High energy scattering in QCD and gluon saturation

Tolga Altinoluk

National Centre for Nuclear Research, Warsaw

Odbiory DBP Świerk, December 10, 2019

Gluon Saturation 1/8

Tolga Altinoluk (NCBJ)

High energy scattering in QCD

Tolga Altinoluk (NCBJ)

Regge-Gribov limit and gluon saturation

In the infinite momentum frame:

- ***** transverse size of the photon $\sim 1/Q$ (very small probe)
- * can scatter off a quark with size of $\sim 1/Q$

<u>decreasing x at fixed $Q^2 \Rightarrow$ evolution wrt rapidity $Y = \ln(1/x)$ </u>

High energy scattering in QCD:

- ***** Regge-Gribov limit: $x \rightarrow 0$ (gluon saturation)
 - Q_s : saturation scale $\equiv \alpha_s \times$ (gluon density per unit area)
 - measure of the strength of gluon interactions at high density
 - $Q_s \gg \Lambda_{\text{OCD}} \Rightarrow$ weak coupling methods can still be applied!

in the saturation regime, scattering prescription: Color Glass Condensate (CGC)

"effective degrees of freedom" wrt a cut-off λ^+

- fast partons: $k^+ > \lambda^+$: described by color sources $J^{\mu}(x)$
- slow partons: $k^+ < \lambda^+$: described by color fields $A^{\mu}(x)$

interaction between fast and slow partons :

 $\int d^4x J^{\mu}(x) A_{\mu}(x)$

Q is the transverse

resolution scale

 \Rightarrow

Color Glass Condensate (CGC)

Within the CGC framework: expectation value of an observable $\mathcal{O} \Rightarrow$

Rapidity, $Y = \ln(1/x)$, evolution of the distribution function is governed by JIMWLK equation.

Eikonal interaction between the projectile and the target:

each parton picks up a Wilson line during the interaction with the target

at the level of the background field of the target eikonal approximation amounts to:

$$\langle \mathcal{O} \rangle \equiv \int [D\rho] W[\rho] \mathcal{O}[\rho]$$

distribution function for the color sources ρ^a

$$\longmapsto U_{\mathcal{R}} = \mathcal{P}_{+} \exp\left[ig \int dx^{+} T_{\mathcal{R}}^{a} A_{a}^{-}(x^{+}, x)\right]$$

*
$$A_a^{\mu}(x) \simeq \delta^{\mu-} A_a^{-}(x)$$

* $A_a^{\mu}(x) \simeq A_a^{\mu}(x^+, x_{\perp})$
* $A_a^{\mu}(x) \propto \delta(x^+)$

possible applications in the gluon saturation regime:

٠	dilute-dilute scattering :	no saturation effects / BFKL formalism
		can be applied to: $\gamma^* - \gamma^*$, DIS on p, pp at moderate energies
٠	dilute-dense scattering :	saturated target / CGC formalism
		can be applied to: DIS on A, pA collisions , forward pp

 dense-dense scattering: saturated projectile and target / nonlinear dynamics of Yang-Mills fields can be applied to: pp at very high energies, heavy ion collisions

saturation sensitive observables in pA collisions :

forward particle/jet production
 two particle correlations

The ridge structure :

- correlations between particles over large intervals of rapidity peaking at zero and π azimuthal angle.
- observed first at RHIC in Au-Au collisions.
- observed at LHC for high multiplicity pp and pA collisions.

Ridge in HICs \longleftrightarrow collective flow due to strong final state interactions

good description of the data in the framework of relativistic viscous hydrodynamics

Ridge in small systems :

similar reasoning looks tenuous but hydro describes the data very well.

Can it be initial state effect ?

idea: final state particles carry the imprint of the partonic correlations that exit in the state.

- several mechanisms have been suggested to explain the Ridge correlations in the CGC framework.
- * double inclusive gluon production cross section:

$$\frac{d\sigma}{d^3k_1d^3k_2} \propto \int_{q_1q_2} \left[I_0 + \frac{1}{N_c^2 - 1} I_1 + \frac{1}{(N_c^2 - 1)^2} I_2 \right] + \left(\frac{k_2}{N_c} - \frac{k_2}{N_c} \right)$$

symmetry under $(k_2 \rightarrow -k_2)$: "accidental symmetry of the CGC"

[ATLAS Collaboration - arXiv:1609.06213]

Tolga Altinoluk (NCBJ)

; the accidental symmetry w henke, Schlichting, Venugop

auration

6/8

[Agostini, T.A., Armesto - arXiv:1902.044830] / [Agostini, T.A., Armesto - arXiv:1907.03668]

Double inclusive gluon production cross section with non-eikonal Lipatov vertex:

Non-eikonal corrections are breaking the accidental symmetry!

Non-zero odd flow coefficients with non-eikonal corrections:

<u>Disclaimer</u>: Non-eikonal effects alone can not describe the odd-harmonics HOWEVER there is a contribution originating from these effects for certain kinematic region.

 $k = (k^{+} k)$

Due to the accidental symmetry of CGC, odd flow coefficients vanish.
The accidental symmetry can be broken in different ways.
Non-eikonal corrections break the symmetry - non-zero odd flow coefficients.

What's next?

- * Single and double inclusive gluon production with non-eikonal corrections. Agostini, T.A., Armesto - under preparation (January 2020)
- * Breaking the accidental symmetry with quantum color flow effects.

T.A., Marquet - under preparation (January 2020)