obeys the (Maxwell) equation

−iωe(k) = ck × e(k) e∗ ·e = 1

The amplitudes fL(k) and fR(k) are

the wave functions in momentum space



Quantum operators in k-space

Generators of Poincaré transformations

The transformations F ′
i (r

′, t′) = O j
i Fj(r, t) must

preserve the form of the photon wave equation

Time translation: Energy=~ω
Space translation: Momentum=~k

Rotation: Angular momentum=i~k ×Dk + χ̂~k/k
Lorentz transformation: Boost=i~ωDk

Helicity operator χ̂ takes on two values ±1

Dk = ∇k − iχ̂α(k) ∇k ×α(k) = −k/k3



Quantum-classical correspondence

QM average values agree with classical expressions

Energy=⟨~ω⟩ =
∫
d3r [D2/2ϵ+ B2/2µ]

Momentum=⟨~k⟩ =
∫
d3r [D ×B]

Angular momentum=⟨i~k ×Dk + χ̂~k/k⟩
=

∫
d3r [r × (D ×B)]

Lorentz transformation: Boost=⟨i~ωDk⟩
=

∫
d3r r [D2/2ϵ+ B2/2µ]



Second quantization

Quantized electromagnetic field operator

F̂ (r, t) =
√
~c

∫
d3k

(2π)3/2
e(k)

[
aL(k)e−iωkt+ik·r+a†R(k)eiωkt−ik·r

]
Photons do not have a conserved quantum number

(charge, lepton number, etc.)

Formally, right-handed and left-handed photons

are in the particle-antiparticle relation but

we can make all their superpositions that create

photon states with arbitrary polarization

|Ψone photon⟩ =

∫
d3k

k

[
fL(k)a†L(k) + fR(k)a†R(k)

]
|0⟩



How come classical EM field?

How come Maxwell’s equations?

Key property: Number of photons N

N =
Power×Time

Photon energy
= 7.5× 1031P[inWatt] ×T[in Sec]

ν[inHertz]

Small WiFi router (50mW) operating at 2.4GHz

sends 3× 1022 photons per second



Coherent states

Note that the average field in any state with

fixed number of photons vanishes ⟨ΨN |F̂ |ΨN⟩ = 0

It is obvious that one cannot precisely

control N at the level of 1022

Randomly produced photons are characterized

by the Poisson distribution ⟨N⟩k/k!e−⟨N⟩

The Poissonian quantum-mechanical state is:

|α⟩ =
∑∑∑∞

1
αk
√

k!
|k⟩ |α|2 = ⟨N⟩

This state is called coherent state



Average field

Assume that a device (say a router) produces

photons characterized by the creation operator

a†f =

∫
d3k

k

[
fL(k)a†L(k) + fR(k)a†R(k)

]
The classical electromagnetic field is the average value

obtained from the complex average value ⟨F̂ ⟩f of F̂

calculated in the coherent state corresponding to a†f

⟨F̂ ⟩f =
√

⟨N⟩~c
∫

d3k

(2π)3/2
e(k)

[
fL(k)e−iωkt+ik·r+f ∗

R(k)eiωkt−ik·r]



Closing the argument

In classical electrodynamics classical sources

produce classical electromagnetic field

What state |Ψ⟩ of the quantum electromagnetic field

is produced by a classical current Jµ(r, t)?

The answer is obtained from the formula

|Ψ⟩ = T exp

(
−i

∫
d4xÂµ(r, t)Jµ(r, t)

)
|0⟩

The state |Ψ⟩ is a coherent state and

the average field in this state is the same

as the one obtained from the classical theory!



Summary

Maxwell’s equations can be derived from

quantum mechanics of photons in the classical limit

The classical limit means here not ~ → 0 but

a very large average number of photons

obeying the Poisson distribution

Classical fields are identified as

expectation values of the quantum field operators


