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1. Decay law for a particle at rest: general properties, exponential limit
and deviations, experimental evidence.

2. Theory: Lee Hamiltonian.

3. Decay of a moving particle. Is the usual Einstein-formula correct?
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Part 1: General discussion
and exp. evidence
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Exponential decay law LJ (
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« N, : Number of unstable particles at the time t = 0.

N(@)=N,e""|, =1/ mean lifetime

Confirmend in countless cases!

* For a single unstable particle:

p()=e

is the survival probability for a single unstable particle created at t=0.
(Intrinsic probabilty, see Schrodinger’s cat).

For small times: p(¢)=1-17+...
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Basic definitions

Let ‘ S> be an unstable state preparedatt =0.

Survival probabilty ammplitudeat t > 0:
a(t)=(S|e™|S) (h=1)

Survival probability : p(¢) =|a(t)[

Rep. Prog. Phys., Vol. 41, 1978, Printed in Great Britain

Decay theory of unstable quantum systems

L FONDA, G C GHIRARDI and A RIMINI
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Deviations from the exp. law at short times LJ (
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Taylor expansion of the amplitude:

at®) = {Sle™|5) =1-it(s|| )~ (5|17 +..
& O ={Sle™|5) =1+ t(s|| )~ (5|17 ) +..
It follows:
o(t) = |a(0)] :a*ma(t):1_t2(<s\H2\s>_<s\H\s>2)+...:1_%+...
" T T
p(t) = 1-t17°+ .
p(t) decreases quadratically (not linearly); S0 e

no exp. decay for short times.

1, 1s the "Zeno time’.
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Time evoluition and energy distribution (1)

The unstable state ‘S> 1s not an eigenstate of the Hamiltonian H.

Let di(E) be the energy distribution of the unstable state ‘S>

Normalization holds: foo d (E)E =1

a(t)=|  dy(B)e ™dE

In stable limit:d (E)=6(E-M) —> a(t)=e™ — p(t) =1

Francesco Giacosa
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Time evoluition and energy distribution (2) LJ (
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Breit-Wigner distribution:

I 1 —iMt-Tt/2 —It
d,(E)= —>a(t)=e ° —> p(t)=¢e .
S( ) 27r(E—M)2+F2/4 ® )

The Breit-Wigner energy distribution cannot be exact.
Two physical conditions for a realistic d,(£) are:
1) Minimal energy: d(E)=0forE<E,_

2) Mean energy finite: (E)=["d (E)EdE=|" d (E)EdE <
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A very simple numerical example LJ (
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E '[a.u]
ds(E)
M,=2; E . =075 I'=04,A=3

—(EZ—E(Z))/AZG(E —J3_. )
(E-M,)’+I?/4

I'e
ds(E) =N, —
2n

""" 1 . - o = Ea.u] IMaw 1

dyy (E) =
()= (E-M,)* +T,> /4

Ty, such that d, (M,) =dg(M,)

a(t)y=["d(EYe ™dE; p(t)=|a(t)

Tyt

D (t)=e

0 2 4 [ 3 10 t [au]
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The quantum Zeno effect LJ (
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We perform N inst. measurements:
the first one at time t = t,, the second at time t = 2¢t, ..., the N-th at time T = Nt,.

2 \N 2 \N
— N 1 tO -1 T
pafterN measurements p (tO) ~ 2 o - 2_2
T, N-°1;
under the assumption that t, is small enough.
T .
IfN >>1 (at fixed T): p ~e V7 ~1 P(t) Quantum Zeno effect (Misra & Sudarshan 1977)
° after N measurements ~
I

For large but finite N :

— slowing down of the decay.

0 T 0.4 0.8 t

See Facchl & Pascazio quant-ph/0202127
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Zeno of Elea LJ (

489/431 a.c., Elea

Paradoxes:

Zeno of £]ea,
How come you never
fake me anymere 7

Nowadays:

Zeno-effect, Zeno dynamics, Zeno subspaces,...

'\4],/
ﬂ
ﬂ
ﬂ
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Experimental confirmation of J (
non-exponential decays (1)
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NATURE | VOL 387|5 JUNE 1997 . . .
| 7 ' Cold Na atoms in a optical potential

Experimental evidence for .
non-exponential decay in Vfox’ )

— . 2
quantum tunnelling V(x,0) =¥, cos(2k,x—k,ar’)
Steven R. Wilkinson, Cyrus F. Bharucha, “

Martin C. Fischer, Kirk W. Madison, Patrick R. Morrow,

Qian Niu, Bala Sundaram* & Mark G. Raizen 3 . s m X [a.u.]
Department of Physics, The University of Texas at Austin, Austin,

Texas 78712-1081, USA o5

An exponential decay law is the universal hallmark of unstable o

systems and is observed in all fields of science. This law is not,
however, fully consistent with quantum mechanics and deviations
from exponential decay have been predicted for short as well as
long times'~®. Such deviations have not hitherto been observed
experimentally. Here we present experimental evidence for short-
time deviation from exponential decay in a quantum tunnelling
experiment. Our system consists of ultra-cold sodium atoms that
are trapped in an accelerating periodic optical potential created by
a standing wave of light. Atoms can escape the wells by quantum
tunnelling, and the number that remain can be measured as a
function of interaction time for a fixed value of the well depth and
acceleration. We observe that for short times the survival prob-
ability is initially constant before developing the characteristics of
exponential decay. The conceptual simplicity of the experiment
enables a detailed comparison with theoretical predictions.

o
[

2
xX'=x——at

U(x'") =V, cos(2k, x')+ Max'
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Experimental confirmation of J (
non-exponential decays (2)
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Measured survival probabilty p(t)
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Non-exp decay!
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VOLUME 87, NUMBER 4

Experimental confirmation of
non-exponential decays and Zeno /Anti-Zeno effects

PHYSICAL REVIEW LETTERS

23 Jury 2001

Observation of the Quantum Zeno and Anti-Zeno Effects in an Unstable System

M. C. Fischer, B. Gutiérrez-Medina, and M. G. Raizen
ty of Texas at Austin, Austin, Texas 78712-1081

Department of Phys j
eived 30 March 2001; published 10 July 2001)

We report the first observation of the quantum Zeno and anti-Zeno effe

s in an unstable system. Cold

sodium atoms are trapped in a far-detuned standing wave of light that is accelerated for a controlled
duration. For a large acceleration the atoms can escape the trapping potential via tunneling. Initially the
number of trapped atoms shows strong nonexponential decay features, evolving into the characteristic
exponential decay behavior. We repeatedly measure the number of atoms remaining trapped during the
initial period of nonexponential decay. Depending on the frequency of measurements we observe a decay

that is suppressed or enhanced as compared to the unperturbed system.
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FIG. 3. Probability of survival in the accelerated potential
as a function of duration of the tunneling acceleration. The
hollow squares show the noninterrupted sequence, and the solid
circles show the sequence with interruptions of 50 us duration
every 1 us. The error bars denote the error of the mean. The
data have been normalized to unity at fynner = 0 in order to
compare with the simulations. The solid lines are quantum
mechanical simulations of the experimental sequence with no
adjustable parameters. For these data the parameters were
Auannet = 15000 M/, @iner = 2000 m/$%,  figer = 50 us.
and Vo/h = 91 kHz. where k is Planck’s constant.

Zeno effekt
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Same exp. setup,
but with measurements in between
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FIG. 4. Survival probability as a function of duration of the
tunneling acceleration. The hollow squares show the noninter-
rupted sequence, and the solid circles show the sequence with
interruptions of 40 us duration every 5 ps. The error bars de-
note the error of the mean. The experimental data points have

been connected by solid lines for clarity.

For these data the

parameters were: dypner = 15000 m/s?, @iyerr = 2800 m/s2,
finter = 40 s, and Vo /h = 116 kHz.

Anti-Zeno effect



GSl-oscillations LJ (

Measurement of weak decays of ions.

Physics Lerters B 664 (2008) 162168

Contents lists available at ScienceDirect

Physics Letters B

[

www.elsevier.com/locate/physletb

Observation of non-exponential orbital electron capture decays
of hydrogen-like °Pr and '#2Pm ions

YuA. Litvinov*P#, F. Bosch?, N. Winckler®P, D. Boutin®, H.G. Essel?, T. Faestermann©, H. Geissel*?, S. Hess?,

P. Kienle %9, R. Knobel*P, C. Kozhuharov?, J. Kurcewicz?, L. Maier<, K. Beckert?, P. Beller™, C. Brandau?, L. Chen®,
C. Dimopoulou?, B. Fabian®, A. Fragner¢, E. Haettner®, M. Hausmann ¢, S.A. Litvinov®®, M. Mazzocco®f,

F. Montes®, A. Musumarra®", C. Nociforo?, F. Nolden?, W. PlaR®, A. Prochazka?, R. Redad, R. Reuschl?,

C. Scheidenberger P, M. Steck?, T. Stéhlker®1, S. Torilovd, M. Trassinelli?, B. Sun®¥, H. Weick?, M. Winkler?

70 ————r—r——

Decay of H-like Pm into: H _
neutrino + Nd H

Measurement was:

Number of EC decays per 0.64 seconds

deecays o dp(t)
dt dt

Oscillations later confirmed. Time after injection into the ESR [sec]
arXiv:1309.7294 [nucl-ex]. Explanation still missing!

Francesco Giacosa
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Late-time deviations LJ (
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1C ; eck endi
PRL 96, 163601 (2006) REelLal; EEYIEN LELIERS 28 APRIL 2006

Violation of the Exponential-Decay Law at Long Times

C. Rothe, S.1. Hintschich, and A.P. Monkman

Department of Physics, University of Durham, Durham, DHI1 3LE, United Kingdom
(Received 4 July 20035; published 26 April 2006)

First-principles quantum mechanical calculations show that the exponential-decay law for any meta-
stable state is only an approximation and predict an asymptotically algebraic contribution to the decay for
sufficiently long times. In this Letter, we measure the luminescence decays of many dissolved organic
materials after pulsed laser excitation over more than 20 lifetimes and obtain the first experimental proof
of the turnover into the nonexponential decay regime. As theoretically expected, the strength of the
nonexponential contributions scales with the energetic width of the excited state density distribution
whereas the slope indicates the broadening mechanism.

(1]
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FIG. 2 (color). Corresponding double logarithmic fluorescence
decays of the emissions shown in Fig. 1. Exponential and power
law regions are indicated by solid lines and the emission inten-
sity at time zero has been normalized.
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Part 2: Lee Hamiltonian
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Lee Hamiltonian LJ (
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H=H,+H,
H, = M,|S)S|+ [ “dkeo(k)| k)]
H, = [ dk(g - f()(S)k|+]k)(S]

S

|S> is the initial unstable state, coupled to an infinity of final states |k>.
(Poincare-time is infinite. Irreversible decay). General approach, similar
Hamiltonians used in many areas of Physics.

Example/1: spontaneous emission. |S> represents an atom in the
excited state, |k> is the ground-state plus photon.

Example/2: pion decay. |S> represents a neutral pion, |k> represents
two photons (flying back-to-back)

Francesco Giacosa



Propagator and spectral function LJ (
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H=H,+H, ; Hy=M,[S)(S|+[ dka(k)[k)(k| ; H,=-=[""dk(g-f(k)(S)(k|+[k)(S|)

o o wdk  gf(k)?
GS(E):<S‘(E—H+18) 1‘S>:(E—M0+H(E)+18) Lome =T

ds(E) = %Im G4(E) ;

a(t) = <S‘e_th

s> = [ dEd (B)e ™

It follows:

[ dEdy(B) =1

Fermi golden rule: I' = Im[II(M)] /2 .

Francesco Giacosa



Exponential limit J (
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H=H,+H, ; Hy=M,|S)(S|+ [ dka()|k)(k| ; H, = [ dk(g-f(k)(S){k|+|k)(S)

ok)=k; f(k)=1 = TI(E)=ig’/2 ; [=g>

I 1 1.0
ds (E) = > 7

2n (E-M,)*+T7° /4
—a(t)=e M = pt)=e ™ % 1 ; ; ; :
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Non-exponential case (1) LJ (
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y O0fork<E_.
H, == | dk(g-f())(S) (k| +[k)(S) f(k)=11forE,, <k<E,,
0fork>E__

ds(E)

0.5

0.0 : : . = .
0 1 2 3 4 5

E
M,=2;E_ =0; E_ =5;g°=0.36 (all in a.u. of energy)
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Non-exponential case (2) LJ (
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p(t) 1o,

0.8
0.6-
0.4

0.2r

0 2 4 6 8 10

Dashed: p,, (t) =€ with ' = Im[TI(M)]/2
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Non-exponential case (3) LJ (

h(t) = _dp®) Lersgrat
dt
Namley: h(t)dt = p(t) —p(t +dt) is the probability that the particles decays between t and t+dt
h(t) 4

0.35%
0.30
0.25
020 j;h(u)du —1-p(t)
0.15F
0.10

0.05}

> 4 6 s T

Dashed: h,,, (t)=Te™" with I’ = Im[TI(M)]/2
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Two-channel case (1) l
UnlLuemrsutet

H, == [ dk(g, £, 00)(S) (k1| + [k 1) (S + = [ dk(g,

0 fork<E.

1 mlIl

f(k)=41forE__ <k<E

1 mlIl 1,max

0 fork>E.

1,max

MO - 2’ El,min - O’ EZ,min - O 5 El,max = EZ,max = 5’
g>=0.36; g5=0.16 (allin a.u. of energy)
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Two-channel case (2) LJ (
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h,(t)dt = probabilty that the state |S) decays in the first channel between (t;t+dt)y="
h,(t)dt = probabilty that the state |S) decays in the second channel between (t,t+dt)

h, (1)
h, (1) 2.8

2.6/
2.4f
220

2.0l

1.8)

2 46 8 0

Measurable effect???
Details in:

F. G., Non-exponential decay in quantum field theory and in quantum mechanics: the case of two (or more) decay channels,

Found. Phys. 42 (2012) 1262 [arXiv:1110.5923].
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What about QFT? LJ
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The textbook expression for decay oo oot &

(2m)4 d® k1 d*ks
2M (27)32E; (27)32E5

dl’ = IM28(p — ky — ko)

is actually valid only in the exponential limit. (S-matrix formalis, in- and out states).

Example: p(t) for the p meson
One can however go beyond!

Also in full QFT deviations exist.

2- 4 6 s 10 12 14
Details in: F. G. and G. Pagliara, t[Gev ']
Deviation from the exponential decay law in relativistic quantum field theory: the example of strongly decaying particles,

Mod. Phys. Lett. A 26 (2011) 2247 [arXiv:1005.4817 [hep-ph]].

F. Giacosa,
Non-exponential decay in quantum field theory and in quantum mechanics: the case of two (or more) decay channels,'

Found. Phys. 42 (2012) 1262 [arXiv:1110.5923 [nucl-th]].
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Quantum field theory: is there a "maximal

energy scale®?

["dy(m)dm =1

no matter how large is A...
but if one tries to do A — o one encounters problems:

normalization, etc.

d,(m)ocl/(m-In*m) for large m

Finite outcome: even for a renorm. QFT
the existence of a maximal energy scale
(i.e., a minimal length) is needed.
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/~ HEY!STOP!

WHY ARE YOU

(f;\ BEATING UP
* — YOUR BROTHER?
"UJ‘ A
c 9 N
™ ;
2
N \ \VAR
HE SAID THAT SON OFA GHEMIST!
S RENORMALIZATION o YOUR MOTHER
ISA LACKIN OUR QUANTIZES WITH

UNDERSTANDING
OF NATURE

EVERYONE!!

F. G. and G.Pagliara, Spectral function of a scalar boson coupled to fermions, Phys. Rev. D 88 (2013) 025010 [arXiv:1210.4192].
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Part 3: Decay of a moving particle
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Unstable particle with momentum p LJ (
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S, p) S,p) = U, |S,0)

We expect in the exponential limit:

Poa(t) =e 5, 7 =T ! ‘dilated lifetime’.

Reduction of the
decay width

Francesco Giacosa



Finite momentum vs finite velocity LJ (
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« Subtle but important point: in the long-life limit, a particle
with definite momentum has also definite velocity.

* In general, however, there is a difference! For an
unstable state a boost is not equivalent to a momentum
translation.

 Here, we consider at first definite momentum

|S, p) :/ dmag(m) |m, p)
0

Francesco Giacosa



Non-decay probability LJ (
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Straightforward calculation

1 . 00 |
Cb(t,p) = — <S,p |6_1Ht‘ S’p> — / dlnds(,rn)e—n/mg-i-pgt
d(p =0) .
N /oc dnldgﬂx(Wl)e_i\/mQ_Fp:zt _ e—i\/(ﬁ,{_ir‘/g)2+p2t .
One obtains:

Prgilit] = \f{(f.j})\z ;L

T, = 2Im [\/(M T /2) +pz}

This expression does not coincide with the usual Einstein expression!

Francesco Giacosa



Unstable particle with momentum p: previous J (
works
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L. A. Khalfin, Theory of unstable particles and relativity, PDMI Preprint/1997
M. |. Shirokov, JIMR E2 10614 (1977), Int. J. Theor. Phys. 43 (2004) 1541.
E. V. Stefanovich, Int. Jour. Theor. Phys, 35 12 (1996)

K. Urbanowski, Phys. Lett. B 737 (2014) 346.

See also the negative result

S. A. Alavi and C. Giunti, Europhys. Lett. 109 (2015) 6, 6001

My recent paper: F. G., Acta Phys. Pol. B47 (2016) 2135 arXiv:1512.00232 [hep-ph]
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Unstable particle with momentum p: unexpected J (
result for the nondecay probability
Uniwersutrﬂ
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‘ lSr. }J‘> — (er |S__ 0} 1S, 0) = /:C dmag(m) |m. p)

The non-decay probability: Pnd(t) — E{_]'_‘pt

1/2

= : T2

F.G. arXiv:1512.00232 [hep-ph]

But this is not a breaking of relativity!

I'p 2 fp ="M \/{JQ + M2 \tis a different setup.

Francesco Giacosa



Unstable particle with momentum p:deviation LJ (

Fp = Fp rpﬂJ K‘”L%”z) HW] ptaaratst Uniwersytet
~ r I'm
JI I = ;

4
e R
| i & i 3
P?jjx - g}g 0.816 Aoy = e : IPI’W ~ % % (%)
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QFT text-book LJ (
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Back to QFT. The S-matrix approach s o L

d? ke d3 ko
(27)32F; (27)32F,

(2m)

‘).ﬂif |"M|25(p_ kl - ’I':'.Z,}

i =

is again justified for very small decay width!
Here, the time-dilatation formula holds exactly.

The full QFT proof of the deviation is strictly speaking

still missing.

(Technically, the formalism used above is based on so-called
Lee Hamiltonians, which are QFT-like, but care is needed).

Francesco Giacosa



Unstable particle with momentum p: some J (
examples of deviations
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Muon ~ i ]
M = 105.65 MeV I, —T, =~5598-107°% MeV
M= 2.99.10"16 MeV

Neutral pion -
M = 134.98 MeV fpmax —s I
(= 7.72.107% MeV

~ 5.81 10~ MeV

p I Az

Rho meson N
M = 775.26 MeV I —
[ =147.8 MeV

~ (.125 MeV

Pmax Pmax

Very small deviations!

Francesco Giacosa



Boost: state with definite velocity LJ (
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Point: a velocity translation (i.e. a boost) is not a momentum translation!!!!

U
n

S,0) =

S, v)

g o~ Tt

(S, v]e™"] 5,0)

The survival probability shows here an absurd Lorentz contraction!

Francesco Giacosa



Boost: state with definite velocity revisited LJ (
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Uy |S,0) =

S, v)
OO g
S, v) = / dmag(m)v/m~y3'? |m, myv)
Jo

Tualt) = (0

5,

A boosted muon consists of an electron and two neutrinos!
Details in arXiv:1512.00232 [hep-ph]
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Boost: wave packet in velocity J (
(is qualitatively different!)
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41 el
‘(I"> — / a’.tr(?(-y) |5T_ ..E__,> C(v) = Ne (v—v0)?/(402)

) |

+oo _ 5
Pilt) = / dp KS,p |€:_th| fb}’

Pnd 0] Pnd|t] (for ov=0.015)
L= EEEEEEE SR R e Lok,
U.S:—
UG:—
04
A= 02t
O.lI)E {).::)4 0_';)6 ':]_'I[]ﬁ D.Ilﬂ 'D.Ilz D.IH- B 2 4 6 8 llﬂ' } Iﬁ ll.I
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Summary and outlook LJ (
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 The decay is never exponential! This is a fact.
« This is so both in QM and QFT.

 Decay of a moving particle: interesting link between relativity and QM
and QFT.

For a particle with definite momentum p (for the measuring observer)
there is a different formula. Numerically, the Einstein expression is very
good but is not exact.

A boost is a very subtle operation in QM and QFT.

Francesco Giacosa
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Thank You
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When Physicists Attack: Homeless Man
Attacks Fellow Transient in
Disagreement Over Quantum Physics

1, June 25,
2009 jonathanturley Bizarre, Criminal
law, Society

_This week a homeless man in California hit
a fellow transient in the face with a
skateboard over a disagreement about
quantum physics. In San Francisco, Jason
Everett Keller, 40, allegedly attacked,
Stephan Fava, over a disputed physics
question.

At the time of the attack, Fava was
discussing quantum physics with a third
homeless man.

| have been warning for years about the
danger of “fighting words” in quantum
physics discussions. | confess that | have
come close to blows when | hear someone

disparage Planck’s Action Constant in a bar.

Francesco Giacosa
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Quantum Zeno effect

Wayne M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland
Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 50303
(Received 12 October 1989)

The quantum Zeno effect is the inhibition of transitions between quantum states by frequent
measurements of the state. The inhibition arises because the measurement causes a collapse
(reduction) of the wave function. If the time between measurements is short enongh, the
wave function usually collapses back to the initial state. We have observed this effect in an
f transition between two ®Bet ground-state hyperfine levels. The ions were confined in a
Penning trap and laser cooled. Short pulses of light, applied at the same time as the rf field,
made the measurements. If an ion was in one state, it scattered a few photons; if it was in the
other, it scattered no photons. In the latter case the wave-function collapse was due to a null
measurement, Good agreement was found with calculations.

3 (Undisturbed) survival probability

At t =0, the electron is in ‘l>
Qt Q°t’
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p(T)=0fir T = 7/Q
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Experimental confirmation of the J (
quantum Zeno effect - Itano et al (2)
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5000 lons in a Penning trap

Short laser pulses 1-3 work as measurements.

FIG. 2. Diagram of the energy levels of *Be? in a mag-
netic field B. The states labeled 1, 2, and 3 correspond to

those in Fig. 1.
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FIG. 3. Graph of the experimental and calculated 1 — 2
transition probabilities as a function of the number of mea-
surement pulses n. The decrease of the transition probabili-
ties with increasing n demonstrates the quantum Zeno effect.

Q°t?

p(t) =cos’® (Qt/2)=1- +..; p(T)=0 fiir T =m/Q

(Transition probability (without measuring) at time T): 1-p(T) = 1.

Witn n measurements in between the transition probabilty decreases!

The electron stays in state 1.

Francesco Giacosa



Other experiments about Zeno LJ (

-H 1 June 2000
tﬁi OpTICS
ﬂ COMMUNICATIONS
ELSEVIER Optics Communications 180 (2000) 115-120

www.elsevier.com/locate / optcom

The quantum Zeno effect — evolution of an atom impeded by
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Some numbers

Fpllla.x T Fpllla.x — 5-598 * 10_53 Mev
M =105.6583 MeV, I' = 2.99-10~16 MeV

{

M = 134.9766 MeV, T' = 7.72- 107° MeV

T T ~ 5.81-10722 MeV

pmax pmax

M = 775.26 MeV, T = 147.8 MeV
T T ~ 0.125 MeV

Pmax Pmax
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Muon

Neutral pion

Rho-meson
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T2 ’ T2
(ﬂ[Q ~ 7 +pz) + M?21" — (ﬂIQ 0 +p2) ;
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Unstable particle with momentum p LJ (
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We work in the exp. limit
M = rest mass; = decay width in the rest frame.
An unstable particle moves with definite momentum p.

Which is its decay width? The stanard expression is:

I' I'M

L=< =
" | /P2 + M?2

Important but sublte point:
in QM and QFT a state with definite momentum has not definite velocity.
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00
o) = [ pB(p) |S. p)

o — (20

the quantity (U |e—#t| T is not what we are looking for

+oo
Pra(t) :/ dp|B(p)|* e~ "r*

J —0o0

Inclusion of spatial wave function is simple. Generalization straightforward.
Details in arXiv:1512.00232.
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Exponential limit and final state spectrum (1) LJ (
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‘<k‘e_th S>‘2 1s the prob. that ‘S> transforms into ‘k>

Translating into energy:

T |e-iot _ o itMy-i/2)t 2

t,m) = ;
0= TE—M, 1ir /2

M@ [17]

In spont. emission:

0.6

n(t,w)dow is the prob. that the outgoing photon

has an energy between ® and w+dw

0.4

02

Details in: F. G.,
Energy uncertainty of the final state of a decay process
arXiv:1305.4467 [quant-ph]. ¢
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Exponential limit and final state spectrum (2) LJ (
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Details in: F. G., arXiv:1305.4467 [quant-ph].
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