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High energy scattering in QCD 

High energy scattering in QCD 

“hard scattering” “soft scattering”
large momentum exchange

weakly coupled system

perturbative 

small momentum exchange

strongly coupled system

non-perturbative 

High energy scattering in QCD
High energy scattering in QCD

. &
”hard” scattering ”soft” scattering

! large momentum exchange ! small momentum exchange

! weakly coupled ! strongly coupled

! perturbative ! non-perturbative

DIS in QCD :

Three Lorentz invariant quantities :

1 q2 = �Q2 ⌘ virtuality of the incoming photon

2 x = Q2

2P·Q ⌘ longitudinal momentum fraction carried by the parton

3 s ' 2P · Q ⌘ energy of the colliding � � p system

increasing the energy (s = Q2/x) of the system:

Bjorken limit fixed x , Q2 ! 1

density of partons decreases.
system becomes more dilute!
evolution is given by DGLAP.

Regge-Gribov limit fixed Q2, x ! 0

density of partons increases.
system becomes dense!
causes saturation !
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DIS in QCD:
Three Lorentz invariant quantities: 

(i)    (virtuality of the incoming photon)


(ii)   (longitudinal momentum fraction carried by the parton)


(iii)     (energy of the colliding  system) 

q2 = − Q2

x =
Q2

2P ⋅ Q
s ≃ 2P ⋅ Q γ − p

Increasing the energy (  ) of the system s = Q2/x

Bjorken limit: fixed  x, Q2 → ∞ Regge-Gribov limit: fixed  Q2, x → 0

density of partons decreases

system becomes more dilute

evolution wrt is given by the DGLAPQ2

density of partons increases

system becomes dense

causes saturation
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Regge-Gribov limit and gluon saturation

decreasing  at fixed x Q2 ⇒ evolution wrt rapidity Y = ln(1/x)

In the infinite momentum frame: transverse size of the photon   (very small probe)

can scatter off a quark with size of 

∼ 1/Q
∼ 1/Q

 is the transverse  
resolution scale

Q⇒

Regge-Gribov limit: decreasing x at fixed Q2

[ Balitsky, Fadin, Kuraev, Lipatov - 1977, 1978 ]

First approach: BFKL equation - evolution wrt rapidity Y = ln(1/x)

@'(Y , q)

@Y
=

↵sNc

⇡2

Z
d2k


q2

k2(q � k)2
'(Y , k) � 1

2

q2

k2(q � k)2
'(Y , q)

�

'(Y , q) ⌘ unintegrated gluon density ! xfg (x , Q) =

Z Q2

0

d2k

k2
'(x , k)

At very high energies BFKL equation has two major problems:

Froissart Bound : �total < ⇡
m2 Y 2

X-section calculated by the solution of BFKL equation : �total ⇠ ecY

to solve this problem information from the infrared scale of QCD needed.

violation of unitarity
scattering probability grows without a bound, exceeding unity at rapidities of order Y ' 1

↵s
ln(1/↵s)

this problem can be addressed by taking into account gluon saturation e↵ects.

· · · decreasing x at fixed Q2 (rapidity evolution):

Nb. of partons increase due to splitting
Transverse scale doesn’t change
Mother and daughter partons have the same size

) density of partons increases and causes saturation.
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 of gluons increase due to splitting 

transverse scale doesn’t change (fixed )

mother and daughter partons have the same size

#
Q2

⇓
density of partons increases and causes saturation

Color Glass Condensate (CGC) - I

High energy scattering in QCD:
The x evolution of a hadron :

above the saturation line there is no rapid increase in the number of
gluons

Tolga Altinoluk (UCONN) High Energy Evolution : From JIMWLK/KLWMIJ to QCD Reggeon Field TheoryApril 22, 2011 13 / 45

Regge-Gribov limit : x ! 0

at small x ! saturation!

Qs ⌘ saturation scale
⌘ ↵s ⇥ (gluon density per unit area)

Qs is a measure of the strength of the gluon
interaction processes that may occur when
the gluon density becomes large.

Qs � ⇤QCD ) weak coupling

methods can still be applied !

[ McLerran, Venugopalan - hep-ph/9309289 / hep-ph/9311205]
In the saturation regime the prescription of scattering process: Color Glass Condensate (CGC)

CGC description of a process: ”e↵ective degrees of freedom” with respect to a cut o↵ ⇤+

fast partons : k+ > ⇤+ ! described by color sources: Jµ(x) = �µ+⇢(x�, x?)

slow partons: k+ < ⇤+ ! described by color fields Aµ(x)

interaction between fast and slow partons:
R

d4xJµ(x)Aµ(x)
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DGLAP

BFKL

saturation
JIMWLK

High energy scattering in QCD:

Regge-Gribov limit:  ( gluon saturation )x → 0
 : saturation scale (gluon density per unit area)


measure of the strength of gluon interactions at high density

 weak coupling methods can still be applied!

Qs ≡ αs ×

Qs ≫ ΛQCD ⇒

in the saturation regime, scattering prescription:   
Color Glass Condensate (CGC) 

 “effective degrees of freedom” wrt a cut-off λ+

• fast partons:    : described by color sources 

• slow partons:   : described by color fields 

k+ > λ+ Jμ(x)
k+ < λ+ Aμ(x)

interaction between fast and slow partons :

∫ d4xJμ(x)Aμ(x)
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Color Glass Condensate (CGC)
Within the CGC framework: expectation value of an observable   𝒪 ⇒ ⟨𝒪⟩ ≡ ∫ [Dρ] W[ρ] 𝒪[ρ]

distribution function for the color sources ρaRapidity, ,  evolution of the distribution  
function is governed by JIMWLK equation.

Y = ln(1/x)

Eikonal interaction between the projectile and the target:

each parton picks up a Wilson line during the interaction with the target Uℛ = 𝒫+ exp[ig∫ dx+ Ta
ℛ A−

a (x+, x)]
at the level of the background field of the target eikonal approximation amounts to:  

 
 

Aμ
a (x) ≃ δμ−A−

a (x)
Aμ

a (x) ≃ Aμ
a (x+, x⊥)

Aμ
a (x) ∝ δ(x+)

possible applications in the gluon saturation regime:
dilute-dilute scattering :   no saturation effects / BFKL formalism


                             can be applied to: , DIS on p, pp at moderate energies

dilute-dense scattering :  saturated target / CGC formalism


                                             can be applied to: DIS on A, pA collisions, forward pp 

dense-dense scattering:  saturated projectile and target / nonlinear dynamics of Yang-Mills fields 


                                             can be applied to: pp at very high energies, heavy ion collisions 

γ* − γ*

saturation sensitive observables in pA collisions : forward particle/jet production 

two particle correlations 
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Particle correlations and the Ridge Two particle correlations
Motivation: Ridge structure

• correlations between particles over large intervals
of rapidity peaking at zero and ⇡ relative azimuthal
angle.

• observed first at RHIC in Au-Au collisions.

• observed at LHC for high multiplicity pp and pA
collisions.

[ATLAS Collaboration - arXiv:1609.06213]
The ridge:

 3

● Two-particle correlations in 
pp and pPb at the LHC show 
features that in AA are 
attributed to final state 
interactions describable by 
viscous relativistic 
hydrodynamics and interpreted 
as a signal of equilibration.
● EKT and AdS/CFT: hydro 
works even for large 
momentum anisotropies.
● What about a non-hydro 
initial-state explanation? 
(anyway long range rapidity 
correlations must come from 
the very early times…).

1609.06213
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The ridge structure :
correlations between particles over large intervals of rapidity 
peaking at zero and  azimuthal angle.

observed first at RHIC in Au-Au collisions. 
observed at LHC for high multiplicity pp and pA collisions.

π

Ridge in HICs           collective flow due to strong final state interactions

• good description of the data in the framework of           
relativistic viscous hydrodynamics

Ridge in small systems :

• similar reasoning looks tenuous but hydro describes the data very well.

Can it be initial state effect ?

idea: final state particles carry the imprint of the partonic correlations 
 that exit in the state.

several mechanisms have been suggested to explain the Ridge 

correlations in the CGC framework. 

double inclusive gluon production cross section:

dσ
d3k1d3k2

∝ ∫q1q2
[I0 +

1
N2

c − 1
I1 +

1
(N2

c − 1)2
I2]+( k2 → − k2 )

symmetry under : “accidental symmetry of the CGC”(k2 → − k2)
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Breaking the accidental symmetry of the CGC
Tools to study the ridge correlations: Flow coefficients vn(pT) =

VnΔ(pT, pref
T )

VnΔ(pref
T , pref

T )
VnΔ(k1, k2) =

∫ π
0

N(k1, k2, Δϕ) cos(nΔϕ) dΔϕ

∫ π
0

N(k1, k2, Δϕ) dΔϕ

Challenge: “accidental symmetry in CGC” ⇒ vanishing odd flow coefficients!

Breaking the accidental symmetry :

• density corrections to the projectile wave function 
[Kovner, Lublinsky, Skokov - arXiv:1612.07790] / [Kovchegov, Skokov - arXiv:1802.08166]

Accidental symmetry in the CGC
”accidental symmetry in CGC” ) vanishing odd harmonics

•breaking the accidental symmetry with nonlinear Gaussian approximation for dipole-dipole correlator:

[Lappi, Schenke, Schlichting, Venugopalan - arXiv:1509.03499]

Accidental symmetry in the CGC

• ”accidental symmetry in CGC:” double inclusive X-section is symmetric under k2 ! �k2

�

vanishing odd harmonics

• breaking the accidental symmetry with nonlinear Gaussian approximation for dipole-dipole correlator:
[Lappi, Schenke, Schlichting, Venugopalan - arXiv:1509.03499]

• breaking the accidental symmetry with the density corrections to the projectile:
[A. Kovner, M. Lublinsky, V. Skokov - 2017 / Y. Kovchegov, V. Skokov 2018 ]

hD(x , y)D(u, v)i = d1 +
1

N2
c


ln(d3/d2)

ln(d1/d2)

�2⇢
d1 + d2

⇥
ln(d1/d2) � 1

⇤�

d1 ⌘ D(x � y)D(u � v)

d2 ⌘ D(x � v)D(u � y)

d3 ⌘ D(x � u)D(y � v)
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• breaking the accidental symmetry with the density corrections to the projectile:

[Kovner, Lublinsky, Skokov - arXiv:1612.07790] / [Kovchegov, Skokov - arXiv:1802.08166]
Open problems:

 6

● CGC calculations for the central rapidity region resum terms in 
which each source emits one gluon, �(g�)

✗
➜ Odd harmonics require additional terms 
(1611.09870, 1612.07790, 1802.08166, see Mark 
Mace’s talk),

✓
● Glasma graph calculations are valid for a dilute target (pp) and 
usually performed for two particles (up to 4 in 1409.6347, 1712.05571):

➜ Extension to dilute-dense (pA) numerically (1509.03499, 1705.00745, 
1706.06260) or analytically (1804.02910, 1808.04896): this work.
➜ Three gluons in pA: this work.

● Correlations are subleading in Nc in the MV model: new ones 
including anisotropies (Dumitru-Skokov).

�(g2�)
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• breaking the accidental symmetry with the density corrections to the projectile:
[Kovner, Lublinsky, Skokov - arXiv:1612.07790] / [Kovchegov, Skokov - arXiv:1802.08166]
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FIG. 1. Examples of color charge densities determined from Glauber sampling with the IP-Sat model [26, 27] for a single event
for p, d, and 3He from high multiplicity events which contribute to the 0-5% centrality class.

dN even,odd(k⊥)
d2kdy

= 1

2
�dN(k⊥)

d2kdy
�⇢p,⇢t� ±

dN(−k⊥)
d2kdy

�⇢p,⇢t�� . (1)

Analytical computations [14, 28–31] provide the compact result [17, 22]

dN even(k⊥)
d2kdy

�⇢p,⇢t� =
2

(2⇡)3
�ij�lm + �ij�lm

k2
�a

ij(k⊥) [�a
lm(k⊥)]

� , (2)

dNodd(k⊥)
d2kdy

�⇢p,⇢t� =
2

(2⇡)3
Im
�������

g

k⊥
2 �

d2l

(2⇡)2
Sign(k⊥ × l⊥)
l2�k⊥ − l⊥�2

fabc�a
ij(l⊥)�b

mn(k⊥ − l⊥) ��c
rp(k⊥)�

�
(3)

× ��k⊥2�ij�mn − l⊥ ⋅ (k⊥ − l⊥)(�ij�mn + �ij�mn)� �rp + 2k⊥ ⋅ (k⊥ − l⊥)�ij�mn�rp�
�������

,

where �a
ij(k⊥) = g ∫ d2p

(2�)2
pi(k−p)j

p2 ⇢b
p(p⊥)Uab(k⊥ − p⊥)

and �ij(�ij) denotes the Levi-Civita symbol (Kronecker
delta). The adjoint Wilson line Uab is a functional of
the target charge density and is the two-dimensional
Fourier transform of its coordinate space counterpart:

Ũ(x⊥) = P exp �ig2 ∫ dx+ 1
∇⊥2 ⇢̃a

t (x+,x⊥)Ta� .

Comparing the even and odd contributions in Eqs. (2)

and (3) respectively, one observes that the odd contri-
bution is suppressed in the CGC EFT by ↵S⇢p, where
↵S = g2�4⇡ is the QCD coupling. This factor arises from
the first saturation correction in the interactions with the
dilute projectile [17, 22]. This systematic suppression
in the power counting is what naturally explains in this
framework the relative magnitude of v2

3{2} compared to
v2
2{2} observed in the experimental data on small sys-

tems.

The m-particle momentum distribution is obtained after performing an ensemble average over the color charge
distributions with the weight functionals, W [⇢̃p,t],

dmN

d2k1dy1�d2kmdym
= � D⇢pD⇢t W [⇢p]W [⇢t]

dN

d2k1dy1
�⇢p,⇢t��

dN

d2kmdym
�⇢p,⇢t� . (4)

These have the form described by the McLerran-Venugopalan (MV) model [32, 33]

W [⇢̃p,t] =N exp �−� dx−,+d2x
⇢̃a

p,t(x−,+,x⊥)⇢̃a
p,t(x−,+,x⊥)

2µ2
p,t

� , (5)

but are in fact more general because, as a consequence of renormalization group evolution of the color sources in

) non-vanishing odd harmonics.

Open problems:

 6

● CGC calculations for the central rapidity region resum terms in 
which each source emits one gluon, �(g�)

✗
➜ Odd harmonics require additional terms 
(1611.09870, 1612.07790, 1802.08166, see Mark 
Mace’s talk),

✓
● Glasma graph calculations are valid for a dilute target (pp) and 
usually performed for two particles (up to 4 in 1409.6347, 1712.05571):

➜ Extension to dilute-dense (pA) numerically (1509.03499, 1705.00745, 
1706.06260) or analytically (1804.02910, 1808.04896): this work.
➜ Three gluons in pA: this work.

● Correlations are subleading in Nc in the MV model: new ones 
including anisotropies (Dumitru-Skokov).
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➜ Extension to dilute-dense (pA) numerically (1509.03499, 1705.00745, 
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➜ Three gluons in pA: this work.

● Correlations are subleading in Nc in the MV model: new ones 
including anisotropies (Dumitru-Skokov).

�(g2�)
• numerical studies:
[Mace, Skokov, Tribedy, Venugopalan - arXiv:1805.09342 / arXiv:1807.00825 / arXiv:1901.10506]

see talk by Mace
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FIG. 1. Examples of color charge densities determined from Glauber sampling with the IP-Sat model [26, 27] for a single event
for p, d, and 3He from high multiplicity events which contribute to the 0-5% centrality class.
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the target charge density and is the two-dimensional
Fourier transform of its coordinate space counterpart:
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t (x+,x⊥)Ta� .

Comparing the even and odd contributions in Eqs. (2)

and (3) respectively, one observes that the odd contri-
bution is suppressed in the CGC EFT by ↵S⇢p, where
↵S = g2�4⇡ is the QCD coupling. This factor arises from
the first saturation correction in the interactions with the
dilute projectile [17, 22]. This systematic suppression
in the power counting is what naturally explains in this
framework the relative magnitude of v2

3{2} compared to
v2
2{2} observed in the experimental data on small sys-

tems.

The m-particle momentum distribution is obtained after performing an ensemble average over the color charge
distributions with the weight functionals, W [⇢̃p,t],

dmN

d2k1dy1�d2kmdym
= � D⇢pD⇢t W [⇢p]W [⇢t]

dN

d2k1dy1
�⇢p,⇢t��

dN

d2kmdym
�⇢p,⇢t� . (4)

These have the form described by the McLerran-Venugopalan (MV) model [32, 33]

W [⇢̃p,t] =N exp �−� dx−,+d2x
⇢̃a

p,t(x−,+,x⊥)⇢̃a
p,t(x−,+,x⊥)

2µ2
p,t

� , (5)

but are in fact more general because, as a consequence of renormalization group evolution of the color sources in

) non-vanishing odd harmonics.

• numerical studies and comparison with data:

[Mace, Skokov, Tribedy, Venugopalan - arXiv:1805.09342 / arXiv:1807.00825 / arXiv:1901.10506]

see talk by Mace
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• subeikonal corrections due to finite longitudinal width of the target
[Agostini, T.A., Armesto - arXiv:1902.044830] / [Agostini, T.A., Armesto - arXiv:1907.03668]

relax the eikonal approximation by considering a finite width target: Aμ
a (x) = δμ−δ(x+)Aμ

a (xT) → Aμ
a (x) = δμ−Aμ

a (x+, xT)

In the weak field limit (pp collisions):

Production amplitude 

Subeikonal corrections in the CGC - II
[TA, Armesto, Beuf, Moscoso - arXiv:1505.01400]

Finite width target: relaxing the eikonal approximation
[ T.A., N. Armesto, G. Beuf, M. Martinez, C.A. Salgado - 2014 ]
[ T.A., N. Armesto, G. Beuf, A. Moscoso - 2015 ]

Consider a finite width target :

0 L+

j+
a (x)

x�

x+

B� k+,k� The target ! Aµ(x) ⌘ �µ�A�
a (x+, x)

The projectile ! jµa (x) / �µ+�(x�) ⇢b(x � B)

The single inclusive gluon cross section for pA:

(2⇡)3 (2k+)
d�

dk+ d2k
=

Z
d2B

X

� phys.

��
|Ma

�(k ,B)|2
�

p

�

A

�
gluon production amplitude
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Prod. Amp. M / scalar background propagator ! eikonal expansion (in powers of L+/k+)

eikonal order: standard Wilson line / higher orders: new operators (decorated Wilson lines)

[TA, Dumitru - arXiv:1512.00279] ! corrections to the Lipatov vertex.

from pA to pp: expand the standard & decorated Wilson lines to first order in the background field.

Dilute target limit and the modified Lipatov vertex
[ T.A., A. Dumitru - 2015 ]

• summing up all the NEik and NNEik terms in the dilute target limit, one gets

M /


(k � q)i

(k � q)2
� k i

k2

�⇢
1 + i

k2

2k+
x+ � 1

2

✓
k2

2k+
x+

◆2�

• O(1) term ! eikonal Lipatov vertex.

k � q

Li(k, q)

q

k

1

Li (k , q) =
(k � q)i

(k � q)2
� k i

k2

• we get NEik and NNEik corrections to the Lipatov vertex.

• the form suggests exponentiation. However, we do not know the corrections beyond NNEik accuracy!
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O(1) term eikonal Lipatov vertex.

Dilute target limit and the modified Lipatov vertex
[ T.A., A. Dumitru - 2015 ]

• summing up all the NEik and NNEik terms in the dilute target limit, one gets

M /


(k � q)i

(k � q)2
� k i

k2

�⇢
1 + i

k2

2k+
x+ � 1

2

✓
k2

2k+
x+

◆2�

• O(1) term ! eikonal Lipatov vertex.

k � q

Li(k, q)

q

k

1

Li (k , q) =
(k � q)i

(k � q)2
� k i

k2

• we get NEik and NNEik corrections to the Lipatov vertex.

• the form suggests exponentiation. However, we do not know the corrections beyond NNEik accuracy!
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the form of the corrections suggests exponentiation.
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ℳ ∝ L i
NonEik(k, q; x+) = [ (kT − qT)i

(kT − qT)2
−

ki
T

k2
T ]eik−x+

 terms: eikonal Lipatov vertexO(1)
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Noneikonal double inclusive gluon production

Double inclusive gluon production cross section with non-eikonal Lipatov vertex:

dσ
d3k1d3k2 NonEik

∝ ∫q1q2
{f (k1, q1; k2, q2)+𝒢NonEik

2 (k−
1 , k−

2 ; L+)g(k1, q1; k2, q2)] + (k2 → − k2)}
k ≡ (k+, kT)

k− =
k2

T

2k+

all non-eikonal effects are encoded in 𝒢NonEik
2 (k−

1 , k−
2 ; L+) = { 2

(k−
1 − k−

2 )L+
sin[ (k−

1 − k−
2 )

2
L+]}

2

 is not symmetric under 𝒢NonEik
2 (k−

1 , k−
2 ; L+) (k2 → − k2)

Non-eikonal corrections are breaking the accidental symmetry!

odd-harmonics from the non-eikonal corrections?
[ P. Agostini, T.A., N. Armesto - in preparation]

Can we generate non-zero odd harmonics from the non-eikonal corrections?
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Figure 2: Two particle azimuthal harmonics generated in the non-eikonal Glasma graph approximation, using the definition eq. (19).

The values were calculated using µT = 0.4 GeV, µP = 0.2 GeV and pref
T = 1 GeV at di�erent center of mass energies and gluon

pseudorapidities. The symbols without lines indicate the HBT contributions.

where we have used µT = 0.4 GeV, µP = 0.2 GeV and ⌘1 = ⌘2 = 1.5. The dashed lines are our results for a Dirac
delta in µ2(k1,k2), and we observe that the shape of vn(pT ) is very abrupt and unrealistic for small pT . This is
what we should expect since µ2(k1,k2) / (2⇡)2�(2)(k1 � k2) comes from assuming translational invariance and this
is only valid for large |k1 � k2| or Bp, but in our case we are using small values for both |k1 � k2| and Bp. In order

to deal with this problem we make the substitution (2⇡)2�(2)(k1 � k2) ! 2⇡Bp exp
�

� Bp

2 (k1 � k2)2
�

in the HBT
term eq. (A.10) since this is the dominant contribution. The corresponding results can be seen in the continuous
lines of fig. 4 and fig. 5 and they are smoother.

Writing eq. (22) as

C2(k
�
1 , k�

2 ) =

�

�
p

2e�1 sin
�

k1�k2e��
�

2
e��1L+

�

(k1 � k2e��) L+

�

�

2

, (23)

we can study the dependence of the cross section with respect to the di�erence in rapidity between the produced

7

Vn�(k1, k2) =

R ⇡
0 N(k1, k2, ��) cos(n��) d��R ⇡

0 N(k1, k2, ��) d��

vn(pT ) =
Vn�(pT , pref

T
)q

Vn�(pref

T
, pref

T
)

• L+ = 6 fm in the rest frame and we scale it with
the � factor for di↵erent energies.
• µT = 0.4 GeV and µP = 0.2 GeV (these are the
values that maximize v3).
• ⌘1 = ⌘2 & pref

t = 1 GeV.

Non-eikonal e↵ects alone can not explain the odd-harmonics HOWEVER there is a contribution
originating from these e↵ects for certain kinematic region.

Tolga Altinoluk Saturation overview 21/22

⇓

Non-zero odd flow coefficients  
with non-eikonal corrections:

Disclaimer: Non-eikonal effects alone can not describe the 

odd-harmonics HOWEVER there is a contribution originating 

from these effects for certain kinematic region.  

[Agostini, T.A., Armesto - arXiv:1902.044830] / [Agostini, T.A., Armesto - arXiv:1907.03668]
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Summary and outlook

Due to the accidental symmetry of CGC, odd flow coefficients vanish. 

The accidental symmetry can be broken in different ways.  

Non-eikonal corrections break the symmetry         non-zero odd flow coefficients.  

What’s next?

Single and double inclusive gluon production with non-eikonal corrections. 
Agostini, T.A., Armesto - under preparation (January 2020)

Breaking the accidental symmetry with quantum color flow effects. 
T.A., Marquet - under preparation (January 2020) 


