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Outline

1. Decay law for a particle at rest: general properties, exponential limit 

and deviations, experimental evidence.

2. Theory: Lee Hamiltonian.

3. Decay of a moving particle. Is the usual Einstein-formula correct?
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Part 1: General Part 1: General discussiondiscussion

and and expexp. . evidenceevidence



Francesco Giacosa

Exponential decay law

• : Number of unstable particles at the time t = 0.

lifetimemean  1/    ,  )(
0

Γ== Γ− τteNtN

• For a single unstable particle:

Confirmend in countless cases! 

tetp Γ−=)(

...1)( +Γ−= ttp

is the survival probability for a single unstable particle created at  t=0.

(Intrinsic probabilty, see Schrödinger´s cat).

0N

For small times: 
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Basic definitions
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p(t) decreases quadratically (not linearly); 

no exp. decay for short times. 
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Deviations from the exp. law at short times

Taylor expansion of the amplitude:
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Time evoluition and energy distribution (1)

S

S

 The unstable state S  is not an eigenstate of the Hamiltonian H.

Let d (E) be the energy distribution of the unstable state S .  

Normalization holds:  d (E)dE 1
+∞

−∞
=∫

iEt
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The Breit-Wigner energy distribution cannot be exact. 

Two physical conditions for a realistic are:

1) Minimal energy:

2) Mean energy finite:

)(Ed
S

min
for  0)( EEEd

S
<=

∞<== ∫∫
+∞+∞

∞ min

)()(E
- E SS

EdEEdEdEEd

Time evoluition and energy distribution (2)

Breit-Wigner distribution:
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A very simple numerical example
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The quantum Zeno effect

For large but finite N :

2

2
Z

T

N

after N measurementsIf N 1  (at fixed T): p e 1. 
−

τ>> ≈ ≈

0 0 0

N N
2 2

N 0
after N measurements 0 2 2 2

Z Z

We perform  N inst. measurements: 

the first one at time t t , the second at time t 2t , ..., the N-th at time T Nt .
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 slowing down of the decay.→
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Paradoxes:

489/431 a.c., Elea

Zeno of Elea

Nowadays:

Zeno-effect, Zeno dynamics, Zeno subspaces,…
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Cold Na atoms in a optical potential

Experimental confirmation of 

non-exponential decays (1)
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Experimental confirmation of 

non-exponential decays (2)

Measured survival probabilty p(t)

Non-exp decay!
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Experimental confirmation of 

non-exponential decays and Zeno /Anti-Zeno effects

Same exp. setup, 

but with measurements in between

Zeno effekt Anti-Zeno effect
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GSI-oscillations

Measurement of weak decays of ions.

decaysdN dp(t)

dt dt
∝ −

Measurement was:

Oscillations later confirmed.

arXiv:1309.7294 [nucl-ex]. Explanation still missing!

Decay of H-like Pm into:

neutrino + Nd
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Late-time deviations
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Part Part 2: Lee Hamiltonian2: Lee Hamiltonian
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|S> is the initial unstable state, coupled to an infinity of final states |k>. 

(Poincare-time is infinite. Irreversible decay). General approach, similar

Hamiltonians used in many areas of Physics.

Example/1: spontaneous emission. |S> represents an atom in the 

excited state, |k> is the ground-state plus photon.

Example/2: pion decay. |S> represents a neutral pion, |k> represents 

two photons (flying back-to-back)

Lee Hamiltonian
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Exponential limit
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Non-exponential case (1)
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Non-exponential case (2)

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0p(t)

t

t

BWDashed: p (t) e    with Im[ (M)] / 2
−Γ= Γ = Π



Francesco Giacosa

Non-exponential case (3)

h(t)
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Namley: h(t)dt p(t) p(t dt) is the probability that the particles decays between t and t+dt= − +
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Two-channel case (1)
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Two-channel case (2)

1h (t)dt  probabilty that the state S  decays in the first channel between (t,t+dt)=

2h (t)dt  probabilty that the state S  decays in the second channel between (t,t+dt)=

1,BW 1

2,BW 2

h (t)
Dashed: const
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Measurable effect???
Details in:

F. G.,  Non-exponential decay in quantum field theory and in quantum mechanics: the case of two (or more) decay channels,

Found. Phys. 42 (2012) 1262 [arXiv:1110.5923].



Francesco Giacosa

is actually valid only in the exponential limit. (S-matrix formalis, in- and out states).

One can however go beyond! 

Also in full QFT deviations exist.

What about QFT?

Details in: F. G. and G.  Pagliara, 

Deviation from the exponential decay law in relativistic quantum field theory:  the example of strongly decaying particles,

Mod. Phys. Lett. A 26 (2011) 2247 [arXiv:1005.4817 [hep-ph]].

F. Giacosa,  

Non-exponential decay in quantum field theory and in quantum mechanics: the case of two (or more) decay channels,'

Found. Phys. 42 (2012) 1262 [arXiv:1110.5923 [nucl-th]].

The textbook expression for decay

Example: p(t) for the ρ meson
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Quantum field theory: is there a “maximal

energy scale“?

F. G. and G.Pagliara, Spectral function of a scalar boson coupled to fermions, Phys. Rev. D 88 (2013) 025010 [arXiv:1210.4192].

H
0

d (m)dm 1

no matter how large is ...

but  if one tries to do  one encounters problems:

normalization, etc. 

Λ
=

Λ

Λ→∞

∫

2

Hd (m) 1/ (m ln m)      for large m∝ ⋅

Finite outcome: even for a renorm. QFT 

the existence of a maximal energy scale 

(i.e., a minimal length) is needed. 
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Part Part 3:3: Decay of a moving particleDecay of a moving particle
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Unstable particle with momentum p

We expect in the exponential limit:

Reduction of the

decay width
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Finite momentum vs finite velocity 

• Subtle but important point: in the long-life limit, a particle 

with definite momentum has also definite velocity. 

•

• In general, however, there is a difference! For an 

unstable state a boost is not equivalent to a momentum 

translation.

• Here, we consider at first definite momentum
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One obtains:

Non-decay probability 

Straightforward calculation

This expression does not coincide with the usual Einstein expression!
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Unstable particle with momentum p: previous 

works

L. A. Khalfin, Theory of unstable particles and relativity, PDMI Preprint/1997

M. I. Shirokov, JIMR E2 10614 (1977), Int. J. Theor. Phys. 43 (2004) 1541.

E. V. Stefanovich, Int. Jour. Theor. Phys, 35 12 (1996)

K. Urbanowski, Phys. Lett. B 737 (2014) 346.

See also the negative result

S. A. Alavi and C. Giunti, Europhys. Lett. 109 (2015) 6, 6001

My recent paper: F. G., Acta Phys. Pol. B47 (2016) 2135 arXiv:1512.00232 [hep-ph]
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Unstable particle with momentum p: unexpected 

result for the nondecay probability

The non-decay probability: 

F. G. arXiv:1512.00232 [hep-ph]

But this is not a breaking of relativity!

It is a different setup.
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Unstable particle with momentum p:deviation
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Back to QFT. The S-matrix approach

is again justified for very small decay width! 

Here, the time-dilatation formula holds exactly.

The full QFT proof of the deviation is strictly speaking 

still missing. 

(Technically, the formalism used above is based on so-called 

Lee Hamiltonians, which are QFT-like, but care is needed).

QFT text-book
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Unstable particle with momentum p: some 

examples of deviations

Muon

M = 105.65 MeV

Γ = 

Neutral pion

M = 134.98 MeV

Γ = 

Rho meson

M = 775.26 MeV

Γ = 147.8 MeV

Very small deviations!
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Boost: state with definite velocity

Point: a velocity translation (i.e. a boost) is not a momentum translation!!!!

The survival probability shows here an absurd Lorentz contraction!
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Boost: state with definite velocity revisited

A boosted muon consists of an electron and two neutrinos!

Details in arXiv:1512.00232 [hep-ph]
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Boost: wave packet in velocity 

(is qualitatively different!)
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Summary and outlook

• The decay is never exponential! This is a fact. 

• This is so both in QM and QFT.

• Decay of a moving particle: interesting link between relativity and QM 

and QFT.

• For a particle with definite momentum p (for the measuring observer) 

there is a different formula. Numerically, the Einstein expression is very 

good but is not exact. 

• A boost is a very subtle operation in QM and QFT.
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Thank You
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• When Physicists Attack: Homeless Man 
Attacks Fellow Transient in 
Disagreement Over Quantum Physics

• 1, June 25, 
2009 jonathanturley Bizarre, Criminal 
law, Society

• This week a homeless man in California hit 
a fellow transient in the face with a 
skateboard over a disagreement about 
quantum physics. In San Francisco, Jason 
Everett Keller, 40, allegedly attacked, 
Stephan Fava, over a disputed physics 
question.

• At the time of the attack, Fava was 
discussing quantum physics with a third 
homeless man.

• I have been warning for years about the 
danger of “fighting words” in quantum 
physics discussions. I confess that I have 
come close to blows when I hear someone 
disparage Planck’s Action Constant in a bar.
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Experimental confirmation of the

quantum Zeno effect - Itano et al (1)

2 2
2

At t 0,  the electron is in 1 .

t t
p(t) cos 1 ...

2 4

=

Ω Ω = = − + 
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(Undisturbed) survival probability

Ω== /Tfür  0 πp(T)
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5000 Ions in a Penning trap

Short laser pulses 1-3 work as measurements.

( )
2 2

2 t
p(t) cos t / 2 1 ... ;     p(T) 0 für T /

4

(Transition probability (without measuring) at time  T) :      1 p(T)  1 .

Witn  n measurements in between the transition probabilty decreases!

The electr

Ω
= Ω = − + = = π Ω

− =

on stays in state 1.

Experimental confirmation of the

quantum Zeno effect - Itano et al (2)
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Other experiments about Zeno
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Some numbers

Muon

Neutral pion

Rho-meson
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Unstable particle with momentum p

We work in the exp. limit

M = rest mass; Γ= decay width in the rest frame.

An unstable particle moves with definite momentum p. 

Which is its decay width? The stanard expression is:

Important but sublte point: 

in QM and QFT a state with definite momentum has not definite velocity.
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Decay width of a general state

Inclusion of spatial wave function is simple. Generalization straightforward.

Details in arXiv:1512.00232.
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Exponential limit and final state spectrum (1)

0

2
iHt

2
i(M i /2)ti t
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k e S  is the prob. that S  transforms into k

Translating into energy:

e e
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2 E M i / 2

−

− − Γ− ωΓ −
η ω =

π − + Γ

In spont. emission: 

(t, )d  is the prob. that the outgoing photon 

has an energy between  and +d

η ω ω

ω ω ω

Details in: F. G., 

Energy uncertainty of the final state of a decay process

arXiv:1305.4467 [quant-ph].
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Exponential limit and final state spectrum (2)

Details in: F. G., arXiv:1305.4467 [quant-ph].
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